1
|
Piro F, Masci S, Kannan G, Focaia R, Schultz TL, Thaprawat P, Carruthers VB, Di Cristina M. A Toxoplasma gondii putative amino acid transporter localizes to the plant-like vacuolar compartment and controls parasite extracellular survival and stage differentiation. mSphere 2024; 9:e0059723. [PMID: 38051073 PMCID: PMC10871165 DOI: 10.1128/msphere.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. T. gondii possesses a lysosome-like organelle known as the plant-like vacuolar compartment (PLVAC), which serves various functions, including digestion, ion storage and homeostasis, endocytosis, and autophagy. Lysosomes are critical for maintaining cellular health and function by degrading waste materials and recycling components. To supply the cell with the essential building blocks and energy sources required for the maintenance of its functions and structures, the digested solutes generated within the lysosome are transported into the cytosol by proteins embedded in the lysosomal membrane. Currently, a limited number of PLVAC transporters have been characterized, with TgCRT being the sole potential transporter of amino acids and small peptides identified thus far. To bridge this knowledge gap, we used lysosomal amino acid transporters from other organisms as queries to search the T. gondii proteome. This led to the identification of four potential amino acid transporters, which we have designated as TgAAT1-4. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we present preliminary data showing the possible involvement of TgAAT1 in the PLVAC transport of arginine.IMPORTANCEToxoplasma gondii is a highly successful parasite infecting a broad range of warm-blooded organisms, including about one-third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected, along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders, makes this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle plant-like vacuolar compartment (PLVAC), acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.
Collapse
Affiliation(s)
- Federica Piro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Silvia Masci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Riccardo Focaia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Zhang W, Sadeghi A, Karaca AC, Zhang J, Jafari SM. Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Crit Rev Food Sci Nutr 2023; 64:12759-12779. [PMID: 37702799 DOI: 10.1080/10408398.2023.2257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Probiotics (PRO) have been recognized for their significant role in promoting human health, particularly in relation to colon-related diseases. The effective delivery of PRO to the colon is a fascinating area of research. Among various delivery materials, carbohydrates have shown great potential as colon-targeted delivery (CTD) carriers for PRO. This review explores the connection between probiotics and colonic diseases, delving into their underlying mechanisms of action. Furthermore, it discusses current strategies for the targeted delivery of active substances to the colon. Unlike other reviews, this work specifically focuses on the utilization of carbohydrates, such as alginate, chitosan, pectin, and other carbohydrates, for probiotic colon-targeted delivery applications. Carbohydrates can undergo hydrolysis at the colonic site, allowing their oligosaccharides to function as prebiotics or as direct functional polysaccharides with beneficial effects. Furthermore, the development of multilayer self-assembled coatings using different carbohydrates enables the creation of enhanced delivery systems. Additionally, chemical modifications of carbohydrates, such as for adhesion and sensitivity, can be implemented to achieve more customized delivery of PRO.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Alireza Sadeghi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Piro F, Masci S, Kannan G, Focaia R, Schultz TL, Carruthers VB, Di Cristina M. A Toxoplasma gondii putative arginine transporter localizes to the plant-like vacuolar compartment and controls parasite extracellular survival and stage differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555807. [PMID: 37693549 PMCID: PMC10491228 DOI: 10.1101/2023.08.31.555807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. Most eukaryotes, from yeast to mammals, rely on a nutrient sensing machinery involving the TORC complex as master regulator of cell growth and cell cycle progression. The lysosome functions as a signaling hub where TORC complex assembles and is activated by transceptors, which both sense and transport amino acids, including the arginine transceptor SLC38A9. While most of the TORC components are lost in T. gondii , indicating the evolution of a distinct nutrient sensing mechanism, the parasite's lysosomal plant-like vacuolar compartment (PLVAC) may still serve as a sensory platform for controlling parasite growth and differentiation. Using SLC38A9 to query the T. gondii proteome, we identified four putative amino acid transporters, termed TgAAT1-4, that structurally resemble the SLC38A9 arginine transceptor. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we show that TgAAT1 is involved in the PLVAC efflux of arginine, an amino acid playing a key role in T. gondii differentiation, further supporting the hypothesis that TgAAT1 might play a role in nutrient sensing. IMPORTANCE T. gondii is a highly successful parasite infecting a broad range of warm-blood organisms including about one third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders make this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well-tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle PLVAC, acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.
Collapse
|
4
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Colonic budesonide delivery by multistimuli alginate/Eudragit® FS 30D/inulin-based microspheres as a paediatric formulation. Carbohydr Polym 2023; 302:120422. [PMID: 36604084 DOI: 10.1016/j.carbpol.2022.120422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
The purpose of this study was to develop an oral paediatric formulation of budesonide (BUD) for the treatment of inflammatory bowel disease. A formulation realized as microspheres using the prilling/vibration technique is proposed as an innovative drug delivery system ensuring BUD-specific colonic release in response to different triggers, such as pH, transit time, and resident microbiota. BUD, or the inclusion complex BUD/hydroxypropyl-β-cyclodextrin, was loaded into microspheres consisting of different ratios of alginate, Eudragit® FS 30D, with or without inulin. Sixteen formulations are produced that show high yields and encapsulation efficiencies, ensuring a homogenous distribution of BUD into the matrix. Microsphere diameters of <655 μm and promising flow properties make these systems suitable for oral administration to children. Swelling and drug release studies in simulated gastrointestinal fluid are used to demonstrate the response of microspheres to time and pH triggers. Studies in faecal medium highlight that drug release from microspheres with inulin is also influenced by microbiota.
Collapse
|
6
|
Estes Bright LM, Griffin L, Mondal A, Hopkins S, Ozkan E, Handa H. Biomimetic gasotransmitter-releasing alginate beads for biocompatible antimicrobial therapy. J Colloid Interface Sci 2022; 628:911-921. [PMID: 36030716 PMCID: PMC9728620 DOI: 10.1016/j.jcis.2022.08.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Alginate is widely used in biomedical applications due to its high biocompatibility as well as structural and mechanical similarities to human tissue. Further, simple ionic crosslinking of alginate allows for the formation of alginate beads capable of drug delivery. S-nitrosoglutathione is a water-soluble molecule that releases nitric oxide in physiological conditions, where it acts as a potent antimicrobial gas, among other functions. As macrophages and endothelial cells endogenously produce nitric oxide, incorporating nitric oxide donors into polymers and hydrogels introduces a biomimetic approach to mitigate clinical infections, including those caused by antibiotic-resistant microorganisms. The incorporation of S-nitrosoglutathione into macro-scale spherical alginate beads is reported for the first time and shows exciting potential for biomedical applications. EXPERIMENTS Herein, nitric oxide-releasing crosslinked alginate beads were fabricated and characterized for surface and cross-sectional morphology, water uptake, size distribution, and storage stability. In addition, the NO release was quantified by chemiluminescence and its biological effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were investigated. The biocompatibility of the alginate beads was tested against 3T3 mouse fibroblast cells. FINDINGS Overall, nitric oxide-releasing alginate beads demonstrate biologically relevant activities without eliciting a cytotoxic response, revealing their potential use as an antimicrobial material with multiple mechanisms of bacterial killing.
Collapse
Affiliation(s)
- Lori M Estes Bright
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Lauren Griffin
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ekrem Ozkan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
How to Improve Health with Biological Agents-Narrative Review. Nutrients 2022; 14:nu14091700. [PMID: 35565671 PMCID: PMC9103441 DOI: 10.3390/nu14091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The proper functioning of the human organism is dependent on a number of factors. The health condition of the organism can be often enhanced through appropriate supplementation, as well as the application of certain biological agents. Probiotics, i.e., live microorganisms that exert a beneficial effect on the health of the host when administered in adequate amounts, are often used in commonly available dietary supplements or functional foods, such as yoghurts. Specific strains of microorganisms, administered in appropriate amounts, may find application in the treatment of conditions such as various types of diarrhoea (viral, antibiotic-related, caused by Clostridioides difficile), irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or allergic disorders. In contrast, live microorganisms capable of exerting influence on the nervous system and mental health through interactions with the gut microbiome are referred to as psychobiotics. Live microbes are often used in combination with prebiotics to form synbiotics, which stimulate growth and/or activate the metabolism of the healthy gut microbiome. Prebiotics may serve as a substrate for the growth of probiotic strains or fermentation processes. Compared to prebiotic substances, probiotic microorganisms are more tolerant of environmental conditions, such as oxygenation, pH, or temperature in a given organism. It is also worth emphasizing that the health of the host may be influenced not only by live microorganisms, but also by their metabolites or cell components, which are referred to as postbiotics and paraprobiotics. This work presents the mechanisms of action employed by probiotics, prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics, together with the results of studies confirming their effectiveness and impact on consumer health.
Collapse
|
8
|
Haji F, Cheon J, Baek J, Wang Q, Tam KC. Application of Pickering emulsions in probiotic encapsulation- A review. Curr Res Food Sci 2022; 5:1603-1615. [PMID: 36161224 PMCID: PMC9493384 DOI: 10.1016/j.crfs.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits to host organisms when consumed in adequate amounts and are often incorporated into foods for human consumption. However, this has negative implications on their viability as large numbers of these beneficial bacteria are deactivated when subjected to harsh conditions during processing, storage, and passage through the gastrointestinal tract. To address these issues, numerous studies on encapsulation techniques to protect probiotics have been conducted. This review focuses on emulsion technology for probiotic encapsulation, with a special focus on Pickering emulsions. Pickering emulsions are stabilized by solid particles, which adsorb strongly onto the liquid-liquid interfaces to prevent aggregation. Pickering emulsions have demonstrated enhanced stability, high encapsulation efficiency, and cost-effectiveness compared to other encapsulation techniques. Additionally, Pickering emulsions are regarded as safe and biocompatible and utilize natural materials, such as cellulose and chitosan derived from plants, shellfish, and fungi, which may also be viewed as more acceptable in food systems than common synthetic and natural molecular surfactants. This article reviews the current status of Pickering emulsion use for probiotic delivery and explores the potential of this technique for application in other fields, such as livestock farming, pet food, and aquaculture. Probiotics play an important role in maintaining the health of humans and animals. Encapsulation improves probiotic viability in harsh environments. Probiotics can be encapsulated by many techniques such as emulsification. Pickering emulsions use particles instead of molecules to stabilize emulsions. Natural particles are more acceptable to some consumers than synthetic emulsifiers.
Collapse
Affiliation(s)
- Fatemah Haji
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - James Cheon
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Jiyoo Baek
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Corresponding author.
| |
Collapse
|
9
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
10
|
Arnal ME, Denis S, Uriot O, Lambert C, Holowacz S, Paul F, Kuylle S, Pereira B, Alric M, Blanquet-Diot S. Impact of oral galenic formulations of Lactobacillus salivarius on probiotic survival and interactions with microbiota in human in vitro gut models. Benef Microbes 2021; 12:75-90. [PMID: 34109893 DOI: 10.3920/bm2020.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Health benefits of probiotics in humans essentially depend on their ability to survive during gastrointestinal (GI) transit and to modulate gut microbiota. To date, there is few data on the impact of galenic formulations of probiotics on these parameters. Even if clinical studies remain the gold standard to evaluate the efficacy of galenic forms, they stay hampered by technical, ethical and cost reasons. As an alternative approach, we used two complementary in vitro models of the human gut, the TNO gastrointestinal (TIM-1) model and the Artificial Colon (ARCOL), to study the effect of three oral formulations of a Lactobacillus salivarius strain (powder, capsule and sustained-release tablet) on its viability and interactions with gut microbiota. In the TIM-1 stomach, no or low numbers of bacteria were respectively released from the capsule and tablet, confirming their gastro-resistance. The capsule was disintegrated in the jejunum on average 76 min after administration while the core of sustained-release tablet was still intact at the end of digestion. Viability in TIM-1 was significantly influenced by the galenic form with survival percentages of 0.003±0.004%, 2.8±0.6% and 17.0±1.8% (n=3) for powder, capsule and tablet, respectively. In the ARCOL, the survival of the strain tended to be higher in the post-treatment phase with the tablet compared to capsule, but gut microbiota composition and activity were not differently modulated by the two formulations. In conclusion, the sustained-release tablet emerged as the formulation that most effectively preserved viability of the tested strain during GI passage. This study highlights the usefulness of in vitro gut models for the pre-screening of probiotic pharmaceutical forms. Their use could also easily be extended to the evaluation of the effects of food matrices and age on probiotic survival and activity during GI transit.
Collapse
Affiliation(s)
- M E Arnal
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Denis
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - O Uriot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - C Lambert
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - S Holowacz
- PiLeJe Industrie, Parc Naturopôle, Les Tiolans 03800 Saint-Bonnet de Rochefort, France
| | - F Paul
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - S Kuylle
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - B Pereira
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - M Alric
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
12
|
Verma DK, Patel AR, Thakur M, Singh S, Tripathy S, Srivastav PP, Chávez-González ML, Gupta AK, Aguilar CN. A review of the composition and toxicology of fructans, and their applications in foods and health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Afzaal M, Saeed F, Hussain S, Mohamed AA, Alamri MS, Ahmad A, Ateeq H, Tufail T, Hussain M. Survival and storage stability of encapsulated probiotic under simulated digestion conditions and on dried apple snacks. Food Sci Nutr 2020; 8:5392-5401. [PMID: 33133541 PMCID: PMC7590301 DOI: 10.1002/fsn3.1815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The objective of the current study was to explore the probiotics carrier potential of apple dried snacks and improve the survival of probiotics under simulated gastrointestinal conditions. Purposely, the probiotics were encapsulated using two hydrogel materials (sodium alginate and carrageenan) by using encapsulator. Briefly, slices of apple were immersed in solution containing free and encapsulated probiotics and then dried by conventional drying method. The dried apple snack was analyzed for different characteristics (physiochemical and microbiological) during storage. The viability of the free and encapsulated probiotics was accessed in apple snack and under simulated gastrointestinal conditions. Apple snack rich with encapsulated probiotics showed a significant result (p < .05) regarding the survival and stability. The encapsulated probiotics decreased from 9.5 log CFU/g to 8.83 log CFU/g as compared to free probiotics that decreased to 5.28 log CFU/g. Furthermore, encapsulated probiotics exhibited a better stability under simulated gastrointestinal conditions as compared to free. During storage, an increase in phenolic content and hardness was observed while decrease in pH was noted. Results of sensory parameters indicated apple snack as potential and acceptable probiotics carrier.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Shahzad Hussain
- Department of Food Science & NutritionKing Saud UniversityRiyadhSaudi Arabia
| | | | - Mohamed S. Alamri
- Department of Food Science & NutritionKing Saud UniversityRiyadhSaudi Arabia
| | - Aftab Ahmad
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Tabussam Tufail
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzammil Hussain
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
- The University of GambiaSerrekundaGambia
| |
Collapse
|
14
|
Yasmin I, Saeed M, Pasha I, Zia MA. Development of Whey Protein Concentrate-Pectin-Alginate Based Delivery System to Improve Survival of B. longum BL-05 in Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2020; 11:413-426. [PMID: 29572754 DOI: 10.1007/s12602-018-9407-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifidobacterium longum BL-05 encapsulated beads were developed by using whey protein concentrate (WPC) and pectin (PE) as encapsulating material through extrusion/ionic gelation technique with the objective to improve survival of probiotics in harsh gastrointestinal conditions. B. longum BL-05 was grown in MRS (de man rogosa and sharpe) broth, centrifuged and mixed with polymeric gel solution. Bead formulations E4 (2.5% WPC + 1.5% PE) and E5 (2% PE) showed the highest value for encapsulation efficiency, size, and textural properties (hardness, cohesiveness, springiness) due to increasing PE concentration. The survivability and viability of free and encapsulated B. longum BL-05 was assessed through their resistance to simulated gastric juice (SGJ), tolerance to bile salt, release profile in simulated intestinal fluid (SIF), and storage stability during 28 days at 4 °C. The microencapsulation provided protection to B. longum BL-05 and encapsulated cells were exhibited significant (p < 0.05) resistance to SGJ and SIF as compared to free cells. Bead formulations E3 (5.0% WPC + 1.0% PE) and E4 (2.5% WPC + 1.5% PE) exhibited more resistance to SGJ (at pH 2 for 2 h) and at 2% bile salt solution but comparatively slow release as compared to other bead formulations. Free cells lost their viability when stored at 4 °C after 28 days but microencapsulated cells demonstrated promising results during storage and viable cell count was > 107 CFU/g. This study revealed that extrusion using WPC and PE as encapsulating material could be considered as one of the novel technologies for protection and effective delivery of probiotics.
Collapse
Affiliation(s)
- Iqra Yasmin
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan. .,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588-6205, USA.
| | - Muhammad Saeed
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
15
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
16
|
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Khangwal I, Shukla P. Potential prebiotics and their transmission mechanisms: Recent approaches. J Food Drug Anal 2019; 27:649-656. [PMID: 31324281 PMCID: PMC9307030 DOI: 10.1016/j.jfda.2019.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Prebiotics are non-digestible carbohydrates which can be used as prime source of energy for gut microflora. These can be naturally occurring in fruit and vegetables or can be made synthetically by enzymatic digestions. New versatile sources of prebiotics had been found nowadays for economic commercialization. This review will decipher on highlighting the importance of prebiotics in immunomodulation and nutrient absorption abilities of gut, as it is important for the anti-effective capacity of the organism especially in the neonatal period. Moreover, new prebiotics transmission strategies with higher penetrating capacity such as microencapsulation and immobilization have been discussed. In addition to this, literature had shown the modulation of gut microflora by the continuous use of prebiotics in many disorders so here, the role of prebiotics in health-related issues such as diabetes and inflammatory bowel disease (IBS) have been explained.
Collapse
|
18
|
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S, Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J Microencapsul 2019; 36:192-203. [DOI: 10.1080/02652048.2019.1618403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Diet and Nutritional Science, Faculty of Health and Allied Science, Imperial College of Business Studies, Lahore, Pakistan
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Skimmed Milk-Based Encapsulation for Enhanced Stability and Viability of Lactobacillus gastricus BTM 7 Under Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2018; 11:850-856. [PMID: 30232745 DOI: 10.1007/s12602-018-9472-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study investigated skimmed milk and alginate-based encapsulation for protection of a probiotic strain, Lactobacillus gastricus BTM7 during storage and exposure to simulated gastrointestinal conditions. The investigations have revealed that coating with skimmed milk and alginate in a ratio of 1:1 resulted in highest encapsulation efficiency of 94% (p < 0.05) with approximately 1 log reduction in viable cell count and 90% release of encapsulated cells in 90 min. This formulation resulted in 5-fold higher survival of bacteria during storage at refrigeration for 21 days (p < 0.05). The encapsulation of L. gastricus BTM7 provided better protection at the pH of gastric juice or pancreatic conditions with 4- and 9-fold increase in survivability after 2 h of incubation. The principal component analysis (PCA) revealed the potential of skimmed milk supplementation to alginate (1:1) to enhance survival of probiotic strain under refrigerated storage, a process that can be safely incorporated into dairy products.
Collapse
|