1
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
2
|
Dai H, Yang H, Wang R, Wang X, Zhang X. Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer-Depression Comorbidity Management. Nutrients 2025; 17:1505. [PMID: 40362814 PMCID: PMC12073834 DOI: 10.3390/nu17091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host's metabolism and immune function. Changes in gut microbiota and their metabolites may represent key factors in preventing cancer-depression comorbidity. METHODS English publications were searched in databases including the Web of Science, Scopus, and PubMed using a series of keywords: "cancer", "depression", "gut microbiota", "dietary components", and related terms, individually or in combination. The search focused on preclinical and clinical studies describing the regulatory effects of dietary component interventions. RESULTS This narrative review summarizes the associations among gut microbiota, cancer, and depression, and synthesizes current evidence on the modulatory effects and mechanisms of specific dietary component interventions, including dietary patterns, probiotics, prebiotics, and diet-derived phytochemicals, on gut microbiota. On the one hand, these interventions inhibit abnormal proliferation signals in the tumor microenvironment and enhance anticancer immune responses; on the other hand, they modulate neurotransmitter homeostasis, suppress neuroinflammation, and improve mood behaviors through the gut-brain axis interactions mediated by microbial metabolites. CONCLUSIONS The complex associations among cancer, depression, and gut microbiota require further clarification. Modulating gut microbiota composition through dietary components represents a novel therapeutic strategy for improving cancer-depression comorbidity. Regulated gut microbiota enhance immune homeostasis and intestinal barrier function, while their metabolites bidirectionally modulate one another via systemic circulation and the gut-brain axis, thereby improving both the tumor microenvironment and depressive-like behaviors in cancer patients while reducing the adverse effects of cancer.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Haiyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuanpeng Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Abbas M, Tangney M. The oncobiome; what, so what, now what? MICROBIOME RESEARCH REPORTS 2025; 4:16. [PMID: 40207280 PMCID: PMC11977386 DOI: 10.20517/mrr.2024.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Microbial communities inhabiting various body sites play critical roles in the initiation, progression, and treatment of cancer. The gut microbiota, a highly diverse microbial ecosystem, interacts with immune cells to modulate inflammation and immune surveillance, influencing cancer risk and therapeutic outcomes. Local tissue microbiota may impact the transition from premalignant states to malignancy. Characterization of the intratumoral microbiota increasingly reveals distinct microbiomes that may influence tumor growth, immune responses, and treatment efficacy. Various bacteria species have been reported to modulate cancer therapies through mechanisms such as altering drug metabolism and shaping the tumor microenvironment (TME). For instance, gut or intratumoral bacterial enzymatic activity can convert prodrugs into active forms, enhancing therapeutic effects or, conversely, inactivating small-molecule chemotherapeutics. Specific bacterial species have also been linked to improved responses to immunotherapy, underscoring the microbiome's role in treatment outcomes. Furthermore, unique microbial signatures in cancer patients, compared with healthy individuals, demonstrate the diagnostic potential of microbiota. Beyond the gut, tumor-associated and local microbiomes also affect therapy by influencing inflammation, tumor progression, and drug resistance. This review explores the multifaceted relationships between microbiomes and cancer, focusing on their roles in modulating the TME, immune activation, and treatment efficacy. The diagnostic and therapeutic potential of bacterial members of microbiota represents a promising avenue for advancing precision oncology and improving patient outcomes. By leveraging microbial biomarkers and interventions, new strategies can be developed to optimize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Munawar Abbas
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| | - Mark Tangney
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| |
Collapse
|
4
|
Yang W, Li T, An S, Chen R, Zhao Y, Cui J, Zhang M, Lu J, Tian Y, Bao L, Zhao P. Ligilactobacillus salivarius LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice. Microbiol Spectr 2025; 13:e0186124. [PMID: 39792005 PMCID: PMC11792455 DOI: 10.1128/spectrum.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects. The probiotics have the potential to prevent CRC, and they display a favorable safety performance. Probiotics could provide a potential strategy to prevent and treat CRC. The impact of LZZAY01 on cancer cell lines CT-26, HCT-116, and SW-620 was evaluated by conducting cytotoxicity and clonogenicity tests. A model of colitis-associated cancer (CAC) was established in C57BL/6j mice following induction with AOM/DSS. The levels of autophagy and apoptosis proteins, tight junction proteins, and inflammatory factors were detected by western blotting, immunofluorescence assay, and enzyme-linked immunosorbent assay. High-throughput sequencing of gut 16S rRNA was performed to analyze the abundance and diversity of the gut microbiome. LZZAY01, a new strain of Ligilactobacillus salivarius, was certified by an evolutionary tree and average nucleotide identity. LZZAY01 enhanced autophagy and apoptosis in CT-26, HCT-116, and SW-620 cell lines. It preserved the integrity of the intestinal barrier by regulating the tight junction protein ZO-1 and claudin-1. The tumor necrosis factor-α and interleukin-6 were reduced by LZZAY01. The abundance and diversity of the intestinal microbiota were enhanced, especially the beneficial bacterial species maintaining the balance of the intestinal flora such as Bifidobacterium and Lactobacillus. L. salivarius LZZAY01 improved CAC via suppressing the growth of colon cancer cells, promoting autophagy and apoptosis, enhancing intestinal tight junctions, reducing intestinal barrier degradation, modifying the gut microbiota abundance, and decreasing inflammatory reactions.IMPORTANCEAlthough similar probiotics have been shown to have anticancer potential in colorectal cancer (CRC), there is a paucity of research related to the preventive function of probiotics against CRC. And there are fewer studies about the mechanism of probiotics' preventive effects on CRC. The regulation of tumor cell proliferation and apoptosis by the active ingredients of probiotics may be one of the mechanisms of their prevention of CRC. In this study, we explored the effects of L. salivarius LZZAY01 on autophagy and apoptosis of colon cancer cells in vitro and in vivo and proposed a possible mechanism for the prevention of CRC by probiotics.
Collapse
Affiliation(s)
- Wenhong Yang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Tao Li
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Shixiang An
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Rong Chen
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Yuxin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital (The Fourth Hospital), Hohhot, China
| | - Jiaxian Cui
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Mingyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yunpeng Tian
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Lili Bao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Cheraghpour M, Fatemi N, Shadnoush M, Talebi G, Tierling S, Bermúdez-Humarán LG. Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer. Med Oncol 2024; 41:231. [PMID: 39162936 DOI: 10.1007/s12032-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, develops mainly due to the accumulation of genetic and epigenetic changes over many years. Substantial evidence suggests that gut microbiota plays a significant role in the initiation, progression, and control of CRC, depending on the balance between beneficial and pathogenic microorganisms. Nonetheless, gut microbiota composition by regulating the host immune response may either promote or inhibit CRC. Thus, modification of gut microbiota potentially impacts clinical outcomes of immunotherapy. Previous studies have indicated that therapeutic strategies such as probiotics, prebiotics, and postbiotics enhance the intestinal immune system and improve the efficacy of immunotherapeutic agents, potentially serving as a complementary strategy in cancer immunotherapy. This review discusses the role of the gut microbiota in the onset and development of CRC in relation to the immune response. Additionally, we focus on the effect of strategies manipulating gut microbiome on the immune response and efficacy of immunotherapy against CRC. We demonstrate that manipulation of gut microbiome can enhance immune response and outcomes of immunotherapy through downregulating Treg cells and other immunosuppressive cells while improving the function of T cells within the tumor; however, further research, especially clinical trials, are needed to evaluate its efficacy in cancer treatment.
Collapse
Affiliation(s)
- Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Talebi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Luis G Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
6
|
Shi Y, Li X, Zhang J. Systematic review on the role of the gut microbiota in tumors and their treatment. Front Endocrinol (Lausanne) 2024; 15:1355387. [PMID: 39175566 PMCID: PMC11338852 DOI: 10.3389/fendo.2024.1355387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Tumors present a formidable health risk with limited curability and high mortality; existing treatments face challenges in addressing the unique tumor microenvironment (hypoxia, low pH, and high permeability), necessitating the development of new therapeutic approaches. Under certain circumstances, certain bacteria, especially anaerobes or parthenogenetic anaerobes, accumulate and proliferate in the tumor environment. This phenomenon activates a series of responses in the body that ultimately produce anti-tumor effects. These bacteria can target and colonize the tumor microenvironment, promoting responses aimed at targeting and fighting tumor cells. Understanding and exploiting such interactions holds promise for innovative therapeutic strategies, potentially augmenting existing treatments and contributing to the development of more effective and targeted approaches to fighting tumors. This paper reviews the tumor-promoting mechanisms and anti-tumor effects of the digestive tract microbiome and describes bacterial therapeutic strategies for tumors, including natural and engineered anti-tumor strategies.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, University College London, London, United Kingdom
- China Medical University Joint Queen’s University of Belfast, China Medical University, Shenyang, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Shang F, Jiang X, Wang H, Guo S, Kang S, Xu B, Wang X, Chen S, Li N, Liu B, Zhao Z. Bifidobacterium longum suppresses colorectal cancer through the modulation of intestinal microbes and immune function. Front Microbiol 2024; 15:1327464. [PMID: 38585690 PMCID: PMC10995357 DOI: 10.3389/fmicb.2024.1327464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Colorectal cancer (CRC), one of the most common malignancies in the world, urgently requires more treatment strategies. Although there has been much research on probiotics, limited research has been done in treating cancer. The purpose of this study was to investigate the role of Bifidobacterium longum (B. longum) in the prevention and treatment of CRC. Through Cell Counting Kit-8 and Colony Formation Assays, 8 h and a B. longum count of 1 × 108 CFU/ml were chosen as the best cocultivation conditions with CRC cells. The role of B. longum in inhibiting the progression of CRC cells was verified by a series of functional and immunofluorescence assays. For instance, in vivo assays have verified that B. longum could alleviate CRC progression. In addition, according to the results of in vivo assays and clinical statistical analysis, B. longum could reduce diarrhea symptoms. Mechanistically, by 16S and RNA sequencing, it was found that B. longum could affect the development of CRC by regulating the composition of gut microbes and enhancing immune function. The B. longum might inhibit the occurrence and development of CRC and relieve diarrhea symptoms by regulating intestinal microbes and immune function.
Collapse
Affiliation(s)
- Fangjian Shang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haobo Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shang Guo
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Kang
- Medical Insurance Office, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Xu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shihao Chen
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Zhang J, Zhang P, Li S, Yu T, Lai X, He Y. Study on the effect and mechanism of Lacticaseibacillus rhamnosus AFY06 on inflammation-associated colorectal cancer induced by AOM/DSS in mice. Front Microbiol 2024; 15:1382781. [PMID: 38572238 PMCID: PMC10987852 DOI: 10.3389/fmicb.2024.1382781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Lacticaseibacillus rhamnosus AFY06 (LR-AFY06) is a microorganism isolated from naturally fermented yogurt in Xinjiang, China. Methods In this study, we investigated the effects and mechanisms of LR-AFY06 in a mouse model of inflammation-associated colon cancer. The mouse model was established by azoxymethane/dextran sulfate sodium (AOM/DSS) induction. The tumor number in intestinal tissues was counted, and the histopathological analysis was performed on colon tissues. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were performed to measure relevant protein levels in colon tissues. Results LR-AFY06 treatment alleviated weight loss, increased organ index, reduced intestinal tumor incidence, improved histopathological damage, decreased the levels of inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), nuclear factor κB (NF-κB), and inducible nitric oxide synthase (iNOS) in the serum and colon tissue, downregulated the mRNA expression of inhibitor of NF-κB beta (IκBβ), p65, p50, p52, B-cell lymphoma-2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) in colon tissues, and increased the mRNA expression of Bid and caspase-8. The high concentration of LR-AFY06 exerted a better effect than the low concentration; however, the effect was slightly inferior to that of aspirin. Moreover, LR-AFY06 mitigated the intestinal inflammatory process and inhibited intestinal tumor development by regulating the NF-κB and apoptosis pathways. Discussion The present study indicates the regulatory potential of LR-AFY06 in inflammation-associated colorectal cancer in mice, providing a valuable basis for further research.
Collapse
Affiliation(s)
- Jing Zhang
- Environmental and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Piyun Zhang
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Sijia Li
- Environmental and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Ting Yu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiangyu Lai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
9
|
Fareez IM, Lim SM, Ramasamy K. Chemoprevention by Microencapsulated Lactiplantibacillus Plantarum LAB12 Against Orthotopic Colorectal Cancer Mice is Associated with Apoptosis and Anti-angiogenesis. Probiotics Antimicrob Proteins 2024; 16:99-112. [PMID: 36508139 DOI: 10.1007/s12602-022-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of colorectal cancer (CRC) is associated with gut dysbiosis that is attributed to unhealthy lifestyles and dietary habits. Consumption of microencapsulated probiotics may potentially restore the gut microbiota in favour of prevention against CRC. This study determined the fate of microencapsulated Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) LAB12 in the gastrointestinal tract (GIT) and assessed the chemopreventive effect of microencapsulated L. plantarum LAB12 in vivo. The targeted release of L. plantarum LAB12 from Alg-based microcapsules at the stomach, ileum, caecum and colon of Sprague-Dawley rats was examined by confocal microscopy and qPCR. Microcapsules loaded with L. plantarum LAB12 remained intact in the stomach. Free L. plantarum LAB12 were present in abundance (> 7 log CFU) only in the intestines. Subsequently, the chemopreventive properties of microencapsulated L. plantarum LAB12 were validated against NU/NU nude mice bearing orthotopic transplanted CT-26 CRC (12 female mice; 4-6 weeks old; 20-22 g; n = 6/group). Orthotopic mice pre-supplemented with microencapsulated L. plantarum LAB12 (10 log CFU kg-1 BW for 11 weeks) were presented with significantly (p < 0.05) reduced tumour volume (- 98.87%) and weight (- 89.27%) when compared to control. Western blots indicated that the chemopreventive effect could be attributed to apoptosis and anti-angiogenesis mediated, at least in part, through upregulation of tumour suppressor p53 (+ 45.4%) and pro-apoptotic caspase-3 (+ 82.4%), and downregulation of pro-inflammatory COX-2 (- 57.9%), pro-angiogenic VEGF (- 66.8%) and PECAM-1 (-64.1%). Altogether, this study strongly implied the possibility of having L. plantarum LAB12-loaded microcapsules safely incorporated into food and nutraceutical products for prevention against CRC.
Collapse
Affiliation(s)
- Ismail M Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
11
|
Nongkhai SN, Piemthongkham P, Bankeeree W, Punnapayak H, Lotrakul P, Prasongsuk S. Xylooligosaccharides produced from sugarcane leaf arabinoxylan using xylanase from Aureobasidium pullulans NRRL 58523 and its prebiotic activity toward Lactobacillus spp. Heliyon 2023; 9:e22107. [PMID: 38034795 PMCID: PMC10682688 DOI: 10.1016/j.heliyon.2023.e22107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/07/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
In an attempt to enhance the value of sugarcane leaf, xylan was extracted and used for xylooligosaccharide (XO) production via enzymatic hydrolysis using xylanase from the black yeast Aureobasidium pullulans. The xylan was extracted from sugarcane leaf using alkali extraction according to the response surface methodology. The highest xylan yield (99.42 ± 4.05 % recovery) was obtained using 14.32 % (w/v) NaOH, 13.25:1 liquid: solid ratio, at 121 °C and 15 lb.in2 for 32 min. Sugar composition and FTIR spectrum analyses confirmed its structure as arabinoxylan. The extracted arabinoxylan had a relatively high molecular weight compared to previous studies. Crude endoxylanase from A. pullulans NRRL 58523 was selected for enzymatic hydrolysis of the xylan. The enzyme hydrolyzed well at 50 °C, pH 4.0 and was relatively stable under this condition (87.38 ± 1.26 % of the activity remained after 60 h). XOs, especially xylobiose and xylotriose, were obtained at the maximum yield of 237.51 ± 17.69 mg/g xylan via endoxylanase hydrolysis under the optimum conditions (50 °C, pH 4.0, 65.31 U/g xylan, 53 h). XOs exhibited species-specific prebiotic activity toward three strains of Lactobacillus spp. but not toward Bifidobacterium spp.
Collapse
Affiliation(s)
- Sorawit Na Nongkhai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchayakon Piemthongkham
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichanee Bankeeree
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hunsa Punnapayak
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, Faculty Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Pongtharin Lotrakul
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, Faculty Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
12
|
Deng X, Yang J, Zhang Y, Chen X, Wang C, Suo H, Song J. An Update on the Pivotal Roles of Probiotics, Their Components, and Metabolites in Preventing Colon Cancer. Foods 2023; 12:3706. [PMID: 37835359 PMCID: PMC10572180 DOI: 10.3390/foods12193706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Diet, lifestyle, and gut microbiota composition are key risk factors for the progression of colon cancer. Probiotics are living microorganisms that can offer health benefits to the parasitifer when ingested in competent quantities. Several in vivo, in vitro, and clinical studies have demonstrated that probiotics can prevent and mitigate the development of colon cancer. The anti-colon cancer mechanisms of probiotics include the suppression of cell proliferation and the promotion of cancer cell apoptosis, immunomodulation, the modulation of intestinal microorganisms and their metabolism, strengthening the intestinal barrier, and antioxidant effects. This article describes the pathogenesis of colon cancer and the available therapeutic options. In addition, this paper reviews the mechanisms by which probiotics mitigate colon cancer as well as the mitigating effects of probiotic components and metabolites on colon cancer.
Collapse
Affiliation(s)
- Xue Deng
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| |
Collapse
|
13
|
Cacciola NA, Venneri T, Salzano A, D'Onofrio N, Martano M, Saggese A, Vinale F, Neglia G, Campanile C, Baccigalupi L, Maiolino P, Cuozzo M, Russo R, Balestrieri ML, D'Occhio MJ, Ricca E, Borrelli F, Campanile G. Chemopreventive effect of a milk whey by-product derived from Buffalo (Bubalus bubalis) in protecting from colorectal carcinogenesis. Cell Commun Signal 2023; 21:245. [PMID: 37730576 PMCID: PMC10510155 DOI: 10.1186/s12964-023-01271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Anella Saggese
- Department of Biology, University of Naples Federico II, Via V. Cupa Cintia, 21, Naples, 80126, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Ciro Campanile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council (CNR-IGB), Via P. Castellino 111, Naples, 80131, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Mariarosaria Cuozzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Roberto Russo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - Michael John D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Via V. Cupa Cintia, 21, Naples, 80126, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| |
Collapse
|
14
|
Li X, Feng J, Wang Z, Liu G, Wang F. Features of combined gut bacteria and fungi from a Chinese cohort of colorectal cancer, colorectal adenoma, and post-operative patients. Front Microbiol 2023; 14:1236583. [PMID: 37614602 PMCID: PMC10443710 DOI: 10.3389/fmicb.2023.1236583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) accounts for the third highest morbidity burden among malignant tumors worldwide. Previous studies investigated gut microbiome changes that occur during colorectal adenomas (CRA) progression to overt CRC, thus highlighting the importance of the gut microbiome in carcinogenesis. However, few studies have examined gut microbiome characteristics across the entire spectrum, from CRC development to treatment. The study used 16S ribosomal ribonucleic acid and internal transcribed spacer amplicon sequencing to compare the composition of gut bacteria and fungi in a Chinese cohort of healthy controls (HC), CRC patients, CRA patients, and CRC postoperative patients (PP). Our analysis showed that beta diversity was significantly different among the four groups based on the gut bacterial and fungal data. A total of 51 species of bacteria and 8 species of fungi were identified in the HC, CRA, CRC, and PP groups. Correlation networks for both the gut bacteria and fungi in HC vs. CRA, HC vs. CRC, and HC vs. PP indicated some hub bacterial and fungal genera in each model, and the correlation between bacterial and fungal data indicated that a highly significant negative correlation exists among groups. Quantitative polymerase chain reaction (qPCR) analysis in a large cohort of HC, CRC, CRA, and PP patients demonstrated a significantly increasing trend of Fusobacterium nucleatum, Bifidobacterium bifidum, Candida albicans, and Saccharomyces cerevisiae in the feces of CRC patients than that of HC patients (p < 0.01). However, the abundance levels of CRA and PP were significantly lower in HC patients than those in CRC patients. Further studies are required to identify the functional consequences of the altered bacterial/fungal composition on metabolism and CRC tumorigenesis in the host.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Barreira MA, Campelo MWS, da Silva Martins Rebouças C, Duarte ASG, Barbosa MLL, da Cruz Fonseca SG, Queiroz RR, Holanda ÉU, de Vasconcelos ABA, de Sousa Araújo VJG, Diniz GM, Oriá RB, de Vasconcelos PRL. Pterostilbene and Probiotic Complex in Chemoprevention of Putative Precursor Lesions for Colorectal Cancer in an Experimental Model of Intestinal Carcinogenesis with 1,2-Dimethylhydrazine. Cancers (Basel) 2023; 15:2401. [PMID: 37190329 PMCID: PMC10136993 DOI: 10.3390/cancers15082401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Dietary supplementation with pterostilbene (PS) and/or a probiotic (PRO) may ameliorate the intestinal microbiota in disease conditions. This study aims to evaluate PS and PRO for the chemoprevention of putative precursor lesions for colorectal cancer (CRC) in an experimental model of intestinal carcinogenesis with 1,2-dimethylhydrazine (1,2-DMH). Sixty male Wistar rats were equally divided into five groups: Sham, 1,2-DMH, 1,2-DMH + PS, 1,2-DMH + PRO, and 1,2-DMH + PS + PRO. PRO (5 × 107/mL) was offered in water, and PS (300 ppm) was provided in the diet ad libitum. 1,2-DMH (20 mg/kg/week) was administered for 15 consecutive weeks. In the 25th week, proctocolectomy was conducted. PRO alone and PRO combined with PS were the best intervention strategies to improve experimental 1,2-DMH-induced CRC regarding several parameters of carcinogenesis. Our findings may contribute to the development of novel preventive strategies for CRC and may help to identify novel modulators of colon carcinogenesis.
Collapse
Affiliation(s)
- Márcio Alencar Barreira
- Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza 60430-140, CE, Brazil
| | - Márcio Wilker Soares Campelo
- Department of Surgery, School of Medicine, Federal University of Ceará, Fortaleza 60430-140, CE, Brazil
- School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza 60192-345, CE, Brazil
| | - Conceição da Silva Martins Rebouças
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, CE, Brazil
| | - Antoniella Souza Gomes Duarte
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, CE, Brazil
| | - Maria Lucianny Lima Barbosa
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, CE, Brazil
| | | | | | - Érica Uchoa Holanda
- School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza 60192-345, CE, Brazil
| | | | | | - Gabriel Maia Diniz
- School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza 60192-345, CE, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, CE, Brazil
| | | |
Collapse
|
16
|
Abstract
The etiology of colorectal cancer (CRC) is influenced by bacterial communities that colonize the gastrointestinal tract. These microorganisms derive essential nutrients from indigestible dietary or host-derived compounds and activate molecular signaling pathways necessary for normal tissue and immune function. Associative and mechanistic studies have identified bacterial species whose presence may increase CRC risk, including notable examples such as Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis, and pks+ E. coli. In recent years this work has expanded in scope to include aspects of host mutational status, intra-tumoral microbial heterogeneity, transient infection, and the cumulative influence of multiple carcinogenic bacteria after sequential or co-colonization. In this review, we will provide an updated overview of how host-bacteria interactions influence CRC development, how this knowledge may be utilized to diagnose or prevent CRC, and how the gut microbiome influences CRC treatment efficacy.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Chopra H, Goyal R, Baig AA, Arora S, Dua K, Gautam RK. Synbiotics in Colon Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:115-133. [DOI: 10.1007/978-981-19-7550-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Noor S, Ali S, Riaz S, Sardar I, Farooq MA, Sajjad A. Chemopreventive role of probiotics against cancer: a comprehensive mechanistic review. Mol Biol Rep 2023; 50:799-814. [PMID: 36324027 DOI: 10.1007/s11033-022-08023-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Probiotics use different mechanisms such as intestinal barrier improvement, bacterial translocation and maintaining gut microbiota homeostasis to treat cancer. Probiotics' ability to induce apoptosis against tumor cells makes them more effective to treat cancer. Moreover, probiotics stimulate immune function through an immunomodulation mechanism that induces an anti-tumor effect. There are different strains of probiotics, but the most important ones are lactic acid bacteria (LAB) having antagonistic and anti-mutagenic activities. Live and dead probiotics have anti-inflammatory, anti-proliferative, anti-oxidant and anti-metastatic properties which are useful to fight against different diseases, especially cancer. The main focus of this article is to review the anti-cancerous properties of probiotics and their role in the reduction of different types of cancer. However, further investigations are in progress to improve the efficiency of probiotics in cancer treatment.
Collapse
Affiliation(s)
- Shehzeen Noor
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shumaila Riaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Iqra Sardar
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Sajjad
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
19
|
Chen Y, Yang B, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Exploiting lactic acid bacteria for colorectal cancer: a recent update. Crit Rev Food Sci Nutr 2022; 64:5433-5449. [PMID: 36530047 DOI: 10.1080/10408398.2022.2154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. Currently, chemotherapy and radiotherapy used to treat CRC exhibit many side effects, hence, it is an urgent need to design effective therapies to prevent and treat CRC. Lactic acid bacteria (LAB) can regulate gut microbiota, intestinal immunity, and intestinal mechanical barrier, which is becoming a hot product for the prevention and treatment of CRC, whereas comprehensive reviews of their anti-CRC mechanisms are limited. This review systematically reveals the latest incidence, mortality, risk factors, and molecular mechanisms of CRC, then summarizes the roles of probiotics in alleviating CRC in animal and clinical studies and critically reviews the possible mechanisms by which these interventions exert their activities. It then shows the limitations in mechanisms and clinical studies, and the suggestions for future research are also put forward, which will play an important role in guiding and promoting the basic and clinical research of remising CRC by LAB and the development of LAB products.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Saeed M, Shoaib A, Kandimalla R, Javed S, Almatroudi A, Gupta R, Aqil F. Microbe-based therapies for colorectal cancer: Advantages and limitations. Semin Cancer Biol 2022; 86:652-665. [PMID: 34020027 DOI: 10.1016/j.semcancer.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is one of the leading global causes of death in both men and women. Colorectal cancer (CRC) alone accounts for ∼10 % of total new global cases and poses an over 4% lifetime risk of developing cancer. Recent advancements in the field of biotechnology and microbiology concocted novel microbe-based therapies to treat various cancers, including CRC. Microbes have been explored for human use since centuries, especially for the treatment of various ailments. The utility of microbes in cancer therapeutics is widely explored, and various bacteria, fungi, and viruses are currently in use for the development of cancer therapeutics. The human gut hosts about 100 trillion microbes that release their metabolites in active, inactive, or dead conditions. Microbial secondary metabolites, proteins, immunotoxins, and enzymes are used to target cancer cells to induce cell cycle arrest, apoptosis, and death. Various approaches, such as dietary interventions, the use of prebiotics and probiotics, and fecal microbiota transplantation have been used to modulate the gut microbiota in order to prevent or treat CRC pathogenesis. The present review highlights the role of the gut microbiota in CRC precipitation, the potential mechanisms and use of microorganisms as CRC biomarkers, and strategies to modulate microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raghuram Kandimalla
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ramesh Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
21
|
Ali A, Ara A, Kashyap MK. Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Mol Biol Rep 2022; 49:8087-8107. [PMID: 35543828 DOI: 10.1007/s11033-022-07357-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
The microbiota has been associated with different cancer and may vary from patient to patient. A specific microbial strain can alter the progression of cancer and therapeutic outcome in response to anti-cancer therapy. The variations in microbiota contributed due to the individual microbiome of the microorganism are responsible for diverse clinical outcomes. The expansion of microbiota subpopulation during dysbiosis can lead to toxin production, inducing inflammation and cancer. The microbiota can be a dual-edged sword because it can be tumor-suppressive or oncogenic in the case of the gut. The transition of cancer cells from early to late-stage also impacts the composition of the microbiota, and this alteration could change the behavior of cancer. Multi-omics platforms derived data from an individual's multi-dimensional data (DNA, mRNA, microRNA, protein, metabolite, microbiota, and microbiome), i.e., individualome, to exploit it for personalized tailored treatment for different cancers in a precise manner. A number of studies suggest the importance of microbiota and its add-in suitability to existing treatment options for different malignancies. Furthermore, in vitro, and in vivo studies and cancer clinical trials suggest that probiotics have driven modulation of gut microbiota and other sites discourage the aggressive behavior and progression of different cancers.
Collapse
Affiliation(s)
- Altamas Ali
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Anam Ara
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute/Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon (Manesar), Gurugram, HR, 122413, India.
| |
Collapse
|
22
|
Tang Q, Peng X, Xu B, Zhou X, Chen J, Cheng L. Current Status and Future Directions of Bacteria-Based Immunotherapy. Front Immunol 2022; 13:911783. [PMID: 35757741 PMCID: PMC9226492 DOI: 10.3389/fimmu.2022.911783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
With the in-depth understanding of the anti-cancer immunity, immunotherapy has become a promising cancer treatment after surgery, radiotherapy, and chemotherapy. As natural immunogenicity substances, some bacteria can preferentially colonize and proliferate inside tumor tissues to interact with the host and exert anti-tumor effect. However, further research is hampered by the infection-associated toxicity and their unpredictable behaviors in vivo. Due to modern advances in genetic engineering, synthetic biology, and material science, modifying bacteria to minimize the toxicity and constructing a bacteria-based immunotherapy platform has become a hotspot in recent research. This review will cover the inherent advantages of unedited bacteria, highlight how bacteria can be engineered to provide greater tumor-targeting properties, enhanced immune-modulation effect, and improved safety. Successful applications of engineered bacteria in cancer immunotherapy or as part of the combination therapy are discussed as well as the bacteria based immunotherapy in different cancer types. In the end, we highlight the future directions and potential opportunities of this emerging field.
Collapse
Affiliation(s)
- Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
24
|
Khodaii Z, Mehrabani Natanzi M, Khalighfard S, Ghandian Zanjan M, Gharghi M, Khori V, Amiriani T, Rahimkhani M, Alizadeh AM. Novel targets in rectal cancer by considering lncRNA-miRNA-mRNA network in response to Lactobacillus acidophilus consumption: a randomized clinical trial. Sci Rep 2022; 12:9168. [PMID: 35654932 PMCID: PMC9163174 DOI: 10.1038/s41598-022-13297-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
We aimed to explore the lncRNA-miR-mRNA network in response to Lactobacillus acidophilus (L. acidophilus) consumption in rectal cancer patients. The candidate miRs were first taken from the GEO and TCGA databases. We constructed the lncRNA-miR-mRNA network using the high-throughput sequencing data. At last, we created a heatmap based on the experimental data to show the possible correlation of the selected targets. The expression levels of selected targets were measured in the samples of 107 rectal cancer patients undergoing placebo and probiotic consumption and 10 noncancerous subjects using Real-Time PCR. Our analysis revealed a group of differentially expressed 12 miRs and 11 lncRNAs, and 12 genes in rectal cancer patients. A significant expression increase of the selected tumor suppressor miRs, lncRNAs, and genes and a substantial expression decrease of the selected oncomiRs, onco-lncRNAs, and oncogenes were obtained after the probiotic consumption compared to the placebo group. There is a strong correlation between some network components, including miR-133b and IGF1 gene, miR-548ac and MSH2 gene, and miR-21 and SMAD4 gene. In rectal cancer patients, L. acidophilus consumption was associated with improved expression of the lncRNA-miR-mRNA network, which may provide novel monitoring and therapeutic approaches.
Collapse
Affiliation(s)
- Zohreh Khodaii
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahboobeh Mehrabani Natanzi
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Solmaz Khalighfard
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Maziar Ghandian Zanjan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Gharghi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Monireh Rahimkhani
- Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
26
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
27
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Sugimura N, Li Q, Chu ESH, Lau HCH, Fong W, Liu W, Liang C, Nakatsu G, Su ACY, Coker OO, Wu WKK, Chan FKL, Yu J. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut 2021; 71:gutjnl-2020-323951. [PMID: 34937766 PMCID: PMC9484392 DOI: 10.1136/gutjnl-2020-323951] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/07/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Using faecal shotgun metagenomic sequencing, we identified the depletion of Lactobacillus gallinarum in patients with colorectal cancer (CRC). We aimed to determine the potential antitumourigenic role of L. gallinarum in colorectal tumourigenesis. DESIGN The tumor-suppressive effect of L. gallinarum was assessed in murine models of CRC. CRC cell lines and organoids derived from patients with CRC were cultured with L. gallinarum or Escherichia coli MG1655 culture-supernatant to evaluate cell proliferation, apoptosis and cell cycle distribution. Gut microbiota was assessed by 16S ribosomal DNA sequencing. Antitumour molecule produced from L. gallinarum was identified by liquid chromatography mass spectrometry (LC-MS/MS) and targeted mass spectrometry. RESULTS L. gallinarum significantly reduced intestinal tumour number and size compared with E. coli MG1655 and phosphate-buffered saline in both male and female murine intestinal tumourigenesis models. Faecal microbial profiling revealed enrichment of probiotics and depletion of pathogenic bacteria in L. gallinarum-treated mice. Culturing CRC cells with L. gallinarum culture-supernatant (5%, 10% and 20%) concentration-dependently suppressed cell proliferation and colony formation. L. gallinarum culture-supernatant significantly promoted apoptosis in CRC cells and patient-derived CRC organoids, but not in normal colon epithelial cells. Only L. gallinarum culture-supernatant with fraction size <3 kDa suppressed proliferation in CRC cells. Using LC-MS/MS, enrichments of indole-3-lactic acid (ILA) was identified in both L. gallinarum culture-supernatant and the gut of L. gallinarum-treated mice. ILA displayed anti-CRC growth in vitro and inhibited intestinal tumourigenesis in vivo. CONCLUSION L. gallinarum protects against intestinal tumourigenesis by producing protective metabolites that can promote apoptosis of CRC cells.
Collapse
Affiliation(s)
- Naoki Sugimura
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Qing Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Eagle Siu Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Fong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Cong Liang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Geicho Nakatsu
- Department of Immunology and Infectious Diseases/Genetics and Complex Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anthony Chin Yang Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis Ka Leung Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
31
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
32
|
Bakhtiary M, Morvaridzadeh M, Agah S, Rahimlou M, Christopher E, Zadro JR, Heshmati J. Effect of Probiotic, Prebiotic, and Synbiotic Supplementation on Cardiometabolic and Oxidative Stress Parameters in Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. Clin Ther 2021; 43:e71-e96. [PMID: 33526314 DOI: 10.1016/j.clinthera.2020.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Chronic kidney disease (CKD) is a major health problem worldwide. Evidence supporting the use of probiotic, prebiotic, and synbiotic supplementation in the management of CKD is mixed, although some studies suggest they may be useful. A systematic review and meta-analysis was performed to evaluate the effectiveness of probiotic, prebiotic, and synbiotic supplementation for improving cardiometabolic and oxidative stress parameters in patients with CKD. METHODS A comprehensive key word search was performed in EMBASE, Medline, Scopus, Cochrane Central, and Web of Science until April 2020. Randomized controlled trials investigating the effectiveness of probiotic, synbiotic, and prebiotic supplementation for the management of adults with CKD were included. Primary outcomes were measures of cardiometabolic parameters such as cholesterol and fasting blood glucose. Secondary outcomes were measures of oxidative stress (eg, malondialdehyde levels) and body mass index. Random effects meta-analyses were used to estimate mean treatment effects. Results are reported as standardized mean differences (SMDs) and 95% CIs. FINDINGS Fourteen articles were included. In patients with CKD, probiotic, prebiotic, and synbiotic supplementation significantly reduced total cholesterol (SMD, -0.25; 95% CI, -0.46 to -0.04; I2 = 00.0%), fasting blood glucose (SMD, -0.41; 95% CI, -0.65 to -0.17; I2 = 00.0%), homeostatic model assessment of insulin resistance (SMD, -0.63; 95% CI, -0.95 to -0.30; I2 = 43.3%), insulin levels (SMD, -0.49; 95% CI, -0.90 to -0.08; I2 = 65.2%), high-sensitivity C-reactive protein levels (SMD, -0.52; 95% CI, -0.81 to -0.22; I2 = 52.7%), and malondialdehyde levels (SMD, -0.79; 95% CI, -1.22 to -0.37; I2 = 69.8%) compared with control interventions. Supplementation significantly increased the quantitative insulin sensitivity check index (SMD, 0.78; 95% CI, 0.51 to 1.05; I2 = 00.0%), total antioxidant capacity (SMD, 0.42; 95% CI, 0.18 to 0.66; I2 = 00.0%), and glutathione levels (SMD, 0.52; 95% CI, 0.19 to 0.86; I2 = 37.0%). IMPLICATIONS Probiotic, prebiotic, and synbiotic supplementation seems to be a promising intervention for improving cardiometabolic and oxidative stress parameters in patients with CKD.
Collapse
Affiliation(s)
- Mahsa Bakhtiary
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Rahimlou
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd Iran
| | - Edward Christopher
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua R Zadro
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Badgeley A, Anwar H, Modi K, Murphy P, Lakshmikuttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188494. [PMID: 33346129 DOI: 10.1016/j.bbcan.2020.188494] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Bacteria present in probiotics, particularly the common Lactobacillus and Bifidobacterium microbes, have been found to induce anti-cancer action by enhancing cancer cell apoptosis and protecting against oxidative stress. Probiotics supplements also decrease the cancer-producing microorganism Fusobacterium. Studies have demonstrated that gut microbiota modifies the effect of chemo/radiation therapy. Gut microbes not only enhance the action of chemotherapy drugs but also reduce the side effects of these medications. Additionally, gut microbes reduce immunotherapy toxicity, in particular, the presence of Bacteroidetes or Bifidobacterium decreases the development of colitis by ipilimumab therapy. Probiotics supplements containing Bifidobacterium also reduce chemotherapy-induced mucositis and radiation-induced diarrhea. This review focused on elucidating the mechanism behind the anti-cancer action of Bifidobacterium species. Available studies have revealed Bifidobacterium species decrease cancer cell proliferation via the inhibition of growth factor signaling as well as inducing mitochondrial-mediated apoptosis. Moreover, Bifidobacterium species reduce the adverse effects of chemo/immuno/radiation therapy by inhibiting proinflammatory cytokines. Further clinical studies are needed to identify the powerful and suitable Bifidobacterium strain for the development of adjuvant therapy to support chemo/immuno/radiation therapy.
Collapse
Affiliation(s)
- Aja Badgeley
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hina Anwar
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karan Modi
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige Murphy
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
Chen C, Li H. The Inhibitory Effect of Gut Microbiota and Its Metabolites on Colorectal Cancer. J Microbiol Biotechnol 2020; 30:1607-1613. [PMID: 32522960 PMCID: PMC9728159 DOI: 10.4014/jmb.2002.02032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/24/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is regarded as one of the most common and deadly forms of cancer. Gut microbiota is vital to retain and promote several functions of intestinal. Although previous researches have shown that some gut microbiota have the abilities to inhibit tumorigenesis and prevent cancer from progressing, they have not yet clearly identified associative mechanisms. This review not only concentrates on the antitumor effects of metabolites produced by gut microbiota, for example, SCFA, ferrichrome, urolithins, equol and conjugated linoleic acids, but also the molecules which constituted the bacterial cell wall have the antitumor effect in the host, including lipopolysaccharide, lipoteichoic acid, β-glucans and peptidoglycan. The aim of our review is to develop a possible therapeutic method, which use the products of gut microbiota metabolism or gut microbiota constituents to help treat or prevent colorectal cancer.
Collapse
Affiliation(s)
- Chao Chen
- Department of Colorectal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 30000, Zhejiang Province, P.R. China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
35
|
Brasiel PGDA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD, Gonçalves RV. Preclinical Evidence of Probiotics in Colorectal Carcinogenesis: A Systematic Review. Dig Dis Sci 2020; 65:3197-3210. [PMID: 31960202 DOI: 10.1007/s10620-020-06062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer, the second major cause of cancer deaths, imposes a major health burden worldwide. There is growing evidence that supports that the use of probiotics is effective against various diseases, especially in gastrointestinal diseases, including the colorectal cancer, but the differences between the strains, dose, and frequency used are not yet clear. AIMS To perform a systematic review to compile the results of studies carried out in animal models and investigated the effect of probiotics on colorectal carcinogenesis. METHODS Studies were selected in PubMed/MEDLINE and Scopus according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search filters were developed using three parameters: probiotics, colorectal cancer, and animal model. RESULTS From a structured search, we discovered 34 original articles and submitted them to a risk of bias analysis using SYRCLE's tool. The studies show a great diversity of models, most were conducted in rats (55.8%) and used 1,2 dimethylhydrazine as the drug to induce colorectal carcinogenesis (61.7%). The vast majority of trials investigated Lactobacillus (64%) and Bifidobacterium (29.4%) strains. Twenty-six (86.6%) studies found significant reduction in lesions or tumors in the animals that received probiotics. The main methodological limitation was the insufficient amount of information for the adequate reproducibility of the trials, which indicated a high risk of bias due to incomplete characterization of the experimental design. CONCLUSIONS The different probiotics' strains showed anti-carcinogenic effect, reduced the development of lesions and intestinal tumors, antioxidant and immunomodulatory activity, and reduced fecal bacterial enzymes.
Collapse
Affiliation(s)
| | | | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
36
|
Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer. Probiotics Antimicrob Proteins 2020; 11:1155-1162. [PMID: 30311185 DOI: 10.1007/s12602-018-9478-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wide range of sources supports that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. In this case, it seems that the probiotics may have a possible molecular mechanism via microRNAs (miRNAs). The present study is aimed to evaluate the effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of miRNAs 135b, 26b, 18a, and 155 and their target genes, including APC, PTEN, KRAS, and PU.1 in mouse azoxymethane (AOM)-induced colon cancer. Thirty-eight male BALB/c mice were randomly divided into four groups: the control, AOM, Lactobacillus acidophilus, and Bifidobacterium bifidum to deliberate the effects of the probiotics on the miRNAs and their target genes. Except for the control group, the rest groups were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks to induce mouse colon cancer. The animals were given 1.5 g powders of L. acidophilus (1 × 109 cfu/g) and B. bifidum (1 × 109 cfu/g) in 30 cc drinking water in the related groups for 5 months. At the end of the study, the animals were sacrificed and their blood and colon samples were removed for the molecular analyses. The results showed that the expression of the miR-135b, miR-155, and KRAS was increased in the AOM group compared to the control group in both the plasma and the colon tissue samples, and the consumption of the probiotics decreased their expression. Moreover, the miR-26b, miR-18a, APC, PU.1, and PTEN expressions were decreased in the AOM group compared to the control group and the consumption of the probiotics increased their expressions. It seems that Lactobacillus acidophilus and Bifidobacterium bifidum though increasing the expression of the tumor suppressor miRNAs and their target genes and decreasing the oncogenes can improve colon cancer treatment.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.
- Cancer Biology Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Bahmani
- Research and Development Department, Zist Takhmir Company, Tehran, Iran
| |
Collapse
|
37
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
38
|
Lamichhane P, Maiolini M, Alnafoosi O, Hussein S, Alnafoosi H, Umbela S, Richardson T, Alla N, Lamichhane N, Subhadra B, Deshmukh RR. Colorectal Cancer and Probiotics: Are Bugs Really Drugs? Cancers (Basel) 2020; 12:cancers12051162. [PMID: 32380712 PMCID: PMC7281248 DOI: 10.3390/cancers12051162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide. There are many factors that predispose a patient to the disease such as age, family history, ethnicity, and lifestyle. There are different genetic factors and diseases that also increase a person’s risk for developing CRC. Studies have found associations between gut microbiome and the risk for developing versus protection against CRC. Normal gut microbiome aid in daily functions of the human body such as absorption, metabolism, detoxification, and regulation of inflammation. While some species of bacteria prevent CRC development and aid in therapeutic responses to various treatment regiments, other species seem to promote CRC pathogenesis. In this regard, many studies have been conducted to not only understand the biology behind these opposing different bacterial species; but also to determine if supplementation of these tumor opposing bacterial species as probiotics lends toward decreased risk of CRC development and improved therapeutic responses in patients with CRC. In this literature review, we aim to discuss the basics on colorectal cancer (epidemiology, risk factors, targets, treatments), discuss associations between different bacterial strains and CRC, and discuss probiotics and their roles in CRC prevention and treatment.
Collapse
Affiliation(s)
| | - Morgan Maiolini
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Omar Alnafoosi
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Sedra Hussein
- Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| | - Hasan Alnafoosi
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Stewart Umbela
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Tayanna Richardson
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Nevien Alla
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bobban Subhadra
- BIOM Pharmaceuticals, 2203 Industrial Blvd, Sarasota, FL 34234, USA;
| | - Rahul R. Deshmukh
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
- Correspondence:
| |
Collapse
|
39
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Seesaha PK, Chen X, Wu X, Xu H, Li C, Jheengut Y, Zhao F, Liu L, Zhang D. The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncol 2020; 16:293-306. [PMID: 32067473 DOI: 10.2217/fon-2019-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and its incidence is on the rise. Dietary intervention has emerged as an attractive strategy to curtail its occurrence and progression. Diet is known to influence the gut microbiome, as dietary factors and gut bacteria can act in concert to cause or protect from colorectal cancer. Several studies have presented evidence for such interactions and have pointed out the different ways by which the diet and gut microbiome can be altered to produce beneficial effects. This review article aims to summarize the interrelationship between diet, gut flora and colorectal cancer so that a better preventive approach can be applied.
Collapse
Affiliation(s)
- Poshita Kumari Seesaha
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Chen
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Hongxia Xu
- Department of Nutrition, Third Military Medical University Daping Hospital & Research Institute of Surgery, Chongqing 400042, Sichuan, PR China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yogesh Jheengut
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Fengjiao Zhao
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, PR China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| |
Collapse
|
41
|
Zhuo Q, Yu B, Zhou J, Zhang J, Zhang R, Xie J, Wang Q, Zhao S. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci Rep 2019; 9:20128. [PMID: 31882868 PMCID: PMC6934597 DOI: 10.1038/s41598-019-56661-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Previous reports have suggested that many gut microbiomes were associated with the development of colorectal cancer (CRC), and could modulate response to numerous forms of cancer therapy, including checkpoint blockade immunotherapy. Here we evaluated the protective efficacy of Lactobacillus acidophilus (L. acidophilus) cell lysates combined with an anti-CTL antigen-4 blocking antibody (CTLA-4 mAb) in syngeneic BALB/c mice CRC models induce by a single intraperitoneal injection of 10 mg/kg azoxymethane (AOM), followed by three cycles of 2% dextran sulfate sodium (DSS) in drinking water. In contrast to CTLA-4 mAb monotherapy, L. acidophilus lysates could attenuate the loss of body weight and the combined administration significantly protected mice against CRC development, which suggested that the lysates enhanced antitumor activity of CTLA-4 mAb in model mice. The enhanced efficacy was associated with the increased CD8 + T cell, increased effector memory T cells (CD44 + CD8 + CD62L+), decreased Treg (CD4 + CD25 + Foxp3+) and M2 macrophages (F4/80 + CD206+) in the tumor microenvironment. In addition, our results revealed that L. acidophilus lysates had an immunomodulatory effect through inhibition the M2 polarization and the IL-10 expressed levels of LPS-activated Raw264.7 macrophages. Finally, the 16S rRNA gene sequencing of fecal microbiota demonstrated that the combined administration significantly inhibited the abnormal increase in the relative abundance of proteobacteria and partly counterbalance CRC-induced dysbiosis in model mice. Overall, these data support promising clinical possibilities of L. acidophilus lysates with CTLA-4 mAb in cancer patients and the hypothesis that probiotics help shape the anticancer immune response.
Collapse
Affiliation(s)
- Qian Zhuo
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bohai Yu
- Medical Laboratory Department, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China
| | - Jing Zhou
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jingyun Zhang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Runling Zhang
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, Guangdong, 518106, China
| | - Jingyan Xie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
42
|
Settanni CR, Quaranta G, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Oral supplementation with lactobacilli to prevent colorectal cancer in preclinical models. MINERVA GASTROENTERO 2019; 66:48-69. [PMID: 31760735 DOI: 10.23736/s1121-421x.19.02631-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is still a major threat for public health, as it is the third most common cancer in men and the second in women and it ranks second among tumors in terms of mortality. Evidence from the last decades emphasizes the complex role of gut microbial composition in CRC development. Historically, it is believed that dairy products, a source of lactobacilli and other lactic acid bacteria, are beneficial for human health and help in preventing CRC. We searched online literature for trials evaluating the preventive role of lactobacilli in CRC animal models. Most of selected studied assessed a relevant role of lactobacilli in preventing CRC and precursor lesions. Mechanisms through which this effect was achieved are supposed to regard immunomodulation, regulation of apoptosis, gut microbial modulation, genes expression, reduction of oxidative stress and others. Lactobacilli oral supplementation is reported to be effective in preventing CRC in animal models, even if the underlying mechanisms of action are still not fully understood.
Collapse
Affiliation(s)
- Carlo R Settanni
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Quaranta
- Institute of Microbiology, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
43
|
Li SC, Hsu WF, Chang JS, Shih CK. Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Shows a Stronger Anti-Inflammatory Effect than Individual Strains in HT-29 Cells. Nutrients 2019; 11:969. [PMID: 31035617 PMCID: PMC6566532 DOI: 10.3390/nu11050969] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an emerging health problem associated with the dysregulation of the intestinal immune system and microbiome. Probiotics are able to reduce inflammatory responses in intestinal epithelial cells (IECs). However, entire signaling pathways and the interaction between different probiotics have not been well-documented. This study was designed to investigate the anti-inflammatory effects and mechanisms of single and combined probiotics. HT-29 cells were induced by lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α, treated with Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis or their combination and analyzed for inflammation-related molecules. Both L. acidophilus and B. animalis subsp. lactis reduced interleukin (IL)-8 secretion and the expressions of phosphorylated p65 nuclear factor-kappa B (p-p65 NF-κB), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2), while they increased toll-like receptor 2 (TLR2) expression. L. acidophilus did not decrease intercellular adhesion molecule-1 (ICAM-1) but enhanced the inhibitory efficacy of B. animalis subsp. lactis. Combined probiotics showed the best anti-inflammatory activity. These results suggest that L. acidophilus and B. animalis subsp. lactis may exert a potent anti-inflammatory effect through modulating TLR2-mediated NF-κB and MAPK signaling pathways in inflammatory IECs. Both strains, especially their combination, may be novel adjuvants for IBD therapy.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Fang Hsu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
44
|
Chang CY, Ho BY, Pan TM. Lactobacillus paracasei subsp. paracasei NTU 101-fermented skim milk as an adjuvant to uracil-tegafur reduces tumor growth and improves chemotherapy side effects in an orthotopic mouse model of colorectal cancer. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|