1
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Okeugo B, Armbrister SA, Daniel RC, Saleh ZM, Wang J, Giorgberidze S, Rhoads JM, Liu Y. Reduced autoimmunity associated with deletion of host CD73. Immunohorizons 2025; 9:vlae004. [PMID: 39846845 PMCID: PMC11841978 DOI: 10.1093/immhor/vlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.
Collapse
Affiliation(s)
- Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rhea C Daniel
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeina M Saleh
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jessica Wang
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Salomea Giorgberidze
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610555. [PMID: 39257733 PMCID: PMC11384013 DOI: 10.1101/2024.08.30.610555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Observations that intestinal microbes can beneficially impact host physiology have prompted investigations into the therapeutic usage of such microbes in a range of diseases. For example, the human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments including colic, infection, and inflammation as well as non-intestinal ailments including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses in the gut, we postulated that L. reuteri may also regulate hormones of the gastrointestinal tract to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as being produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones which are produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promotes the secretion of several enteric hormones including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Micah D. Forshee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Ari Roberts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Ermann Lundberg L, Pallabi Mishra P, Liu P, Forsberg MM, Sverremark-Ekström E, Grompone G, Håkansson S, Linninge C, Roos S. Bifidobacterium longum subsp. longum BG-L47 boosts growth and activity of Limosilactobacillus reuteri DSM 17938 and its extracellular membrane vesicles. Appl Environ Microbiol 2024; 90:e0024724. [PMID: 38888338 PMCID: PMC11267924 DOI: 10.1128/aem.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.
Collapse
Affiliation(s)
- Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| | - Punya Pallabi Mishra
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sebastian Håkansson
- BioGaia, Stockholm, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Caroline Linninge
- BioGaia, Stockholm, Sweden
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| |
Collapse
|
6
|
Nessim Kostandy E, Suh JH, Tian X, Okeugo B, Rubin E, Shirai S, Luo M, Taylor CM, Kim KH, Rhoads JM, Liu Y. Probiotic Limosilactobacillus reuteri DSM 17938 Changes Foxp3 Deficiency-Induced Dyslipidemia and Chronic Hepatitis in Mice. Nutrients 2024; 16:511. [PMID: 38398835 PMCID: PMC10892585 DOI: 10.3390/nu16040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The probiotic Limosilactobacillus reuteri DSM 17938 produces anti-inflammatory effects in scurfy (SF) mice, a model characterized by immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (called IPEX syndrome in humans), caused by regulatory T cell (Treg) deficiency and is due to a Foxp3 gene mutation. Considering the pivotal role of lipids in autoimmune inflammatory processes, we investigated alterations in the relative abundance of lipid profiles in SF mice (± treatment with DSM 17938) compared to normal WT mice. We also examined the correlation between plasma lipids and gut microbiota and circulating inflammatory markers. We noted a significant upregulation of plasma lipids associated with autoimmune disease in SF mice, many of which were downregulated by DSM 17938. The upregulated lipids in SF mice demonstrated a significant correlation with gut bacteria known to be implicated in the pathogenesis of various autoimmune diseases. Chronic hepatitis in SF livers responded to DSM 17938 treatment with a reduction in hepatic inflammation. Altered gene expression associated with lipid metabolism and the positive correlation between lipids and inflammatory cytokines together suggest that autoimmunity leads to dyslipidemia with impaired fatty acid oxidation in SF mice. Probiotics are presumed to contribute to the reduction of lipids by reducing inflammatory pathways.
Collapse
Affiliation(s)
- Erini Nessim Kostandy
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.H.S.); (K.H.K.)
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Center, Houston, TX 77030, USA;
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Erin Rubin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.R.); (S.S.)
| | - Sara Shirai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.R.); (S.S.)
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.L.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.L.)
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.H.S.); (K.H.K.)
| | - J. Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| |
Collapse
|
7
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|