1
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
2
|
Sapienza Passos J, Dartora VFMC, Cassone Salata G, Draszesski Malagó I, Lopes LB. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. Int J Pharm 2023; 635:122681. [PMID: 36738808 DOI: 10.1016/j.ijpharm.2023.122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Breast cancer is a major public health problem, affecting millions of people. It is a very heterogeneous disease, with localized and invasive forms, and treatment generally consists of a combination of surgery and radiotherapy followed by administration of estrogen receptor modulators or aromatase inhibitors. Given its heterogeneity, management strategies that take into consideration the type of disease and biological markers and can provide more personalized and local treatment are required. More recently, the intraductal administration (i.e., into the breast ducts) of drugs has attracted significant attention due to its ability of providing drug distribution through the ductal tree in a minimally invasive manner. Although promising, intraductal administration is not trivial, and difficulties in duct identification and cannulation are important challenges to the further development of this route. New drug delivery strategies such as nanostructured systems can help to achieve the full benefits of the route due to the possibility of prolonging tissue retention, improving targeting and selectivity, increasing cytotoxicity and reducing the frequency of administration. This review aims at discussing the potential benefits and challenges of intraductal administration, focusing on the design and use of nanocarriers as innovative and feasible strategies for local breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; College of Engineering, University of California-Davis, USA
| | - Giovanna Cassone Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
3
|
Wang G, Kumar A, Ding W, Korangath P, Bera T, Wei J, Pai P, Gabrielson K, Pastan I, Sukumar S. Intraductal administration of transferrin receptor-targeted immunotoxin clears ductal carcinoma in situ in mouse models of breast cancer-a preclinical study. Proc Natl Acad Sci U S A 2022; 119:e2200200119. [PMID: 35675429 PMCID: PMC9214490 DOI: 10.1073/pnas.2200200119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 μg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 μg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Alok Kumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Wanjun Ding
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Preethi Korangath
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Tapan Bera
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Junxia Wei
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ira Pastan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
4
|
Al-Zubaydi F, Gao D, Kakkar D, Li S, Holloway J, Szekely Z, Chan N, Kumar S, Sabaawy HE, Love S, Sinko PJ. Breast intraductal nanoformulations for treating ductal carcinoma in situ II: Dose de-escalation using a slow releasing/slow bioconverting prodrug strategy. Drug Deliv Transl Res 2022; 12:240-256. [PMID: 33590464 DOI: 10.1007/s13346-021-00903-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) represents approximately 20-25% of newly diagnosed breast cancers. DCIS is treated by surgery and possibly radiotherapy. Chemotherapy is only used as adjuvant or neoadjuvant therapy but not as primary therapy. The present study investigated the intraductal administration of Ciclopirox (CPX) formulated in nanosuspensions (NSs) or nanoparticles (NPs) to treat DCIS locally in a Fischer 344 rat model orthotopically implanted with 13762 Mat B III cells. Slow converting esterase responsive CPX prodrugs (CPDs) were successfully synthesized at high purity (> 95%) by directly acetylating the hydroxyl group or by appending a self-immolative linker between CPX and a phenolic ester. Direct esterification CPDs were not sufficiently stable so self-immolative CPDs were formulated in NSs and NPs. Prodrug release was evaluated from poly(lactic-co-glycolic acid) NPs, and CPD4 demonstrated the slowest release rate with the rank order of CPD2 (R = methyl) > CPD3 (R = t-butyl) > CPD4 (R = phenyl). Intraductally administered CPX NS, CPD4 NS, and an innovative mixture of CDP4 NS and NPs (at 1 mg CPX equivalent/duct) demonstrated significant (p < 0.05) in vivo anti-tumor efficacy compared with immediate release (IR) CPX NS and non-treated controls. CPX mammary persistence at 6 h and 48 h after CPD4 NS or NP administration was also greater than after the immediate release CPX NS. A strong correlation between CPX mammary persistence and efficacy is demonstrated. In conclusion, nanoformulations utilizing a slow releasing/slow bioconverting CPX prodrug delivery strategy resulted in significant dose de-escalation (~ five fold) while maintaining anti-tumor efficacy.
Collapse
Affiliation(s)
- Firas Al-Zubaydi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Dipti Kakkar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Susan Love
- Dr. Susan Love Research Foundation, 16133 Ventura Suite 1000, Encino, CA, 91436, USA
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
5
|
Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HAM, Mansour S, Tammam SN. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2021; 211:112289. [PMID: 34954516 DOI: 10.1016/j.colsurfb.2021.112289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Due to its overexpression in cancer cells, the folate receptor (FR) is heavily exploited in the active targeting of nanoparticles (NPs). Its ligand, folic acid (FA) is as a consequence widely used as a NP targeting ligand. Although rather popular and successful in principle, recent data has shown that FA may result in breast cancer initiation and progression, which questions the suitability of FA as NP cancer targeting ligand. In this work, intravenous administration of free FA to healthy female mice resulted in breast tissue dysplasia, hyperplasia and in the increased expression of human epidermal growth factor receptor-2 (HER2), folate receptor (FR), cancer antigen 15-3 (CA15.3), vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) and the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin-1β. In addition to the reduction in IL2. To evaluate the suitability and safety of FA as NP targeting ligand in breast cancer, small (≈ 150 nm) and large (≈ 500 nm) chitosan NPs were formulated and decorated with two densities of FA. The success of active targeting by FA was confirmed in two breast cancer cell lines (MCF-7 and MDA-MB-231 cells) in comparison to HEK293 cells. FA modified NPs that demonstrated successful active targeting in-vitro were assessed in-vivo. Upon intravenous administration, large NPs modified with a high density of FA accumulated in the breast tissue and resulted in similar effects as those observed with free FA. These results therefore question the suitability of FA as a targeting ligand in breast cancer and shed light on the importance of considering the activity (other than targeting) of the ligands used in NP active targeting.
Collapse
Affiliation(s)
- Lama A Helmy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Mohammed Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Raghda Hassan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Haithem A M Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy- Ain Shams University, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt.
| |
Collapse
|
6
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
7
|
Hu T, Li S, Huang H, Huang H, Tan L, Chen Y, Deng H, Wu J, Zhu L, Zhang J, Su F, Chen K. Multicentre, randomised, open-label, non-inferiority trial comparing the effectiveness and safety of ductal lavage versus oral corticosteroids for idiopathic granulomatous mastitis: a study protocol. BMJ Open 2020; 10:e036643. [PMID: 33039992 PMCID: PMC7552910 DOI: 10.1136/bmjopen-2019-036643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The ideal treatment for idiopathic granulomatous mastitis (IGM) remains unclear. In a prospective, single-centre, pilot study, we reported that ductal lavage treatment for non-lactational mastitis patients had a 1-year clinical complete response (cCR) rate of >90%, without any significant adverse events. Thus, in this multicentre, randomised, open-label, non-inferiority trial, we will aim to compare the effectiveness and safety of ductal lavage vs oral corticosteroids as the first-line treatment for patients with IGM. METHODS AND ANALYSIS The trial will be conducted at the Breast Tumor Center of Sun Yat-sen Memorial Hospital in China and at least at one participating regional centre. We plan to recruit 140 eligible IGM patients who will be randomised into the ductal lavage group or oral corticosteroid group with a 1:1 ratio. The patients in the oral corticosteroid group will receive meprednisone or prednisone for 6 months. The patients in the ductal lavage group will receive ductal lavage and breast massage, as previously reported. All the participants will be followed up at the clinic for 1 year post randomisation. The primary endpoint of this trial will be the 1-year cCR rate, and the secondary endpoints will include the time to cCR, treatment failure rate, relapse rate and protocol compliance rate. The trial was designed to determine whether ductal lavage is non-inferior to oral corticosteroids (1-year cCR rate assumed to be 90%), with a non-inferiority margin of 15%. ETHICS AND DISSEMINATION The ethics committee of Sun Yat-sen Memorial Hospital at Sun Yat-sen University approved the study (2018-Lun-Shen-Yan-No. 30). The results of the trial will be communicated to the participating primary care practices, published in international journals and presented at international clinical and scientific conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03724903); Pre-results.
Collapse
Affiliation(s)
- Tingting Hu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunrong Li
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heng Huang
- Department of Mammary Surgery, Lianjiang People's Hospital, Zhanjiang, Guangdong, China
| | - Hui Huang
- Department of Mammary Surgery, Maternity and Child Health Care Hospital of Jiangmen, Jiangmen, Guangdong, China
| | - Luyuan Tan
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heran Deng
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiannan Wu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liling Zhu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Kuang XW, Liu JH, Sun ZH, Sukumar S, Sun SR, Chen C. Intraductal Therapy in Breast Cancer: Current Status and Future Prospective. J Mammary Gland Biol Neoplasia 2020; 25:133-143. [PMID: 32577880 DOI: 10.1007/s10911-020-09453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
With our improved understanding of the biological behavior of breast cancer, minimally invasive intervention is urgently needed for personalized treatment of early disease. Intraductal therapy is one such minimally invasive approach. With the help of appropriate tools, technologies using the intraductal means of entering the ducts may be used both to diagnose and treat lesions in the mammary duct system with less trauma and at the same time avoid systemic toxicity. Traditional agents such as those targeting pathways, endocrine therapy, immunotherapy, or gene therapy can be used alone or combined with other new technologies, such as nanomaterials, through the intraductal route. Additionally, relevant mammary tumor models in rodents which reflect changes in the tumor microenvironment will help deepen our understanding of their biological behavior and heterogeneity. This article reviews the current status and future prospects of intraductal therapy in breast cancer, with emphasis on ductal carcinoma in situ.
Collapse
Affiliation(s)
- Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
9
|
Al-Zubaydi F, Gao D, Kakkar D, Li S, Adler D, Holloway J, Szekely Z, Gu Z, Chan N, Kumar S, Love S, Sinko PJ. Breast intraductal nanoformulations for treating ductal carcinoma in situ I: Exploring metal-ion complexation to slow ciclopirox release, enhance mammary persistence and efficacy. J Control Release 2020; 323:71-82. [PMID: 32302762 DOI: 10.1016/j.jconrel.2020.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Ductal Carcinoma In Situ (DCIS) represents a significant fraction (~20-25%) of all newly diagnosed breast cancer cases and, if left untreated, a significant fraction of patients will progress to invasive disease. Surgery is the only treatment option. Ciclopirox (CPX), an FDA-approved antifungal drug, has exhibited promising antitumor activity by down-regulating the expression of vital antiapoptotic cellular proteins and inhibiting the genetic expression of several oncogenic pathways. In this study, the feasibility of using nanoscale delivery systems to control release and prolong mammary tissue persistence of a lipophilic metal complex of CPX and Zinc (CPXZn) after intraductal administration was investigated. METHODS CPX and CPX-Zn nanosuspensions (NSs) were prepared using an evaporative nanoprecipitation-ultra-sonication method. Flash nanoprecipitation was used to prepare PLGA nanoparticles (NPs) loaded with CPXZn. Our established orthotopic DCIS rat model was used to evaluate efficacy. Briefly, two days after 13762 Mat B III cell intraductal inoculation, rats were divided into treatment groups and a single intraductal injection of CPX NS, CPX-Zn NS or CPX-Zn NPs was administered. In the first study arm, the efficacy of CPX NS (1, 3, 5 mg/duct) was evaluated. In the second arm, the in vivo efficacy of CPX NS, CPX-Zn NS and CPX-Zn loaded NPs was evaluated and compared at equivalent CPX doses. The mammary persistence of CPX from CPX NS, CPX-Zn NS, and CPX-Zn PLGA NPs was also assessed. RESULTS CPX-Zn complex was successfully synthesized and characterized by several spectral analyses. CPX release was slowed from the CPX-Zn NS and further slowed by incorporating CPX-Zn into PLGA NPs as compared to the CPX NS with release half times following the order: CPX NS < CPX-Zn NS << CPX-Zn NP. Intraductal CPX NS administration was dose and time dependent in suppressing tumor initiation suggesting prolonged mammary exposure may improve efficacy. In the second arm, mammary tissue persistence of CPX followed the rank order CPX NS < CPX-Zn NS << CPX-Zn NP at 6 h and 48 h post-administration. Prolonged mammary CPX exposure was highly correlated to improved efficacy. Prolonged CPX tissue persistence, attributed to slower release from the zinc complex and the PLGA NPs, resulted in a 5-fold dose reduction compared to the CPX NS. CONCLUSIONS The current results demonstrate that slowing drug release in the mammary duct after intraductal administration overcomes the rapid ductal clearance of CPX, prolongs mammary tissue persistence, improves efficacy against DCIS lesions in vivo, and requires 5-fold less CPX to achieve equivalent efficacy. The studies also provide a strategic path forward for developing a locally administered drug delivery system for treating DCIS, for which no primary chemotherapy option is available.
Collapse
Affiliation(s)
- Firas Al-Zubaydi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Dipti Kakkar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Derek Adler
- Rutgers Molecular Imaging Center, 41 Gordon Road Suite D, Piscataway, NJ 08854, USA.
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Zichao Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Susan Love
- Dr. Susan Love Research Foundation, 16133 Ventura Suite 1000, Encino, California 91436, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
10
|
Chen K, Zhu L, Hu T, Tan C, Zhang J, Zeng M, Li S, Song E. Ductal Lavage for Patients With Nonlactational Mastitis: A Single-Arm, Proof-of-Concept Trial. J Surg Res 2019; 235:440-446. [PMID: 30691827 DOI: 10.1016/j.jss.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/09/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Surgery, steroids, and/or observations alone have been proposed for patients with nonlactational mastitis (NLM), but most of these studies were retrospective. The optimal treatment for these patients remains unclear. This prospective, single-arm, proof-of-concept trial aimed to evaluate the feasibility and safety of ductal lavage as a novel treatment for patients with NLM. METHODS Eligible patients with NLM received an intraductal infusion of corticosteroids and antimicrobial agents and returned the next day for a breast massage. This cycle was repeated for 2 wk, and we followed up these patients for 1 y. Patients did not receive surgery or steroids after ductal lavage. The primary endpoint was the time to complete response (CR). RESULTS This trial included 32 patients with a median (range) age of 32 (20-53). Skin erythema and tenderness were the major symptoms. The median (range) visual analog score was 5 (0-9). There were 21 (65.6%), 4 (12.5%), and 7 (21.9%) patients diagnosed as idiopathic granulomatous mastitis, periductal mastitis, and unspecific NLM, respectively. During the ductal lavage, the median (range) number of cannulated ducts at first attempt was 5 (3-8). Ductal lavage significantly reduced the visual analog score and mastitis score (M-score) (P < 0.01). Within a median follow-up of 15.6 mo, 93.8% (30/32) of patients achieved CR. The median (range) time to CR was 6 (0.5-21) mo. Three patients (10.0%) relapsed. No adverse events associated with ductal lavage were observed. CONCLUSIONS Ductal lavage for patients with NLM is feasible and safe, and a definitive randomized controlled trial for further investigation is warranted. TRIAL REGISTRATION ClinicalTrials.gov, NCT02794688.
Collapse
Affiliation(s)
- Kai Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Tingting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Cui Tan
- Department of pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minhua Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Gui G, Agusti A, Twelves D, Tang S, Kabir M, Montgomery C, Nerurkar A, Osin P, Isacke C. INTEND II randomized clinical trial of intraoperative duct endoscopy in pathological nipple discharge. Br J Surg 2018; 105:1583-1590. [PMID: 30238438 DOI: 10.1002/bjs.10990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/10/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The majority of lesions resulting in pathological nipple discharge are benign. Conventional surgery is undirected and targeting the causative lesion by duct endoscopy may enable more accurate surgery with fewer complications. METHODS Patients requiring microdochectomy and/or major duct excision were randomized to duct endoscopy or no duct endoscopy before surgery. Primary endpoints were successful visualization of the pathological lesion in patients randomized to duct endoscopy, and a comparison of the causative pathology between the two groups. The secondary endpoint was to compare the specimen size between groups. RESULTS A total of 68 breasts were studied in 66 patients; there were 31 breasts in the duct endoscopy group and 37 in the no-endoscopy group. Median age was 49 (range 19-81) years. Follow-up was 5·4 (i.q.r. 3·3-8·9) years in the duct endoscopy group and 5·7 (3·1-9·0) years in no-endoscopy group. Duct endoscopy had a sensitivity of 80 (95 per cent c.i. 52 to 96) per cent, specificity of 71 (44 to 90) per cent, positive predictive value of 71 (44 to 90) per cent and negative predictive value of 80 (52 to 96) per cent in identifying any lesion. There was no difference in causative pathology between the groups. Median volume of the surgical resection specimen did not differ between groups. CONCLUSION Diagnostic duct endoscopy is useful for identifying causative lesions of nipple discharge. Duct endoscopy did not influence the pathological yield of benign or malignant diagnoses nor surgical resection volumes. Registered as INTEND II in CancerHelp UK clinical trials database (https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-study-looking-at-changes-inside-the-breast-ducts-of-women-who-have-nipple-discharge).
Collapse
Affiliation(s)
- G Gui
- Department of Surgery, Royal Marsden NHS Trust, London, UK
| | - A Agusti
- Department of Surgery, Royal Marsden NHS Trust, London, UK
| | - D Twelves
- Department of Surgery, Royal Marsden NHS Trust, London, UK
| | - S Tang
- Department of Surgery, Royal Marsden NHS Trust, London, UK
| | - M Kabir
- Department of Clinical Research and Development, Royal Marsden NHS Trust, London, UK
| | - C Montgomery
- Department of Surgery, Royal Marsden NHS Trust, London, UK
| | - A Nerurkar
- Department of Histopathology, Royal Marsden NHS Trust, London, UK
| | - P Osin
- Department of Histopathology, Royal Marsden NHS Trust, London, UK
| | - C Isacke
- Institute of Cancer Research, London, UK
| |
Collapse
|
12
|
Gu Z, Al‐Zubaydi F, Adler D, Li S, Johnson S, Prasad P, Holloway J, Szekely Z, Love S, Gao D, Sinko PJ. Evaluation of intraductal delivery of poly(ethylene glycol)-doxorubicin conjugate nanocarriers for the treatment of ductal carcinoma in situ (DCIS)-like lesions in rats. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:146-159. [PMID: 30443411 PMCID: PMC6220801 DOI: 10.1002/jin2.51] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ is the most commonly diagnosed early stage breast cancer. The efficacy of intraductally delivered poly(ethylene glycol)-doxorubicin (PEG-DOX) nanocarriers, composed of one or more DOX conjugated to various PEG polymers, was investigated in an orthotopic ductal carcinoma in situ-like rat model. In vitro cytotoxicity was evaluated against 13762 Mat B III cells using MTT assay. The orthotopic model was developed by inoculating cancer cells into mammary ducts of female Fischer 344 retired breeder rats. The ductal retention and in vivo antitumour efficacy of two of the six nanocarriers (5 kDa PEG-DOX and 40 kDa PEG-(DOX)4) were investigated based on in vitro results. Mammary retention of DOX and PEG-DOX nanocarriers was quantified using in vivo imaging. Histopathologic effects of DOX and PEG-DOX nanocarriers on mammary ductal structure were also investigated. Cytotoxicities of small linear PEG-DOX nanocarriers (5 and 10 kDa) were not different from DOX whereas larger PEG-DOX nanocarriers showed reduced potency. The order of mammary retention was 40 kDa PEG-(DOX)4 > 5 kDa PEG-DOX >> DOX, in normal and tumour-bearing rats. Intraductally administered PEG-DOX nanocarriers and DOX were effective in reducing tumour incidence and increasing survival rate, with no significant differences found among the three treatment groups. However, nanocarriers administered intravenously at the same doses were not effective, and intraductally administered free DOX caused severe local toxicity. Intraductal administration of PEG-DOX nanocarriers is effective and less toxic than that of free DOX, as well as IV DOX/PEG-DOX. Furthermore, PEG-DOX nanocarriers demonstrate the added benefit of prolonging DOX ductal retention, which would necessitate less frequent dosing.
Collapse
Affiliation(s)
- Zichao Gu
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Firas Al‐Zubaydi
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Derek Adler
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
- Rutgers Molecular Imaging Center41 Gordon Road Suite DPiscatawayNew Jersey08854USA
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Steven Johnson
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Puja Prasad
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
- Department of Chemical EngineeringIndian Institute of TechnologyHauz KhasNew Delhi110016India
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
- Rutgers Cancer Institute of New Jersey195 Little Albany StreetNew BrunswickNew Jersey08901USA
| | - Susan Love
- DSL Research FoundationSanta MonicaCaliforniaUSA
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New Jersey160 Frelinghuysen Rd.PiscatawayNew Jersey08854USA
- Rutgers Cancer Institute of New Jersey195 Little Albany StreetNew BrunswickNew Jersey08901USA
| |
Collapse
|
13
|
Gu Z, Gao D, Al-Zubaydi F, Li S, Singh Y, Rivera K, Holloway J, Szekely Z, Love S, Sinko PJ. The effect of size and polymer architecture of doxorubicin-poly(ethylene) glycol conjugate nanocarriers on breast duct retention, potency and toxicity. Eur J Pharm Sci 2018; 121:118-125. [PMID: 29698706 DOI: 10.1016/j.ejps.2018.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 11/17/2022]
Abstract
Although systemic administration of chemotherapeutic agents is routinely used for treating invasive breast cancer, the only therapeutic options for ductal carcinoma in situ (DCIS) are surgery and radiation. Treating DCIS by delivering drugs locally to the affected milk duct offers significant advantages over systemic administration, including reduced systemic and breast toxicities, as well as a greatly reduced need for surgery and radiation. In this study, mammary gland retention and toxicity of intraductally administered poly(ethylene) glycol-doxorubicin (PEG-DOX) polymeric conjugate nanocarriers of varying molecular sizes and architectures were investigated. Nanocarriers were formed by conjugating one or more copies of doxorubicin to PEG polymers, of varying molecular weights (5, 10, 20, and 40 kDa) and architectures (linear, four-arm and eight-arm). Cytotoxicity against MCF7 cells, a human breast cancer cell line, was assessed, and IC50 values were calculated. The nanocarriers were intraductally administered into the mammary glands of female retired breeder Sprague-Dawley rats. Whole body images were captured using in vivo optical imaging, and changes in ductal structure as well local inflammation were monitored. Fluorescence intensities were monitored, over time, to evaluate nanocarrier mammary gland retention half-lives (t1/2). The IC50 values of PEG-DOX nanocarriers against MCF7 cells were 40 kDa PEG-(DOX)4 (1.23 μM) < 5 kDa PEG-DOX (1.76 μM) < 40 kDa PEG-(DOX)8 (3.49 μM) < 10 kDa PEG-DOX (3.86 μM) < 20 kDa PEG-DOX (8.96 μM) < 40 kDa PEG-DOX (18.11 μM), whereas the IC50 of free DOX was only 0.14 μM. The t1/2 of linear 5, 20, and 40 kDa nanocarriers were 2.2 ± 0.3, 3.6 ± 0.6, and 13.1 ± 3.4 h, whereas the retention t1/2 of 4- and 8-arm 40 kDa nanocarriers were 14.9 ± 5.6 h and 11.9 ± 2.9 h, respectively. The retention t1/2 of free doxorubicin was 2.0 ± 0.4 h, which was significantly shorter than that of the linear and branched 40 kDa PEG-DOX nanocarriers. Increased molecular weight and decreased branching both demonstrated a strong correlation to enhanced mammary gland retention. Intraductally administered free doxorubicin resulted in ductal damage, severe inflammation and generation of atypical cell neoplasms, whereas PEG-DOX nanocarriers induced only minor and transient inflammation (i.e., damaged epithelial cells and detached cellular debris). The 40 kDa 4-arm PEG-DOX nanocarrier demonstrated the longest ductal retention half-life, the lowest IC50 (i.e., most potent), and minimal ductal damage and inflammation. The current results suggest that PEG-DOX nanocarriers with prolonged ductal retention may present the best option for intraductal treatment of DCIS, due to their low local toxicity and potential for sustained therapeutic effect.
Collapse
Affiliation(s)
- Zichao Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Firas Al-Zubaydi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Yashveer Singh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Department of Chemistry, Center for Biomedical Engineering (CBME), Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India.
| | - Kristia Rivera
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
| | - Susan Love
- Dr. Susan Love Research Foundation, 16133 Ventura Suite 1000, Encino, CA 91436, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
14
|
Abstract
Localized intraductal treatments for breast cancer offer potential advantages, including efficient delivery to the tumor and reduced systemic toxicity and adverse effects1,2,3,4,5,6,7. However, several challenges remain before these treatments can be applied more widely. The development and validation of intraductal therapeutics in an appropriate animal model facilitate the development of intraductal therapeutic strategies for patients. While the mouse mammary gland has been widely used as a model system of mammary development and tumorigenesis, the anatomy is distinct from the human gland. A larger animal model, such as the rabbit, may serve as a better model for mammary gland structure and intraductal therapeutic development. In contrast to mice, in which ten ductal trees are spatially distributed along the body axis, each terminating in a separate teat, the rabbit mammary gland more closely resembles the human gland, with multiple overlapping ductal systems that exit through separate openings in one teat. Here, we present minimally invasive methods for the delivery of reagents directly into the rabbit mammary duct and for visualization of the delivery itself with high-resolution ultrasound imaging.
Collapse
Affiliation(s)
- Amelia Clark
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nora K Bird
- Department of Anesthesiology, UTMB Health at Galveston
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin;
| |
Collapse
|
15
|
Mills D, Gomberawalla A, Gordon EJ, Tondre J, Nejad M, Nguyen T, Pogoda JM, Rao J, Chatterton R, Henning S, Love SM. Examination of Duct Physiology in the Human Mammary Gland. PLoS One 2016; 11:e0150653. [PMID: 27073976 PMCID: PMC4830446 DOI: 10.1371/journal.pone.0150653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Background The human breast comprise several ductal systems, or lobes, which contain a small amount of fluid containing cells, hormones, proteins and metabolites. The complex physiology of these ducts is likely a contributing factor to the development of breast cancer, especially given that the vast majority of breast cancers begin in a single lobular unit. Methods We examined the levels of total protein, progesterone, estradiol, estrone sulfate, dehydroepiandrosterone sulfate, and macrophages in ductal fluid samples obtained from 3 ducts each in 78 women, sampled twice over a 6 month period. Samples were processed for both cytological and molecular analysis. Intraclass correlation coefficients and mixed models were utilized to identify significant data. Results We found that the levels of these ductal fluid components were generally uncorrelated among ducts within a single breast and over time, suggesting that each lobe within the breast has a distinct physiology. However, we also found that estradiol was more correlated in women who were nulliparous or produced nipple aspirate fluid. Conclusions Our results provide evidence that the microenvironment of any given lobular unit is unique to that individual unit, findings that may provide clues about the initiation and development of ductal carcinomas.
Collapse
Affiliation(s)
- Dixie Mills
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| | - Ameer Gomberawalla
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
- Columbia University Medical Center, Department of Breast Surgery, New York, NY, United States of America
- * E-mail:
| | - Eva J. Gordon
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| | - Julie Tondre
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| | - Mitra Nejad
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| | - Tinh Nguyen
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| | - Janice M. Pogoda
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Robert Chatterton
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 710 North Fairbanks Court, Chicago, IL, 60611, United States of America
| | - Susanne Henning
- Center for Human Nutrition, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Susan M. Love
- Dr. Susan Love Research Foundation, 2811 Wilshire Blvd., Suite 500, Santa Monica, CA, 90403, United States of America
| |
Collapse
|
16
|
Dave K, Averineni R, Sahdev P, Perumal O. Transpapillary drug delivery to the breast. PLoS One 2014; 9:e115712. [PMID: 25545150 PMCID: PMC4278765 DOI: 10.1371/journal.pone.0115712] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 11/28/2014] [Indexed: 02/03/2023] Open
Abstract
The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug’s lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple.
Collapse
Affiliation(s)
- Kaushalkumar Dave
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Ranjith Averineni
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Preety Sahdev
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Omathanu Perumal
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, 57007, United States of America
- * E-mail:
| |
Collapse
|
17
|
Brock A, Krause S, Li H, Kowalski M, Goldberg MS, Collins JJ, Ingber DE. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 2014; 6:217ra2. [PMID: 24382894 DOI: 10.1126/scitranslmed.3007048] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With advances in screening, the incidence of detection of premalignant breast lesions has increased in recent decades; however, treatment options remain limited to surveillance or surgical removal by lumpectomy or mastectomy. We hypothesized that disease progression could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Using computational gene network modeling, we identified HoxA1 as a putative driver of early mammary cancer progression in transgenic C3(1)-SV40TAg mice. Silencing this gene in cultured mouse or human mammary tumor spheroids resulted in increased acinar lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization. When the HoxA1 gene was silenced in vivo via intraductal delivery of nanoparticle-formulated small interfering RNA (siRNA) through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. This approach that leverages new advances in systems biology and nanotechnology offers a novel noninvasive strategy to block breast cancer progression through targeted silencing of critical genes directly within the mammary epithelium.
Collapse
Affiliation(s)
- Amy Brock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Krause S, Brock A, Ingber DE. Intraductal injection for localized drug delivery to the mouse mammary gland. J Vis Exp 2013. [PMID: 24121742 PMCID: PMC3938324 DOI: 10.3791/50692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herein we describe a protocol to deliver various reagents to the mouse mammary gland via intraductal injections. Localized drug delivery and knock-down of genes within the mammary epithelium has been difficult to achieve due to the lack of appropriate targeting molecules that are independent of developmental stages such as pregnancy and lactation. Herein, we describe a technique for localized delivery of reagents to the mammary gland at any stage in adulthood via intraductal injection into the nipples of mice. The injections can be performed on live mice, under anesthesia, and allow for a non-invasive and localized drug delivery to the mammary gland. Furthermore, the injections can be repeated over several months without damaging the nipple. Vital dyes such as Evans Blue are very helpful to learn the technique. Upon intraductal injection of the blue dye, the entire ductal tree becomes visible to the eye. Furthermore, fluorescently labeled reagents also allow for visualization and distribution within the mammary gland. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents, and small molecules.
Collapse
Affiliation(s)
- Silva Krause
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School
| | | | | |
Collapse
|
19
|
Mahoney ME, Gordon EJ, Rao JY, Jin Y, Hylton N, Love SM. Intraductal therapy of ductal carcinoma in situ: a presurgery study. Clin Breast Cancer 2013; 13:280-6. [PMID: 23664819 DOI: 10.1016/j.clbc.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/04/2013] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Ductal carcinoma in situ (DCIS) is a noninvasive breast cancer wherein malignant cells are confined within a ductal lobular unit. Although less than half the cases of DCIS will progress to invasive disease, most women are treated aggressively with surgery, radiation, and/or hormone therapy due to the inability to clinically evaluate the extent and location of the disease. Intraductal therapy, in which a drug is administered directly into the mammary duct through the nipple, is a promising approach for treating DCIS, but the feasibility of instilling drug into a diseased duct has not been established. PATIENTS AND METHODS Four to 6 weeks before their scheduled surgery, 13 women diagnosed with DCIS were subjected to cannulation of the affected duct. After both the absence of perforation and presence of dye in the duct were confirmed by ductogram, pegylated liposomal doxorubicin was instilled. Histopathologic assessment was performed after surgery to assess the treatment effects. RESULTS Of the 13 women enrolled in the study, 6 had their DCIS duct successfully cannulated without perforation and instilled with the drug. The treatment was well tolerated, and no serious adverse events have been reported. Biomarker studies indicated a general decrease in Ki-67 levels but an increase in annexin-1 and 8-hydroxydeoxyguanosine in the lumen of DCIS-containing ducts, which suggests a local response to pegylated liposomal doxorubicin treatment. CONCLUSIONS Intraductal therapy offers a nonsurgical strategy to treat DCIS at the site of disease, potentially minimizing the adverse effects of systemic treatment while preventing development of invasive cancer.
Collapse
|
20
|
Komuro M, Suzuki K, Kanebako M, Kawahara T, Otoi T, Kitazato K, Inagi T, Makino K, Toi M, Terada H. Novel iontophoretic administration method for local therapy of breast cancer. J Control Release 2013; 168:298-306. [PMID: 23562634 DOI: 10.1016/j.jconrel.2013.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Ductal drug therapy is a novel therapeutic approach for primary breast cancers, particularly those involving ductal carcinoma in situ lesions. Total or partial mastectomy with or without radiotherapy is the standard local therapy for primary breast cancer. Here, we propose a novel drug administration method for ductal drug therapy based on a drug delivery system (DDS) for primary breast cancer. This DDS was designed to deliver miproxifen phosphate (TAT-59), an antiestrogen drug, to ductal lesions via the milk duct, where carcinomas originate, more efficiently than systemic administration, using an iontophoretic technique applied to the nipple (IP administration). Autoradiography imaging confirmed that TAT-59 was directly delivered to the milk duct using IP administration. The plasma concentrations of TAT-59 and its active metabolite DP-TAT-59 were quite low with IP administration. The area under the curve value of DP-TAT-59 in the mammary tissue was approximately 3 times higher with IP administration than with oral administration, at a 6-fold lower dose, indicating higher availability of the drug delivered via DDS than via systemic administration. The low plasma concentrations would limit adverse effects to minor ones. These characteristics show that this DDS is suitable for the delivery of active DP-TAT-59 to ductal lesions.
Collapse
Affiliation(s)
- Masahito Komuro
- Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lazzeroni M, Serrano D, Dunn BK, Heckman-Stoddard BM, Lee O, Khan S, Decensi A. Oral low dose and topical tamoxifen for breast cancer prevention: modern approaches for an old drug. Breast Cancer Res 2012; 14:214. [PMID: 23106852 PMCID: PMC4053098 DOI: 10.1186/bcr3233] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tamoxifen is a drug that has been in worldwide use for the treatment of estrogen receptor (ER)-positive breast cancer for over 30 years; it has been used in both the metastatic and adjuvant settings. Tamoxifen's approval for breast cancer risk reduction dates back to 1998, after results from the Breast Cancer Prevention Trial, co-sponsored by the National Cancer Institute and the National Surgical Adjuvant Breast and Bowel Project, showed a 49% reduction in the incidence of invasive, ER-positive breast cancer in high-risk women. Despite these positive findings, however, the public's attitude toward breast cancer chemoprevention remains ambivalent, and the toxicities associated with tamoxifen, particularly endometrial cancer and thromboembolic events, have hampered the drug's uptake by high-risk women who should benefit from its preventive effects. Among the strategies to overcome such obstacles to preventive tamoxifen, two novel and potentially safer modes of delivery of this agent are discussed in this paper. Low-dose tamoxifen, expected to confer fewer adverse events, is being investigated in both clinical biomarker-based trials and observational studies. A series of systemic biomarkers (including lipid and insulin-like growth factor levels) and tissue biomarkers (including Ki-67) are known to be favorably affected by conventional tamoxifen dosing and have been shown to be modulated in a direction consistent with a putative anti-cancer effect. These findings suggest possible beneficial clinical preventive effects by low-dose tamoxifen regimens and they are supported by observational studies. An alternative approach is topical administration of active tamoxifen metabolites directly onto the breast, the site where the cancer is to be prevented. Avoidance of systemic administration is expected to reduce the distribution of drug to tissues susceptible to tamoxifen-induced toxicity. Clinical trials of topical tamoxifen with biological endpoints are still ongoing whereas pharmacokinetic studies have already shown that appropriate formulations of drug successfully penetrate the skin to reach breast tissue, where a preventive effect is sought.
Collapse
|
22
|
Singh Y, Gao D, Gu Z, Li S, Rivera KA, Stein S, Love S, Sinko PJ. Influence of molecular size on the retention of polymeric nanocarrier diagnostic agents in breast ducts. Pharm Res 2012; 29:2377-88. [PMID: 22569800 DOI: 10.1007/s11095-012-0763-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the influence of nanocarrier molecular size and shape on breast duct retention in normal rats using a non-invasive optical imaging method. METHODS Fluorescein-labeled PEG nanocarriers of different molecular weights and shapes (linear, two-arm, four-arm, and eight-arm) were intraductally administered (50 nmol) to female Sprague-Dawley rats. Whole body images were obtained non-invasively. Fluorescence intensities (i.e., amount remaining in duct) were plotted against time to estimate the nanocarrier ductal retention half-lives (t(1/2)). Plasma samples were taken and the pharmacokinetics (Tmax, Cmax) of absorbed nanocarriers was also assessed. RESULTS The t(1/2) of linear 12, 20, 30, 40, and two-arm 60 kDa nanocarriers were 6.7 ± 0.9, 16.1 ± 4.1, 16.6 ± 3.4, 21.5 ± 2.7, and 19.5 ± 6.1 h, whereas the four-arm 20, 40, and eight-arm 20 kDa had t(1/2) of 9.0 ± 0.5, 11.5 ± 1.9, and 12.6 ± 3.0 h. The t(1/2) of unconjugated fluorescein was significantly lower (14.5 ± 1.4 min). The Tmax for 12, 40, 60 kDa nanocarriers were 1, 24, and 32 h, respectively, and only 30 min for fluorescein. CONCLUSIONS Since normal breast ducts are highly permeable, the use of nanocarriers may be helpful in prolonging ductal retention of diagnostic and/or therapeutic agents.
Collapse
Affiliation(s)
- Yashveer Singh
- Department of Pharmaceutics Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mátrai Z, Tóth L, Bidlek M, Szabó É, Farkas E, Sávolt Á, Góbor L, Bartal A, Kásler M. [The role of ductoscopy in the modern diagnostics and therapy of breast diseases]. Orv Hetil 2011; 152:1284-93. [PMID: 21803726 DOI: 10.1556/oh.2011.29163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammary ductoscopy is a modern, minimally invasive procedure that enables direct, in vivo observation of the mammary ductal system, primarily by nipple discharge. The rapidly developing device is suitable for aimed biopsy for further cytological or molecular examinations. High-tech equipments facilitate polypectomy or laser vaporization of certain intraluminal lesions, and play an important role in the direct surgical excision of the duct or the so-called terminal duct-lobular unit. The above listed facilitate the early diagnosis of malignancies even before imaging could detect them, and the control of high risk patients. Ductoscopy can foster surgical removal of ductal in situ tumors as anatomical units, thus enabling the optimization of radicality of breast conserving surgeries. Authors give a detailed description of the surgical techniques, and provide a wide review of the literature, for the first time in the Hungarian language. Orv. Hetil., 2011, 152, 1284-1293.
Collapse
Affiliation(s)
- Zoltán Mátrai
- Országos Onkológiai Intézet Általános és Mellkassebészeti Osztály, Budapest, Ráth Gy. u. 7-9. 1122.
| | | | | | | | | | | | | | | | | |
Collapse
|