1
|
Kajevu N, Lipponen A, Andrade P, Bañuelos I, Puhakka N, Hämäläinen E, Natunen T, Hiltunen M, Pitkänen A. Treatment of Status Epilepticus after Traumatic Brain Injury Using an Antiseizure Drug Combined with a Tissue Recovery Enhancer Revealed by Systems Biology. Int J Mol Sci 2023; 24:14049. [PMID: 37762352 PMCID: PMC10531083 DOI: 10.3390/ijms241814049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.
Collapse
Affiliation(s)
- Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
2
|
Michelis GA, Politi LE, Becerra SP. Primary Retinal Cell Cultures as a Model to Study Retina Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:565-569. [PMID: 37440087 DOI: 10.1007/978-3-031-27681-1_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Since its inception, primary retinal cultures have been an in vitro tool for modeling the in vivo environment of the retina for biological studies on development and disease. They offer simple and controlled experimental approaches when compared to in vivo models. In this review we highlight the strengths and weaknesses of primary retinal culture models, and the features of dispersed retinal cell cultures.
Collapse
Affiliation(s)
- Germán A Michelis
- Section of Protein Structure and Function, LRCMB, NEI-NIH, Bethesda, MD, USA
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Luis E Politi
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - S Patricia Becerra
- Section of Protein Structure and Function, LRCMB, NEI-NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B, Liao L, Wang M, Wan H, Yan W, Chen D, Liu F, Jiang B, Ji D, Xia X, Huang J, Xiong K. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Ann Anat 2021; 235:151672. [PMID: 33434657 DOI: 10.1016/j.aanat.2020.151672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha 410013, China
| | - Fei Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Bo Qin
- Department of Anatomy, Medical College of Hubei Polytechnic University, Huang shi 435003, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
5
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
6
|
Guo LM, Wang Z, Li SP, Wang M, Yan WT, Liu FX, Wang CD, Zhang XD, Chen D, Yan J, Xiong K. RIP3/MLKL-mediated neuronal necroptosis induced by methamphetamine at 39°C. Neural Regen Res 2020; 15:865-874. [PMID: 31719251 PMCID: PMC6990769 DOI: 10.4103/1673-5374.268902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine is one of the most prevalent drugs abused in the world. Methamphetamine abusers usually present with hyperpyrexia (39°C), hallucination and other psychiatric symptoms. However, the detailed mechanism underlying its neurotoxic action remains elusive. This study investigated the effects of methamphetamine + 39°C on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats. Primary cortex neurons were exposed to 1 mM methamphetamine + 39°C. Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39°C triggered obvious necrosis-like death in cultured primary cortical neurons, which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially. Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39°C for 3 hours. After pre-treatment with RIP3 inhibitor GSK'872, propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased; RIP3 and MLKL protein expression significantly decreased. Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse. Taken together, the above results suggest that methamphetamine + 39°C can induce RIP3/MLKL regulated necroptosis, thereby resulting in neurotoxicity. The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University, China (approval numbers: 2017-S026 and 2017-S033) on March 7, 2017.
Collapse
Affiliation(s)
- Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shi-Ping Li
- Department of Neurology, People's Hospital of Lianhua, Pingxiang, Jiangxi Province, China
| | - Mi Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chu-Dong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xu-Dong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Wang S, Liao L, Huang Y, Wang M, Zhou H, Chen D, Liu F, Ji D, Xia X, Jiang B, Huang J, Xiong K. Pin1 Is Regulated by CaMKII Activation in Glutamate-Induced Retinal Neuronal Regulated Necrosis. Front Cell Neurosci 2019; 13:276. [PMID: 31293391 PMCID: PMC6603237 DOI: 10.3389/fncel.2019.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
In our previous study, we reported that peptidyl-prolyl isomerase 1 (Pin1)-modulated regulated necrosis (RN) occurred in cultured retinal neurons after glutamate injury. In the current study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in Pin1-modulated RN in cultured rat retinal neurons, and in an animal in vivo model. We first demonstrated that glutamate might lead to calcium overloading mainly through ionotropic glutamate receptors activation. Furthermore, CaMKII activation induced by overloaded calcium leads to Pin1 activation and subsequent RN. Inactivation of CaMKII by KN-93 (KN, i.e., a specific CaMKII inhibitor) application can decrease the glutamate-induced retinal neuronal RN. Finally, by using an animal in vivo model, we also demonstrated the important role of CaMKII in glutamate-induced RN in rat retina. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate can recover after CaMKII inhibition. In conclusion, CaMKII is an up-regulator of Pin1 and responsible for the RN induced by glutamate. This study provides further understanding of the regulatory pathway of RN and is a complementary mechanism for Pin1 activation mediated necrosis. This finding will provide a potential target to protect neurons from necrosis in neurodegenerative diseases, such as glaucoma, diabetic retinopathy, and even central nervous system diseases.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Wang S, Huang Y, Yan Y, Zhou H, Wang M, Liao L, Wang Z, Chen D, Ji D, Xia X, Liu F, Huang J, Xiong K. Calpain2 but not calpain1 mediated by calpastatin following glutamate-induced regulated necrosis in rat retinal neurons. Ann Anat 2019; 221:57-67. [PMID: 30240910 DOI: 10.1016/j.aanat.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
The purpose of this study is to investigate whether calpastatin (CAST) plays an important role in the regulated necrosis (RN) in rat retinal neurons under an excessive glutamate condition and furthermore to investigate whether this process is regulated by calapin1 and calpain2. In the present study, glutamate triggered CAST inhibition, calpain2 activation and retinal neuronal RN after injury. The application of CAST active peptide could provide protective effects against activated calpain2 mediated RN. However, the calpain1 activity was not changed in these processes. Finally, in vivo studies further confirmed the role of the CAST-calpain2 pathway in cellular RN in the rat retinal ganglion cell layer and inner nuclear layer after glutamate excitation. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate could recover after CAST peptide treatment. This research indicated that excessive glutamate may lead to CAST inhibition and activated calpain2, but not calpain1 activation, resulting in RN.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yuhan Yan
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
9
|
Wang Z, Guo LM, Wang SC, Chen D, Yan J, Liu FX, Huang JF, Xiong K. Progress in studies of necroptosis and its relationship to disease processes. Pathol Res Pract 2018; 214:1749-1757. [PMID: 30244947 DOI: 10.1016/j.prp.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022]
Abstract
This review briefly introduces the mechanism and detection methods of necroptosis in recent years. The most significant points of this review focus on the involvement of necroptotic proteins in disease progression. The following aspects are summarized: 1) RIPs, MLKL, and the upstream and downstream molecules that mediate necroptosis; 2) The development of detection methods for necroptosis; 3) The involvement of related necroptotic proteins in diverse diseases etiology; and 4) The application of necroptotic proteins in disease diagnosis.
Collapse
Affiliation(s)
- Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Shu-Chao Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
10
|
Wang Z, Guo LM, Wang Y, Zhou HK, Wang SC, Chen D, Huang JF, Xiong K. Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 2018; 233:4864-4884. [PMID: 29334122 DOI: 10.1002/jcp.26294] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Abstract
Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons. However, it is still unclear whether HSP90α participates in the process of OGD-induced necroptosis in cultured neurons via the regulation of RIP3. Our study found that necroptosis occurs in primary cultured cortical neurons and PC-12 cells following exposure to OGD insult. Additionally, the expression of RIP3/p-RIP3, MLKL/p-MLKL, and the RIP1/RIP3 complex (necrosome) significantly increased following OGD, as measured through immunofluorescence (IF) staining, Western blotting (WB), and immunoprecipitation (IP) assay. Additionally, data from computer simulations and IP assays showed that HSP90α interacts with RIP3. In addition, HSP90α was overexpressed following OGD in cultured neurons, as measured through WB and IF staining. Inhibition of HSP90α in cultured neurons, using the specific inhibitor, geldanamycin (GA), and siRNA/shRNA of HSP90α, protected cultured neurons from necrosis. Our study showed that the inhibitor of HSP90α, GA, rescued cultured neurons not only by decreasing the expression of total RIP3/MLKL, but also by decreasing the expression of p-RIP3/p-MLKL and the RIP1/RIP3 necrosome. In this study, we reveal that inhibition of HSP90α protects primary cultured cortical neurons and PC-12 cells from OGD-induced necroptosis through the modulation of RIP3 expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li-Min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong-Kang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-Chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Wang S, Liao L, Wang M, Zhou H, Huang Y, Wang Z, Chen D, Ji D, Xia X, Wang Y, Liu F, Huang J, Xiong K. Pin1 Promotes Regulated Necrosis Induced by Glutamate in Rat Retinal Neurons via CAST/Calpain2 Pathway. Front Cell Neurosci 2018; 11:425. [PMID: 29403356 PMCID: PMC5786546 DOI: 10.3389/fncel.2017.00425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to investigate whether peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) can interact with calpastatin (CAST) and regulate CAST/calpain2, under excessive glutamate conditions, and subsequently regulate necrosis in rat retinal neurons. Glutamate triggered CAST/calpain2-mediated necrosis regulation in primary cultured retinal neurons, as demonstrated by propidium iodide-staining and lactate dehydrogenase assay. Co-IP results and a computer simulation suggested that Pin1 could bind to CAST. Western blot, real-time quantitative polymerase chain reaction, immunofluorescence, and phosphorylation analysis results demonstrated that CAST was regulated by Pin1, as proven by the application of juglone (i.e., a Pin1 specific inhibitor). The retinal ganglion cell 5 cell line, combined with siRNA approach and flow cytometry, was then used to verify the regulatory pathway of Pin1 in CAST/calpain2-modulated neuronal necrosis that was induced by glutamate. Finally, in vivo studies further confirmed the role of Pin1 in CAST/calpain2-modulated necrosis following glutamate excitation, in the rat retinal ganglion cell and inner nuclear layers. In addition, a flash electroretinogram study provided evidence for the recovery of impaired visual function, which was induced by glutamate, with juglone treatment. Our work aims to investigate the involvement of the Pin1-CAST/calpain2 pathway in glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Liao L, Shang L, Li N, Wang S, Wang M, Huang Y, Chen D, Huang J, Xiong K. Mixed lineage kinase domain-like protein induces RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sin (Shanghai) 2017; 49:879-889. [PMID: 28981598 DOI: 10.1093/abbs/gmx088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) is an essential component of the necroptosis signaling pathway. Phosphorylation of its downstream target, mixed lineage kinase domain-like protein (MLKL), has been proposed to induce necroptosis by initiating Ca2+ influx. Our previous studies have shown that RGC-5 retinal ganglion cells undergo RIP3-mediated necroptosis following elevated hydrostatic pressure (EHP). However, the molecular mechanism underlying necroptosis induction downstream of RIP3 is still not well understood. Here, we investigated the effects of MLKL during EHP-induced necroptosis, and primarily explored the relationship between MLKL and Ca2+ influx. Immunofluorescence staining showed that the expression of MLKL was increased 12 h after EHP. Western blot analysis demonstrated that the phosphorylated and unphosphorylated forms of both RIP3 and MLKL were up-regulated 12 h after EHP, while inhibition of RIP3 by GSK'872 decreased the expression of phosphorylated MLKL at the same stage. Propidium iodide staining, lactate dehydrogenase release assays, flow cytometry, and electron microscopy revealed the increased necrosis of RGC-5 cells 12 h after EHP, which coincided with elevated cytosolic Ca2+ concentrations. Depletion of extracellular Ca2+ and siRNA-mediated silencing of MLKL significantly reduced EHP-induced necrosis. Both MLKL-specific siRNA and GSK'872 treatment diminished Ca2+ influx. Thus, our findings suggest that MLKL may be the key mediator of necroptosis downstream of RIP3 phosphorylation and may be involved in increasing intracellular Ca2+ concentrations in EHP-induced RGC-5 necroptosis.
Collapse
Affiliation(s)
- Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital, Nanchang University, Nanchang 330006, China
| | - Na Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
13
|
Wang S, Hu T, Wang Z, Li N, Zhou L, Liao L, Wang M, Liao L, Wang H, Zeng L, Fan C, Zhou H, Xiong K, Huang J, Chen D. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure. PLoS One 2017; 12:e0185388. [PMID: 28953973 PMCID: PMC5617560 DOI: 10.1371/journal.pone.0185388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/12/2017] [Indexed: 02/03/2023] Open
Abstract
Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Tu Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Na Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Lihong Zhou
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Libin Liao
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Chunling Fan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China
| |
Collapse
|
14
|
Shang L, Ding W, Li N, Liao L, Chen D, Huang J, Xiong K. The effects and regulatory mechanism of RIP3 on RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sin (Shanghai) 2017; 49:128-137. [PMID: 28039150 DOI: 10.1093/abbs/gmw130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 01/04/2023] Open
Abstract
Necroptosis is a type of regulated cell death that has been implicated in various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family, is an important mediator of the necroptotic pathway. Cleavage of RIP3 at Asp328 by caspase-8 abolishes the kinase activity of RIP3, which is critical for necroptosis. Moreover, RIP3 is significantly upregulated during the early stages of acute high intra-ocular pressure and oxygen glucose deprivation. In this study, the effects of RIP3 during elevated hydrostatic pressure (EHP) were investigated and the possible mechanism through which caspase-8 regulated RIP3 cleavage was explored. Flow cytometry analysis revealed that the number of EHP-induced necrotic retinal ganglion cell 5 (RGC-5) cells was reduced after RIP3-knockdown. Furthermore, malondialdehyde (MDA) levels and glycogen phosphorylase (PYGL) activity in normal RGC-5 cells were much higher than those in RIP3-knockdown cells after EHP. EHP-induced RGC-5 necrosis was significantly reduced after treatment with butylated hydroxyanisole (BHA), a reactive oxygen species (ROS) scavenger. MDA levels and PYGL activity were lower in normal RGC-5 cells than those in cells with caspase-8 inhibition after EHP. Western blot analysis demonstrated that the RIP3 cleavage product was upregulated in cells with caspase-8 inhibition. Additionally, flow cytometry analysis revealed that the number of EHP-induced necrotic RGC-5 cells was increased after caspase-8 inhibition. Our results suggested that RGC-5 necroptosis following EHP was mediated by RIP3 through induction of PYGL activity and subsequent ROS accumulation. Thus, caspase-8 may participate in the regulation of RGC-5 necroptosis via RIP3 cleavage.
Collapse
Affiliation(s)
- Lei Shang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Wei Ding
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Na Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|