1
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
2
|
Zuo R, Li XY, He YG. Ropivacaine has the potential to relieve PM2.5‑induced acute lung injury. Exp Ther Med 2022; 24:549. [PMID: 35978915 PMCID: PMC9366259 DOI: 10.3892/etm.2022.11486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
Ropivacaine is a commonly used local anesthetic in the clinic due to its low toxicity to the cardiovascular system or central nervous system, good tolerance and high clearance rate. The present study intended to investigate the effect of ropivacaine on PM2.5-induced acute lung injury (ALI) and reveal the underlying mechanism. After ropivacaine exposure, cell viability, oxidative stress and inflammation in PM2.5-induced BEAS-2B cells were assessed by Cell Counting Kit-8 and DCFH-DA staining, corresponding commercial kits and ELISA, respectively. The effects of ropivacaine on the expression of MMP9 and MMP12 and the proteins related to NLRP3/Caspase-1 signaling were then determined by western blot and reverse transcription-quantitative PCR analyses. In addition, NLR family pyrin domain containing 3 (NLRP3) agonist monosodium urate (MSU) was used to treat BEAS-2B cells followed by ropivacaine treatment and the effects on the above-mentioned cellular behaviors were determined again. The results indicated that the viability of BEAS-2B cells was decreased after PM2.5 induction, accompanied by aggravated oxidative stress and inflammation. However, ropivacaine alleviated oxidative stress and inflammation in PM2.5-induced BEAS-2B cells in a dose-dependent manner. Ropivacaine was also indicated to decrease the expression levels of NLRP3/Caspase-1 signaling-related proteins in PM2.5-induced BEAS-2B cells. Furthermore, cell viability was decreased, while oxidative stress and inflammatory response were aggravated, in PM2.5-induced BEAS-2B cells treated with MSU. In summary, the present results implied that ropivacaine exerted protective effects on PM2.5-induced ALI, and this effect may be related to NLRP3/Caspase-1 signaling.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Xin-Yu Li
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yong-Guan He
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
3
|
Lai HC, Kuo YW, Huang YH, Chan SM, Cheng KI, Wu ZF. Pancreatic Cancer and Microenvironments: Implications of Anesthesia. Cancers (Basel) 2022; 14:cancers14112684. [PMID: 35681664 PMCID: PMC9179559 DOI: 10.3390/cancers14112684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Pancreatic cancer is a lethal malignant neoplasm with less than 10% 5-year relative survival after the initial diagnosis. Several factors may be related to the poor prognosis of pancreatic cancer, including the rapid tumor progression, increased metastatic propensity, insignificant symptoms, shortage of early diagnostic biomarkers, and its tendency toward resistance to both chemotherapy and radiotherapy. Pancreatic neoplastic cells interact intimately with a complicated microenvironment that can foster drug resistance, metastasis, or relapse in pancreatic cancer. In addition, evidence shows that perioperative factors, including surgical manipulation, anesthetics, or analgesics, might alter the tumor microenvironment and cancer progression. This review outlines the up-to-date knowledge of anesthesia implications in the pancreatic microenvironment and provides future anesthetic strategies for improving pancreatic cancer survival. Abstract Pancreatic malignancy is a lethal neoplasm, as well as one of the leading causes of cancer-associated mortality, having a 5-year overall survival rate of less than 10%. The average life expectancy of patients with advanced pancreatic cancer does not exceed six months. Although surgical excision is a favorable modality for long-term survival of pancreatic neoplasm, metastasis is initially identified in nearly 80% of the patients by the time of diagnosis, making the development of therapeutic policy for pancreatic cancer extremely daunting. Emerging evidence shows that pancreatic neoplastic cells interact intimately with a complicated microenvironment that can foster drug resistance, metastasis, or relapse in pancreatic cancer. As a result, the necessity of gaining further insight should be focused on the pancreatic microenvironment contributing to cancer progression. Numerous evidence reveals that perioperative factors, including surgical manipulation and anesthetics (e.g., propofol, volatile anesthetics, local anesthetics, epidural anesthesia/analgesia, midazolam), analgesics (e.g., opioids, non-steroidal anti-inflammatory drugs, tramadol), and anesthetic adjuvants (such as ketamine and dexmedetomidine), might alter the tumor microenvironment and cancer progression by affecting perioperative inflammatory or immune responses during cancer surgery. Therefore, the anesthesiologist plays an important role in perioperative management and may affect surgical outcomes. However, the literature on the impact of anesthesia on the pancreatic cancer microenvironment and progression is limited. This review summarizes the current knowledge of the implications of anesthesia in the pancreatic microenvironment and provides future anesthetic strategies for improving pancreatic cancer survival rates.
Collapse
Affiliation(s)
- Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan; (H.-C.L.); (Y.-H.H.); (S.-M.C.)
| | - Yi-Wei Kuo
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-W.K.); (K.-I.C.)
| | - Yi-Hsuan Huang
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan; (H.-C.L.); (Y.-H.H.); (S.-M.C.)
| | - Shun-Ming Chan
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan; (H.-C.L.); (Y.-H.H.); (S.-M.C.)
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-W.K.); (K.-I.C.)
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zhi-Fu Wu
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan; (H.-C.L.); (Y.-H.H.); (S.-M.C.)
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-W.K.); (K.-I.C.)
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Effect of Dexmedetomidine Combined with Ropivacaine on Cognitive Dysfunction and Inflammatory Response in Patients Undergoing Craniocerebral Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4968300. [PMID: 34888381 PMCID: PMC8651389 DOI: 10.1155/2021/4968300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Objective To study the effects of dexmedetomidine in combination with ropivacaine in patients undergoing craniocerebral surgery and their efficiency on cognitive function and inflammatory response of patients. Methods 100 patients undergoing craniocerebral surgery in our hospital from November 2018 to September 2020 were randomly selected and divided into a control group and an experimental group by drawing lots, with 50 cases in each group. Patients in the control group received routine anesthesia, while those in the experimental group received 1 μg/kg of dexmedetomidine combined with 0.5% of ropivacaine for anesthesia to compare the anesthesia onset time, analgesic time, postoperative awake time, Social Disability Screening Schedule (SDSS) cognitive function score after waking, visual analogue scale (VAS) pain score, Ramsay sedation score, incidence of adverse reactions, postoperative inflammatory factor expression levels, and changes in heart rate, oxygen saturation, and blood pressure at T0, T1, T2, T3, and T4 between the two groups. Results The anesthesia onset time, SDSS cognitive function score after waking, VAS pain score, Ramsay sedation score, incidence of adverse reactions, and postoperative inflammatory factor expression levels in the experimental group were significantly lower than those in the control group (P < 0.05). The analgesic time and postoperative awake time in the experimental group were significantly longer than those in the control group, with statistical significance (P < 0.05). There were no statistically significant differences in the changes of heart rate, oxygen saturation, and blood pressure at T0, T1, T2, T3, and T4 between the two groups (P > 0.05). Conclusion Dexmedetomidine combined with ropivacaine has high application value in craniocerebral surgery.
Collapse
|
5
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F, Li BY. Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol 2021; 212:105948. [PMID: 34224859 DOI: 10.1016/j.jsbmb.2021.105948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress injury is an important link in the pathogenesis of diabetes, and reducing oxidative stress damage caused by long-term hyperglycemia is an important diabetic treatment strategy. Melatonin has been proved to be a free radical scavenger with strong antioxidant activity, and its protective effect on diabetes and the complications has been confirmed. However, the role and potential mechanism of melatonin in oxidative stress injury of diabetic aorta have not been reported. Besides, Notch signaling pathway plays an important role in vascular growth, differentiation, and apoptosis. We speculated that melatonin could improve oxidative stress injury of diabetic aorta through Notch1/Hes1 signaling pathway. STZ-induced diabetic rats and vascular smooth muscle cells (VSMCs) cultured with high glucose were treated with or without melatonin, melatonin receptor antagonist Luzindole, γ-secretase inhibitor DAPT respectively. We found that melatonin could improve the oxidative stress injury of diabetic aorta and reduce the apoptosis of VSMCs. Interestingly, melatonin could activate Notch1 signaling pathway, play an antioxidant role, and reduce the expression of apoptosis-related proteins. However, these protective effects could be largely eliminated by Luzindole or DAPT. We concluded that the repression of Notch1 signaling pathway would inhibit the repair of oxidative stress injury in diabetes. Melatonin could ameliorate oxidative stress injury and apoptosis of diabetic aorta by activating Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Wen Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, China.
| | - Wei Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Jian-Xing Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Fei Pei
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Bu-Ying Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| |
Collapse
|