1
|
Zhou Z, Sicairos B, Zhou J, Du Y. Proteomic Analysis Reveals Major Proteins and Pathways That Mediate the Effect of 17-β-Estradiol in Cell Division and Apoptosis in Breast Cancer MCF7 Cells. J Proteome Res 2024; 23:4835-4848. [PMID: 39392593 PMCID: PMC11536429 DOI: 10.1021/acs.jproteome.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Despite extensive research, the genes/proteins and pathways responsible for the physiological effects of estrogen remain elusive. In this study, we determined the effect of estrogen on global protein expression in breast cancer MCF7 cells using a proteomic method. The expression of 77 cytosolic, 74 nuclear, and 81 membrane/organelle proteins was significantly altered by 17-β-estradiol (E2). Protein enrichment analyses suggest that E2 may stimulate cell division primarily by promoting the G1 to S phase transition and advancing the G2/M checkpoint. The effect of E2 on cell survival was complex, as it could simultaneously enhance and inhibit apoptosis. Bioinformatics analysis suggests that E2 may enhance apoptosis by promoting the accumulation of the pore-forming protein Bax in the mitochondria and inhibit apoptosis by activating the PI3K/AKT/mTOR signaling pathway. We verified the activation of the PI3K signaling and the accumulation of Bax in the membrane/organelle fraction in E2-treated cells using immunoblotting. Treatment of MCF7 cells with E2 and the PI3K inhibitor Ly294002 significantly enhanced apoptosis compared to those treated with E2 alone, suggesting that combining estrogen with a PI3K inhibitor could be a promising strategy for treating ERα-positive breast cancer. Interestingly, many of the E2-upregulated proteins contained the HEAT, KH, and RRM domains.
Collapse
Affiliation(s)
| | | | | | - Yuchun Du
- Department of Biological
Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Parisian AD, Barratt SA, Hodges-Gallagher L, Ortega FE, Peña G, Sapugay J, Robello B, Sun R, Kulp D, Palanisamy GS, Myles DC, Kushner PJ, Harmon CL. Palazestrant (OP-1250), A Complete Estrogen Receptor Antagonist, Inhibits Wild-type and Mutant ER-positive Breast Cancer Models as Monotherapy and in Combination. Mol Cancer Ther 2024; 23:285-300. [PMID: 38102750 PMCID: PMC10911704 DOI: 10.1158/1535-7163.mct-23-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Sun
- Olema Pharmaceuticals, San Francisco, California
| | - David Kulp
- Olema Pharmaceuticals, San Francisco, California
| | | | | | | | | |
Collapse
|
3
|
Li X, Li X, Hu Y, Liu O, Wang Y, Li S, Yang Q, Lin B. PSMD8 can serve as potential biomarker and therapeutic target of the PSMD family in ovarian cancer: based on bioinformatics analysis and in vitro validation. BMC Cancer 2023; 23:573. [PMID: 37349676 DOI: 10.1186/s12885-023-11017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS GEPIA, cBioPortal, and Kaplan-Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xinru Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuxuan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Zhuo W, Chen J, Jiang S, Zheng J, Huang H, Xie P, Li W, Lei M, Yin J, Gao Y, Liu Z. Proteomic profiling of eIF3a conditional knockout mice. Front Mol Biosci 2023; 10:1160063. [PMID: 37152897 PMCID: PMC10154561 DOI: 10.3389/fmolb.2023.1160063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Eukaryotic translation initiation factor 3 subunit A (eIF3a) is the largest subunit of the eukaryotic translation initiation factor 3 (eIF3). eIF3a plays an integral role in protein biosynthesis, hence impacting the onset, development, and treatment of tumors. The proteins regulated by eIF3a are still being explored in vivo. In this study, a Cre-loxP system was used to generate eIF3a conditional knockout mice. Tandem mass tag (TMT) labeling with LC-MS/MS analysis was used to identify differentially expressed proteins (DEPs) in fat, lungs, skin, and spleen tissue of the eIF3a knockout mice and controls. Bioinformatics analysis was then used to explore the functions and molecular signaling pathways of these protein landscapes. It was observed that eIF3a is essential for life sustenance. Abnormal tissue pathology was found in the lungs, fat, skin, spleen, and thymus. In total, 588, 210, 324, and 944 DEPs were quantified in the lungs, fat, skin, and spleen, respectively, of the eIF3a knockout mice as compared to the control. The quantified differentially expressed proteins were tissue-specific, except for eight proteins shared by the four tissues. A broad range of functions for eIF3a, including cellular signaling pathway, immune response, metabolism, defense response, phagocytes, and DNA replication, has been revealed using bioinformatics analysis. Herein, several pathways related to oxidative stress in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, including nitrogen metabolism, peroxisome, cytochrome P450 drug metabolism, pyruvate metabolism, PPAR signaling pathway, phospholipase D signaling pathway, B-cell receptor signaling pathway, ferroptosis, and focal adhesion, have been identified. Collectively, this study shows that eIF3a is an essential gene for sustaining life, and its downstream proteins are involved in diverse novel functions beyond mRNA translational regulation.
Collapse
Affiliation(s)
- Wei Zhuo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Juan Chen
- Departments of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Shilong Jiang
- Departments of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Juyan Zheng
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Pan Xie
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Mengrong Lei
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Ying Gao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Gerontology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhaoqian Liu, ; Ying Gao,
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
- *Correspondence: Zhaoqian Liu, ; Ying Gao,
| |
Collapse
|
5
|
Estrogen-Inducible LncRNA BNAT1 Functions as a Modulator for Estrogen Receptor Signaling in Endocrine-Resistant Breast Cancer Cells. Cells 2022; 11:cells11223610. [PMID: 36429038 PMCID: PMC9688125 DOI: 10.3390/cells11223610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in RNA studies have revealed that functional long noncoding RNAs (lncRNAs) contribute to the biology of cancers. In breast cancer, estrogen receptor α (ERα) is an essential transcription factor that primarily promotes the growth of luminal-type cancer, although only a small number of lncRNAs are identified as direct ERα targets and modulators for ERα signaling. In this study, we performed RNA-sequencing for ER-positive breast cancer cells and identified a novel estrogen-inducible antisense RNA in the COL18A1 promoter region, named breast cancer natural antisense transcript 1 (BNAT1). In clinicopathological study, BNAT1 may have clinical relevance as a potential diagnostic factor for prognoses of ER-positive breast cancer patients based on an in situ hybridization study for breast cancer specimens. siRNA-mediated BNAT1 silencing significantly inhibited the in vitro and in vivo growth of tamoxifen-resistant ER-positive breast cancer cells. Notably, BNAT1 silencing repressed cell cycle progression whereas it promoted apoptosis. Microarray analysis revealed that BNAT1 silencing in estrogen-sensitive breast cancer cells repressed estrogen signaling. We showed that BNAT1 knockdown decreased ERα expression and repressed ERα transactivation. RNA immunoprecipitation showed that BNAT1 physically binds to ERα protein. In summary, BNAT1 would play a critical role in the biology of ER-positive breast cancer by modulating ERα-dependent transcription regulation. We consider that BNAT1 could be a potential molecular target for diagnostic and therapeutic options targeting luminal-type and endocrine-resistant breast cancer.
Collapse
|
6
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
7
|
Hazlett J, Niemi V, Aiderus A, Powell K, Wise L, Kemp R, Dunbier AK. Oestrogen deprivation induces chemokine production and immune cell recruitment in in vitro and in vivo models of oestrogen receptor-positive breast cancer. Breast Cancer Res 2021; 23:95. [PMID: 34602068 PMCID: PMC8489094 DOI: 10.1186/s13058-021-01472-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2021] [Indexed: 12/09/2022] Open
Abstract
Background Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model. Methods RT-qPCR and a bead-based Bioplex system were used to investigate the expression of chemokines in MCF-7 breast cancer cells deprived of oestrogen. A migration assay and flow cytometry were used to measure the migration of human peripheral blood mononuclear cells (PBMCs) to MCF-7 cells grown without the main biologically active oestrogen, oestradiol. Using flow cytometry and immunohistochemistry, we examined the immune cell infiltrate into tumours created by injecting SSM3 ER+ breast cancer cells into wild-type, immunocompetent 129/SvEv mice. Results This study demonstrates that oestrogen deprivation increases breast cancer secretion of TNF, CCL5, IL-6, IL-8, and CCL22 and alters total human peripheral blood mononuclear cell migration in an in vitro assay. Oestrogen deprivation of breast cancer cells increases migration of CD4+ T cells and decreases migration of CD11c+ and CD14+ PBMC towards cancer cells. PBMC migration towards breast cancer cells can be reduced by treatment with the non-steroidal anti-inflammatory drugs, aspirin and celecoxib. Treatment with endocrine therapy using the aromatase inhibitor letrozole increases CD4+ T cell infiltration into ER+ breast cancer tumours in immune competent mice. Conclusions These results suggest that anti-oestrogen treatment of ER+ breast cancer cells can alter cytokine production and immune cells in the area surrounding the cancer cells. These findings may have implications for the combination and timing of anti-oestrogen therapies with other therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01472-1.
Collapse
Affiliation(s)
- Jody Hazlett
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Virginia Niemi
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aziz Aiderus
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katelyn Powell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Roslyn Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Anita K Dunbier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Zheng F, Du F, Zhao J, Wang X, Si Y, Jin P, Qian H, Xu B, Yuan P. The emerging role of RNA N6-methyladenosine methylation in breast cancer. Biomark Res 2021; 9:39. [PMID: 34044876 PMCID: PMC8161983 DOI: 10.1186/s40364-021-00295-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent internal mRNA modification and is involved in many biological processes in eukaryotes. Accumulating evidence has demonstrated that m6A may play either a promoting or suppressing role in breast cancer, including in tumorigenesis, metastasis and angiogenesis. In this review, we summarize the latest research progress on the biological function and prognostic value of m6A modification in breast cancer, as well as potential related therapeutic strategies.
Collapse
Affiliation(s)
- Fangchao Zheng
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Jin
- Department of Surgery, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China. .,Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Zheng F, Du F, Qian H, Zhao J, Wang X, Yue J, Hu N, Si Y, Xu B, Yuan P. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer. Biomark Res 2021; 9:28. [PMID: 33926554 PMCID: PMC8082898 DOI: 10.1186/s40364-021-00285-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background N6-methyladenosine(m6A) methylation modification affects the tumorigenesis, progression, and metastasis of breast cancer (BC). However, the expression characteristics and prognostic value of m6A modification in BC are still unclear. We aimed to evaluate the relationship between m6A modification and clinicopathological characteristics, and to explore the underlying mechanisms. Methods Three public cohorts and our clinical cohort were included: 1091 BC samples and 113 normal samples from the TCGA database, 1985 BC samples from the METABRIC database, 1764 BC samples from the KM Plotter website, and 134 BC samples of our clinical cohort. We collected date from these cohorts and analyzed the genetic expression, gene-gene interactions, gene mutations, copy number variations (CNVs), and clinicopathological and prognostic features of 28 m6A RNA regulators in BC. Results This study demonstrated that some m6A regulators were significantly differenially expressed in BCs and their adjacent tissues, and also different in various molecular types. All 28 studied m6A regulators exhibited interactions. KIAA1429 had the highest mutation frequency. CNVs of m6A regulators were observed in BC patients. The expression of the m6A regulators was differentially associated with survival of BC. Higher CBLL1 expression was associated with a better prognosis in BC than lower CBLL1 expression. Functional analysis showed that CBLL1 was related to the ESR1-related pathway, apoptosis-related pathway, cell cycle pathway and immune-related pathway in BC. Conclusions m6A RNA modification modulated gene expression and thereby affected clinicopathological features and survival outcomes in BC. CBLL1 may be a promising prognostic biomarker for BC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00285-w.
Collapse
Affiliation(s)
- Fangchao Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China. .,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
DiGiacomo JW, Godet I, Trautmann-Rodriguez M, Gilkes DM. Extracellular Matrix-Bound FGF2 Mediates Estrogen Receptor Signaling and Therapeutic Response in Breast Cancer. Mol Cancer Res 2020; 19:136-149. [PMID: 33033110 DOI: 10.1158/1541-7786.mcr-20-0554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) is often unaccounted for in studies that consider the stromal contribution to cancer cell signaling and response to treatment. To investigate the influence of a fibrotic microenvironment, we use fibroblast-derived ECM scaffolds as a cell culture platform. We uncover that estrogen receptor-positive (ER+) breast cancer cells cultured within ECM-scaffolds have an increase in ER signaling that occurs via an MAPK-dependent, but estrogen-independent manner. The ECM acts as a reservoir by binding, enriching, and presenting growth factors to adjacent epithelial cells. We identified FGF2 as a specific ECM-bound factor that drives ER signaling. ER+ cells cultured on ECM matrices have reduced sensitivity to ER-targeted therapies. The sensitivity to ER-targeted therapy can be restored by inhibiting FGF2-FGFR1 binding. ECM-FGF2 complexes promote Cyclin D1 induction that prevents G1 arrest even in the presence of antiestrogens. This work demonstrates that the ECM can drive ER signaling and resistance to endocrine therapy, and suggests that patients with ER+ breast cancer that have high mammographic breast density may benefit from existing FGFR-targeted therapies. IMPLICATIONS: This work uncovers how the ECM may mediate signaling between growth factors and ER+ breast cancer cells to promote estrogen-independent ER signaling and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Josh W DiGiacomo
- Department of Chemical and Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Breast and Ovarian Cancer Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Inês Godet
- Department of Chemical and Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Breast and Ovarian Cancer Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Trautmann-Rodriguez
- Department of Chemical and Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Daniele M Gilkes
- Department of Chemical and Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland. .,Department of Oncology, Breast and Ovarian Cancer Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Zinovkina LA, Galivondzhyan AK, Prikhodko AS, Galkin II, Zinovkin RA. Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor α. PeerJ 2020; 8:e8803. [PMID: 32257641 PMCID: PMC7102506 DOI: 10.7717/peerj.8803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Targeting negatively charged mitochondria is often achieved using triphenylphosphonium (TPP) cations. These cationic vehicles may possess biological activity, and a docking study indicates that TPP-moieties may act as modulators of signaling through the estrogen receptor α (ERα). Moreover, in vivo and in vitro experiments revealed the estrogen-like effects of TPP-based compounds. Here, we tested the hypothesis that TPP-based compounds regulate the activity of ERα. METHODS We used ERa-positive and ERα-negative human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231, respectively). Cell proliferation was measured using a resazurin cell growth assay and a real-time cell analyzer assay. Cell cycle progression was analyzed using flow cytometry. Real-time PCR was used to assess mRNA expression of endogenous estrogen-responsive genes. Luciferase activity was measured to evaluate transcription driven by estrogen-responsive promoters in cells transfected with an estrogen response element (ERE)3-luciferase expression vector. RESULTS The TPP-based molecules SkQ1 and C12TPP, as well as the rhodamine-based SkQR1, did not increase the proliferation or alter the cell cycle progression of MCF-7 cells. In contrast, 17β estradiol increased the proliferation of MCF-7 cells and the proportion of cells in the S/G2/M-phases of the cell cycle. TPP-based compounds did not affect the induction of transcription of an ERE-luciferase expression vector in vitro, and SkQ1 did not alter the levels of expression of estrogen-dependent genes encoding GREB1, TFF1, COX6, and IGFBP4. CONCLUSION TPP-based compounds do not possess properties typical of ERα agonists.
Collapse
Affiliation(s)
- Ludmila A. Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
| | - Alina K. Galivondzhyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Prikhodko
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Liang ZR, Qu LH, Ma LM. Differential impacts of charcoal-stripped fetal bovine serum on c-Myc among distinct subtypes of breast cancer cell lines. Biochem Biophys Res Commun 2020; 526:267-272. [PMID: 32209261 DOI: 10.1016/j.bbrc.2020.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Charcoal-stripped fetal bovine serum (CS-FBS) is frequently used in studies on hormone-responsive cancers to provide hormone-free cell culture conditions. CS-FBS may influence the growth of cancer cells; however, the underlying mechanisms remain unclear. In this study, we aimed to clarify the effects of CS-FBS on distinct subtypes of breast cancer cells. We found that the crucial oncoprotein c-Myc was significantly inhibited in estrogen receptor alpha (ER-α)-positive breast cancer cells when cultured in CS-FBS-supplemented medium, but it was not suppressed in ER-α-negative cells. The addition of 17β-estradiol (E2) to CS-FBS-supplemented medium rescued the CS-FBS-induced inhibition of c-Myc, while treatment with 5α-dihydrotestosterone (DHT) suppressed c-Myc expression. Our data demonstrated that CS-FBS may impede the growth of ER-α-positive breast cancer cells via c-Myc inhibition, and this was possibly due to the removal of estrogen. These results highlighted that the core drivers of c-Myc expression were subtype-specific depending on the distinct cell context and special caution should be exercised when using CS-FBS in studies of hormone-responsive cancer cells.
Collapse
Affiliation(s)
- Zi-Rui Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Li-Ming Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
13
|
Yang X, Kui L, Tang M, Li D, Wei K, Chen W, Miao J, Dong Y. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Front Genet 2020; 11:19. [PMID: 32117438 PMCID: PMC7013098 DOI: 10.3389/fgene.2020.00019] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
The development of new drugs is multidisciplinary and systematic work. High-throughput techniques based on “-omics” have driven the discovery of biomarkers in diseases and therapeutic targets of drugs. A transcriptome is the complete set of all RNAs transcribed by certain tissues or cells at a specific stage of development or physiological condition. Transcriptome research can demonstrate gene functions and structures from the whole level and reveal the molecular mechanism of specific biological processes in diseases. Currently, gene expression microarray and high-throughput RNA-sequencing have been widely used in biological, medical, clinical, and drug research. The former has been applied in drug screening and biomarker detection of drugs due to its high throughput, fast detection speed, simple analysis, and relatively low price. With the further development of detection technology and the improvement of analytical methods, the detection flux of RNA-seq is much higher but the price is lower, hence it has powerful advantages in detecting biomarkers and drug discovery. Compared with the traditional RNA-seq, scRNA-seq has higher accuracy and efficiency, especially the single-cell level of gene expression pattern analysis can provide more information for drug and biomarker discovery. Therefore, (sc)RNA-seq has broader application prospects, especially in the field of drug discovery. In this overview, we will review the application of these technologies in drug, especially in natural drug and biomarker discovery and development. Emerging applications of scRNA-seq and the third generation RNA-sequencing tools are also discussed.
Collapse
Affiliation(s)
- Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Brookline, MA, United States
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Dawei Li
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Wei Chen
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yang Dong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
14
|
Zhu D, Zhao Z, Cui G, Chang S, Hu L, See YX, Lim MGL, Guo D, Chen X, Poudel B, Robson P, Luo Y, Cheung E. Single-Cell Transcriptome Analysis Reveals Estrogen Signaling Coordinately Augments One-Carbon, Polyamine, and Purine Synthesis in Breast Cancer. Cell Rep 2019; 25:2285-2298.e4. [PMID: 30463022 DOI: 10.1016/j.celrep.2018.10.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen drives breast cancer (BCa) progression by directly activating estrogen receptor α (ERα). However, because of the stochastic nature of gene transcription, it is important to study the estrogen signaling pathway at the single-cell level to fully understand how ERα regulates transcription. Here, we performed single-cell transcriptome analysis on ERα-positive BCa cells following 17β-estradiol stimulation and reconstructed the dynamic estrogen-responsive transcriptional network from discrete time points into a pseudotemporal continuum. Notably, differentially expressed genes show an estrogen-stimulated metabolic switch that favors biosynthesis but reduces estrogen degradation. Moreover, folate-mediated one-carbon metabolism is reprogrammed through the mitochondrial folate pathway and polyamine and purine synthesis are upregulated coordinately. Finally, we show AZIN1 and PPAT are direct ERα targets that are essential for BCa cell survival and growth. In summary, our study highlights the dynamic transcriptional heterogeneity in ERα-positive BCa cells upon estrogen stimulation and uncovers a mechanism of estrogen-mediated metabolic switch.
Collapse
Affiliation(s)
- Detu Zhu
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Guimei Cui
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Shiehong Chang
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lingling Hu
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Yi Xiang See
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Michelle Gek Liang Lim
- Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Dajiang Guo
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Xin Chen
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Barun Poudel
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Paul Robson
- Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Yumei Luo
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Edwin Cheung
- Cancer Centre, University of Macau, Avenida da Universidade, Taipa, Macau, China; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Genome Institute of Singapore, A(∗)STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
15
|
Stubbs FE, Conway-Campbell BL, Lightman SL. Thirty years of neuroendocrinology: Technological advances pave the way for molecular discovery. J Neuroendocrinol 2019; 31:e12653. [PMID: 30362285 DOI: 10.1111/jne.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
Since the 1950s, the systems level interactions between the hypothalamus, pituitary and end organs such as the adrenal, thyroid and gonads have been well known; however, it is only over the last three decades that advances in molecular biology and information technology have provided a tremendous expansion of knowledge at the molecular level. Neuroendocrinology has benefitted from developments in molecular genetics, epigenetics and epigenomics, and most recently optogenetics and pharmacogenetics. This has enabled a new understanding of gene regulation, transcription, translation and post-translational regulation, which should help direct the development of drugs to treat neuroendocrine-related diseases.
Collapse
Affiliation(s)
- Felicity E Stubbs
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
16
|
Deli T, Orosz M, Jakab A. Hormone Replacement Therapy in Cancer Survivors - Review of the Literature. Pathol Oncol Res 2019; 26:63-78. [PMID: 30617760 PMCID: PMC7109141 DOI: 10.1007/s12253-018-00569-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Rapid advance in oncology leads to increasing survival of oncologic patients. More and more of them live long enough to reach either the natural age of menopause or, as a side effect of their oncotherapy, experience the cessation of gonadal function, leading to premature ovarian insufficiency, with disturbing vasomotor symtoms and long-term negative cardiovascular and skeletal effects. Thus, an ever increasing number of cancer survivors search endocrinologic help in the form of hormone replacement therapy (HRT). The misinterpretation of the WHI (Women's Health Initiative) Study has lead to an irrational fear of female hormone replacement, both by the general population and medical professionals. It has seemed the logical and safe conclusion to many physicians to avoid HRT, supposing that this attitude definitely causes no harm, whereas the decision of prescribing estrogen alone or with progestins might bear oncologic and thromboembolic risks and may even lead to litigation in case of a potentially related complication. However, it was known even before the WHI results that premature menopause and hypogonadism decreases the life expectancy of women by years through its skeletal and cardiovascular effects, and this negative effect correlates with the length of the hypoestrogenaemic period. Therefore, the denial of HRT also needs to be supported by evidence and should be weighed againts the risks of HRT. Yet, the oncologic risk of HRT is extremely difficult to assess. In this work we review the latest evidence from in vitro experiments to clinical studies, regarding HRT in survivors of gynecologic and non-gynecologic cancers. Based on our literature research, we group tumours regarding the oncologic risk of properly chosen female hormone replacement therapy in cancer survivors as follows: ’HRT is advanageous’ (e.g. endometrial cancer type I, cervical adenocarcinoma, haematologic malignancies, local cutaneous malignant melanoma, colorectal cancer, hepatocellular cancer); ’HRT is neutral’ (e.g. BRCA 1/2 mutation carriers without cancer, endometrial cancer type II, uterinal carcinosarcoma and adenosarcoma, certain types of ovarian cancer, cervical, vaginal and vulvar squamous cell carcinoma, prolactinoma, kidney cancer, pancreatic cancer, thyroid cancer); ’HRT is relatively contraindicated’ for various reasons (e.g. leiomyosarcoma, certain types of ovarian tumours, brain tumours, advanced metastatic malignant melanoma, lung cancer, gastric cancer, bladder cancer); ’HRT is diasadvantageous and thus contraindicated’ (e.g. breast cancer, endometrial stroma sarcoma, meningioma, glioma, hormone receptor positive gastric and bladder cancer).
Collapse
Affiliation(s)
- Tamás Deli
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Mónika Orosz
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Jakab
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
18
|
Wang X, Wang H, Zhao S, Sun P, Wen D, Liu T, Liu H, Yang Z, Ma Z. Eukaryotic translation initiation factor EIF3H potentiates gastric carcinoma cell proliferation. Tissue Cell 2018; 53:23-29. [PMID: 30060823 DOI: 10.1016/j.tice.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation factor 3 subunit H (EIF3H) is required for the progression of several types of cancer. However, little is known about the function of EIF3H in gastric carcinoma. To address this issue, in the present study, we investigated EIF3H genetic alterations in and expression of EIF3H in gastric cancer tissue samples using cBioPortal and Oncomine databases. Endogenous EIF3H expression was knocked down in MGC80-3 and AGS gastric cancer cell lines by lentivirus-mediated RNA interference. We confirmed the knockdown efficiency by quantitative real-time PCR and western blotting and evaluated the effects of EIF3H silencing on cell proliferation of gastric cancer with the cell viability and colony formation assays and by flow cytometry. The OncoPrint of EIF3H generated using cBioPortal indicated that EIF3H genetic alterations (mutation, deletion and amplification) were present in two gastric cancer sample sets. The Oncomine analysis revealed that EIF3H mRNA level was upregulated in gastric cancer tissues. EIF3H knockdown inhibited cell proliferation and colony formation in gastric cancer lines and led to cell cycle arrest at the G0/G1 phase, while inducing apoptosis via up- and downregulation of pro- and anti-apoptotic factors, respectively. These results indicate that EIF3H can serve as a novel therapeutic target for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Xudong Wang
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Haizhu Wang
- Geriatric Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shutao Zhao
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Pengda Sun
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Dacheng Wen
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Tianzhou Liu
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Hao Liu
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Zecheng Yang
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Zhiming Ma
- Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
19
|
Zhong Z, Rosenow M, Xiao N, Spetzler D. Profiling plasma extracellular vesicle by pluronic block-copolymer based enrichment method unveils features associated with breast cancer aggression, metastasis and invasion. J Extracell Vesicles 2018; 7:1458574. [PMID: 29696079 PMCID: PMC5912199 DOI: 10.1080/20013078.2018.1458574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicle (EV)-based liquid biopsies have been proposed to be a readily obtainable biological substrate recently for both profiling and diagnostics purposes. Development of a fast and reliable preparation protocol to enrich such small particles could accelerate the discovery of informative, disease-related biomarkers. Though multiple EV enrichment protocols are available, in terms of efficiency, reproducibility and simplicity, precipitation-based methods are most amenable to studies with large numbers of subjects. However, the selectivity of the precipitation becomes critical. Here, we present a simple plasma EV enrichment protocol based on pluronic block copolymer. The enriched plasma EV was able to be verified by multiple platforms. Our results showed that the particles enriched from plasma by the copolymer were EV size vesicles with membrane structure; proteomic profiling showed that EV-related proteins were significantly enriched, while high-abundant plasma proteins were significantly reduced in comparison to other precipitation-based enrichment methods. Next-generation sequencing confirmed the existence of various RNA species that have been observed in EVs from previous studies. Small RNA sequencing showed enriched species compared to the corresponding plasma. Moreover, plasma EVs enriched from 20 advanced breast cancer patients and 20 age-matched non-cancer controls were profiled by semi-quantitative mass spectrometry. Protein features were further screened by EV proteomic profiles generated from four breast cancer cell lines, and then selected in cross-validation models. A total of 60 protein features that highly contributed in model prediction were identified. Interestingly, a large portion of these features were associated with breast cancer aggression, metastasis as well as invasion, consistent with the advanced clinical stage of the patients. In summary, we have developed a plasma EV enrichment method with improved precipitation selectivity and it might be suitable for larger-scale discovery studies.
Collapse
Affiliation(s)
- Zhenyu Zhong
- Caris Life Sciences, Phoenix, AZ, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| | | | - Nick Xiao
- Caris Life Sciences, Phoenix, AZ, USA
| | - David Spetzler
- Caris Life Sciences, Phoenix, AZ, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
20
|
Pirsko V, Cakstina I, Priedite M, Dortane R, Feldmane L, Nakazawa-Miklasevica M, Daneberga Z, Gardovskis J, Miklasevics E. An Effect of Culture Media on Epithelial Differentiation Markers in Breast Cancer Cell Lines MCF7, MDA-MB-436 and SkBr3. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E11. [PMID: 30344242 PMCID: PMC6037242 DOI: 10.3390/medicina54020011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Background and objectives: Cell culture is one of the mainstays in the research of breast cancer biology, although the extent to which this approach allows to preserve the original characteristics of originating tumor and implications of cell culture findings to real life situations have been widely debated in the literature. The aim of this study was to determine the role of three cell culture media on transcriptional expression of breast cancer markers in three breast cancer reference cell lines (MCF7, SkBr3 and MDA-MB-436). Materials and methods: Cell lines were conditioned in three studied media (all containing 5% fetal bovine serum (FBS) + hormones/growth factors; different composition of basal media) for four passages. Population growth was characterized by cumulative population doubling levels, average generation time, cell yield and viability at the fourth passage. Transcriptional expression of breast cancer differentiation markers and regulatory transcriptional programs was measured by qPCR. Results: Differences in the composition of growth media significantly influenced the growth of studied cell lines and the expression of mammary lineage governing transcriptional programs and luminal/basal markers. Effects of media on transcriptional expression were more pronounced in luminal cell lines (MCF7, SkBr3), than in the basal cell line (MDA-MB-436). Changes in growth media in terms of supplementation and basal medium delayed growth of cells, but improved cell yields. Conclusions: The expression of breast cancer cell differentiation phenotypic markers depends on the composition of cell growth medium, therefore cell culture as a tool in phenotypic studies should be used considering this effect. The findings of such studies should always be interpreted with caution. The formulation of cell growth media has greater effect on the expression of phenotypic markers in luminal, rather than basal cell lines. Media containing mitogens and higher vitamin content improved efficacy of cell culture in terms of cell yields, although greatly increased growth times.
Collapse
Affiliation(s)
- Valdis Pirsko
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Inese Cakstina
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Marta Priedite
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Rasma Dortane
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Linda Feldmane
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | | | - Zanda Daneberga
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Janis Gardovskis
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | | |
Collapse
|
21
|
Gong C, Man EPS, Tsoi H, Lee TKW, Lee P, Ma ST, Wong LS, Luk MY, Rakha EA, Green AR, Ellis IO, Lam EWF, Cheung KL, Khoo US. BQ323636.1, a Novel Splice Variant to NCOR2, as a Predictor for Tamoxifen-Resistant Breast Cancer. Clin Cancer Res 2018; 24:3681-3691. [PMID: 29420220 DOI: 10.1158/1078-0432.ccr-17-2259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/06/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Purpose: Adjuvant tamoxifen treatment revolutionized the management of estrogen receptor (ER)-positive breast cancers to prevent cancer recurrence; however, drug resistance compromises its clinical efficacy. The mechanisms underlying tamoxifen resistance are not fully understood, and no robust biomarker is available to reliably predict those who will be resistant. Here, we study BQ323636.1, a novel splice variant of the NCOR2 gene, and evaluate its efficacy in predicting tamoxifen resistance in patients with breast cancer.Experimental Design: A monoclonal anti-BQ323636.1 antibody that specifically recognizes the unique epitope of this splice variant was generated for in vitro mechanistic studies and for in vivo analysis by immunohistochemistry on tissue microarrays of two independent cohorts of 358 patients with more than 10 years clinical follow-up data, who had ER-positive primary breast cancer and received adjuvant tamoxifen treatment. An orthotopic mouse model was also used.Results: Overexpression of BQ323636.1 conferred resistance to tamoxifen in both in vitro and in an orthotopic mouse model. Mechanistically, coimmunoprecipitation showed BQ323636.1 could bind to NCOR2 and inhibit the formation of corepressor complex for the suppression of ER signaling. Nuclear BQ3232636.1 overexpression in patients samples was significantly associated with tamoxifen resistance (P = 1.79 × 10-6, sensitivity 52.9%, specificity 72.0%). In tamoxifen-treated patients, nuclear BQ323636.1 overexpression was significantly correlated with cancer metastasis and disease relapse. Nuclear BQ323636.1 was also significantly associated with poorer overall survival (P = 1.13 × 10-4) and disease-specific survival (P = 4.02 × 10-5).Conclusions: These findings demonstrate that BQ323636.1 can be a reliable biomarker to predict tamoxifen resistance in patients with ER-positive breast cancer. Clin Cancer Res; 24(15); 3681-91. ©2018 AACRSee related commentary by Jordan, p. 3480.
Collapse
Affiliation(s)
- Chun Gong
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Ellen P S Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Terence K W Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Paul Lee
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Sai-Ting Ma
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Lai-San Wong
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| | - Mai-Yee Luk
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Kwok-Leung Cheung
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| |
Collapse
|
22
|
Okumura T, Ikeda K, Ujihira T, Okamoto K, Horie-Inoue K, Takeda S, Inoue S. Proteasome 26S subunit PSMD1 regulates breast cancer cell growth through p53 protein degradation. J Biochem 2018; 163:19-29. [PMID: 28992264 DOI: 10.1093/jb/mvx053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023] Open
Abstract
Endocrine therapy using antiestrogens and aromatase inhibitors is usually efficient to treat patients with hormone-sensitive breast cancer. Many patients with endocrine therapy, however, often acquire resistance. In the present study, we performed functional screening using short hairpin RNA library to dissect genes involved in antiestrogen tamoxifen resistance in MCF-7 breast cancer cells. We identified seven candidate genes that are associated with poor prognosis of breast cancer patients based on clinical dataset. The expression levels of six out of seven genes were higher in 4-hydroxytamoxifen (OHT) resistant MCF-7 (OHTR) cells compared with parental MCF-7 cells. Among the six selected genes, siRNA-mediated knockdown of PSMD1 and TSPAN12 markedly reduced the proliferation of OHTR cells. Notably, the knockdown of proteasome 26S subunit PSMD1 exhibited cell cycle arrest and the accumulation of p53 protein through inhibiting p53 protein degradation. In accordance with p53 accumulation, its target genes p21 and SFN were also upregulated by PSMD1 silencing. Taken together, PSMD1 was identified as a potential gene that plays a role in the development of tamoxifen resistance in breast cancer cells. These findings will provide a new insight for the mechanism underlying endocrine therapy resistance and a prognostic and therapeutic molecular target for advanced breast cancer.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Takafumi Ujihira
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
23
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
24
|
Liu Q, Bonneville R, Li T, Jin VX. Transcription factor-associated combinatorial epigenetic pattern reveals higher transcriptional activity of TCF7L2-regulated intragenic enhancers. BMC Genomics 2017; 18:375. [PMID: 28499350 PMCID: PMC5429574 DOI: 10.1186/s12864-017-3764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 01/24/2023] Open
Abstract
Background Recent studies have suggested that combinations of multiple epigenetic modifications are essential for controlling gene expression. Despite numerous computational approaches have been developed to decipher the combinatorial epigenetic patterns or “epigenetic code”, none of them has explicitly addressed the relationship between a specific transcription factor (TF) and the patterns. Methods Here, we developed a novel computational method, T-cep, for annotating chromatin states associated with a specific TF. T-cep is composed of three key consecutive modules: (i) Data preprocessing, (ii) HMM training, and (iii) Potential TF-states calling. Results We evaluated T-cep on a TCF7L2-omics data. Unexpectedly, our method has uncovered a novel set of TCF7L2-regulated intragenic enhancers missed by other software tools, where the associated genes exert the highest gene expression. We further used siRNA knockdown, Co-transfection, RT-qPCR and Luciferase Reporter Assay not only to validate the accuracy and efficiency of prediction by T-cep, but also to confirm the functionality of TCF7L2-regulated enhancers in both MCF7 and PANC1 cells respectively. Conclusions Our study for the first time at a genome-wide scale reveals the enhanced transcriptional activity of cell-type-specific TCF7L2 intragenic enhancers in regulating gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3764-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Liu
- Department of Molecular Medicine, University of Texas Health Science Center, 8403 Floyd Curl, San Antonio, TX, 78229, USA.,College of Life Science, Jilin University, Changchun, 130012, China
| | - Russell Bonneville
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center, 8403 Floyd Curl, San Antonio, TX, 78229, USA.,College of Life Science, Jilin University, Changchun, 130012, China
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center, 8403 Floyd Curl, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Abstract
The eukaryotic translation initiation factor 3a (eIF3a) is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. Our previous study identified that it was correlated with platinum response in lung cancer. The current study aims to test the hypothesis that eIF3a may affect the drug response and prognosis of ovarian cancer patients receiving platinum-based chemotherapy by regulating xeroderma pigmentosum complementation group C (XPC) and p27Kip1. Immunohistochemistry and western blot was used to determine the expression of eIF3a in 126 human ovarian cancer tissues followed by association analysis of eIF3a expression with patient's response and survival. Ectopic over-expression and RNA interference knockdown of eIF3a were carried out in A2780/cisplatin (DDP) and its parental A2780 cells, respectively, to determine the effect of altered eIF3a expression on cellular response to cisplatin by employing MTT assay. Western Blot analyses were also carried out to determine the regulation of eIF3a on XPC and p27Kip1. eIF3a expression was associated with response of ovarian cancer patients to DDP-based chemotherapy and their survival. Overexpression and knockdown of eIF3a increased and decreased the cellular response to cisplatin in A2780/DDP and A2780 cells, respectively. In addition, XPC and p27Kip1 were down regulated by eIF3a. eIF3a improves ovarian cancer patients' response to DDP-based chemotherapy via down regulating XPC and p27Kip1.
Collapse
|
26
|
Jonsson P, Coarfa C, Mesmar F, Raz T, Rajapakshe K, Thompson JF, Gunaratne PH, Williams C. Single-Molecule Sequencing Reveals Estrogen-Regulated Clinically Relevant lncRNAs in Breast Cancer. Mol Endocrinol 2015; 29:1634-45. [PMID: 26426411 DOI: 10.1210/me.2015-1153] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptor (ER)α-positive tumors are commonly treated with ERα antagonists or inhibitors of estrogen synthesis, but most tumors develop resistance, and we need to better understand the pathways that underlie the proliferative and tumorigenic role of this estrogen-activated transcription factor. We here present the first single-molecule sequencing of the estradiol-induced ERα transcriptome in the luminal A-type human breast cancer cell lines MCF7 and T47D. Sequencing libraries were prepared from the polyadenylated RNA fraction after 8 hours of estrogen or vehicle treatment. Single-molecule sequencing was carried out in biological and technical replicates and differentially expressed genes were defined and analyzed for enriched processes. Correlation analysis with clinical expression and survival were performed, and follow-up experiments carried out using time series, chromatin immunoprecipitation and quantitative real-time PCR. We uncovered that ERα in addition to regulating approximately 2000 protein-coding genes, also regulated up to 1000 long noncoding RNAs (lncRNAs). Most of these were up-regulated, and 178 lncRNAs were regulated in both cell lines. We demonstrate that Long Intergenic Non-protein Coding RNA 1016 (LINC01016) and LINC00160 are direct transcriptional targets of ERα, correlate with ERα expression in clinical samples, and show prognostic significance in relation to breast cancer survival. We show that silencing of LINC00160 results in reduced proliferation, demonstrating that lncRNA expression have functional consequences. Our findings suggest that ERα regulation of lncRNAs is clinically relevant and that their functions and potential use as biomarkers for endocrine response are important to explore.
Collapse
Affiliation(s)
- Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Cristian Coarfa
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Fahmi Mesmar
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Tal Raz
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Kimal Rajapakshe
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - John F Thompson
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Preethi H Gunaratne
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| |
Collapse
|
27
|
Circulating mRNA Profiling in Esophageal Squamous Cell Carcinoma Identifies FAM84B As A Biomarker In Predicting Pathological Response to Neoadjuvant Chemoradiation. Sci Rep 2015; 5:10291. [PMID: 25980316 PMCID: PMC4434848 DOI: 10.1038/srep10291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer patients with pathological complete response (pCR) to neoadjuvant chemoradiation (CRT) have favorable outcomes. Currently, there was no reliable biomarker predicting the response to CRT. Perioperative circulating mRNA may be associated with prognosis, but its application for predicting treatment response is unclear. We prospectively assessed the value of circulating messenger RNA (mRNA) profiling in predicting pCR for esophageal squamous cell carcinoma (ESCC). Patients with ESCC completing CRT followed by surgery were enrolled for analysis. Venous peripheral blood was obtained before and after CRT, and total RNA was extracted for hybridization-based whole genome expression analysis and quantitative RT-PCR. We found circulating expression profiling was significantly altered after CRT. Altered FAM84B expression was significantly predictive of pCR. The decrease of serum FAM84B protein level after CRT was also associated with pCR. Immunohistochemistry and western blot confirmed that FAM84B protein was overexpressed in the majority of patients and ESCC cell lines. Furthermore, knockdown of FAM84B delayed tumor growth in ectopic xenografts. We demonstrated the decreased of circulating FAM84B mRNA and protein after neoadjuvant CRT may predict pCR, and FAM84B protein is overexpressed in ESCC. The potential of FAM84B as a novel predictive biomarker, and its biological functions deserve further investigation.
Collapse
|
28
|
Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol Sin 2015; 36:24-31. [PMID: 25500870 DOI: 10.1038/aps.2014.123] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
Estrogens are important endocrine hormones that control physiological functions in reproductive organs, and play a pivotal role in the generation and progression of breast cancer. Therapeutic drugs including anti-estrogen and aromatase inhibitors are used to treat patients with breast cancer. The estrogen receptors, ERα and ERβ, function as hormone-dependent transcription factors that directly regulate the expression of their target genes. Therefore, a better understanding of the function and regulation of estrogen-responsive genes provides insight into the gene regulation network associated with breast cancer. Recent technological developments in high-throughput sequencing have enabled the genome-wide identification of estrogen-responsive genes. Further elucidating the estrogen gene cascade is critical for advancements in the diagnosis and treatment of breast cancer.
Collapse
|
29
|
Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, Horie-Inoue K, Okamoto K, Takeda S, Inoue S. Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway. PLoS One 2014; 9:e108743. [PMID: 25285958 PMCID: PMC4186824 DOI: 10.1371/journal.pone.0108743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022] Open
Abstract
Androgen receptor is a primary transcription factor involved in the proliferation of prostate cancer cells. Thus, hormone therapy using antiandrogens, such as bicalutamide, is a first-line treatment for the disease. Although hormone therapy initially reduces the tumor burden, many patients eventually relapse, developing tumors with acquired endocrine resistance. Elucidation of the molecular mechanisms underlying endocrine resistance is therefore a fundamental issue for the understanding and development of alternative therapeutics for advanced prostate cancer. In the present study, we performed short hairpin RNA (shRNA)-mediated functional screening to identify genes involved in bicalutamide-mediated effects on LNCaP prostate cancer cells. Among such candidate genes selected by screening using volcano plot analysis, ribosomal protein L31 (RPL31) was found to be essential for cell proliferation and cell-cycle progression in bicalutamide-resistant LNCaP (BicR) cells, based on small interfering RNA (siRNA)-mediated knockdown experiments. Of note, RPL31 mRNA is more abundantly expressed in BicR cells than in parental LNCaP cells, and clinical data from ONCOMINE and The Cancer Genome Altas showed that RPL31 is overexpressed in prostate carcinomas compared with benign prostate tissues. Intriguingly, protein levels of the tumor suppressor p53 and its targets, p21 and MDM2, were increased in LNCaP and BicR cells treated with RPL31 siRNA. We observed decreased degradation of p53 protein after RPL31 knockdown. Moreover, the suppression of growth and cell cycle upon RPL31 knockdown was partially recovered with p53 siRNA treatment. These results suggest that RPL31 is involved in bicalutamide-resistant growth of prostate cancer cells. The shRNA-mediated functional screen in this study provides new insight into the molecular mechanisms and therapeutic targets of advanced prostate cancer.
Collapse
Affiliation(s)
- Yojiro Maruyama
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Miyazaki
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Toshiyuki Okumura
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Wataru Sato
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Departments of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Systemic identification of estrogen-regulated genes in breast cancer cells through cap analysis of gene expression mapping. Biochem Biophys Res Commun 2014; 447:531-6. [PMID: 24746470 DOI: 10.1016/j.bbrc.2014.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022]
Abstract
To explore the estrogen-regulated genes genome-widely in breast cancer, cap analysis of gene expression (CAGE) sequencing was performed in MCF-7 cells under estrogen treatment. Estrogen-regulated expressional changes were found in 1537 CAGE tag clusters (TCs) (⩾1.5 or ⩽0.66-folds). Among them, 15 TCs were situated in the vicinity of (⩽10 kb) reported estrogen receptor-binding sites. Knockdown experiments of the 15 TC-associated genes demonstrated that the genes such as RAMP3, ISOC1 and GPRC5C potentially regulate the growth or migration of MCF-7 cells. These results suggest that CAGE sequencing will reveal novel estrogen target genes in breast cancer.
Collapse
|
31
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
32
|
Stevens A, De Leonibus C, Hanson D, Dowsey AW, Whatmore A, Meyer S, Donn RP, Chatelain P, Banerjee I, Cosgrove KE, Clayton PE, Dunne MJ. Network analysis: a new approach to study endocrine disorders. J Mol Endocrinol 2014; 52:R79-93. [PMID: 24085748 DOI: 10.1530/jme-13-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systems biology is the study of the interactions that occur between the components of individual cells - including genes, proteins, transcription factors, small molecules, and metabolites, and their relationships to complex physiological and pathological processes. The application of systems biology to medicine promises rapid advances in both our understanding of disease and the development of novel treatment options. Network biology has emerged as the primary tool for studying systems biology as it utilises the mathematical analysis of the relationships between connected objects in a biological system and allows the integration of varied 'omic' datasets (including genomics, metabolomics, proteomics, etc.). Analysis of network biology generates interactome models to infer and assess function; to understand mechanisms, and to prioritise candidates for further investigation. This review provides an overview of network methods used to support this research and an insight into current applications of network analysis applied to endocrinology. A wide spectrum of endocrine disorders are included ranging from congenital hyperinsulinism in infancy, through childhood developmental and growth disorders, to the development of metabolic diseases in early and late adulthood, such as obesity and obesity-related pathologies. In addition to providing a deeper understanding of diseases processes, network biology is also central to the development of personalised treatment strategies which will integrate pharmacogenomics with systems biology of the individual.
Collapse
Affiliation(s)
- A Stevens
- Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, 5th Floor, Oxford Road, Manchester M13 9WL, UK Paediatric and Adolescent Oncology, The University of Manchester, Manchester M13 9WL, UK Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, The University of Manchester, Manchester M20 4BX, UK Musculoskeletal Research Group, NIHR BRU, University of Manchester, Manchester M13 9PT, UK Department Pediatrie, Hôpital Mère-Enfant, Université Claude Bernard, 69677 Lyon, France Faculty of Life Sciences, University of Manchester, Manchester M13 9NT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382:652-664. [PMID: 23810978 PMCID: PMC3844033 DOI: 10.1016/j.mce.2013.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Recent rapid advances in next generation sequencing technologies have expanded our understanding of steroid hormone signaling to a genome-wide level. In this review, we discuss the use of a novel genomic approach, global nuclear run-on coupled with massively parallel sequencing (GRO-seq), to explore new facets of the steroid hormone-regulated transcriptome, especially estrogen responses in breast cancer cells. GRO-seq is a high throughput sequencing method adapted from conventional nuclear run-on methodologies, which is used to obtain a map of the position and orientation of all transcriptionally engaged RNA polymerases across the genome with extremely high spatial resolution. GRO-seq, which is an excellent tool for examining transcriptional responses to extracellular stimuli, has been used to comprehensively assay the effects of estrogen signaling on the transcriptome of ERα-positive MCF-7 human breast cancer cells. These studies have revealed new details about estrogen-dependent transcriptional regulation, including effects on transcription by all three RNA polymerases, complex transcriptional dynamics in response to estrogen signaling, and identification novel, unannotated non-coding RNAs. Collectively, these studies have been useful in discerning the molecular logic of the estrogen-regulated mitogenic response.
Collapse
Affiliation(s)
- Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States.
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
34
|
Ikeda K, Horie-Inoue K, Inoue S. Analysis of TFRNs associated with steroid hormone-related cancers. Methods Mol Biol 2014; 1164:197-209. [PMID: 24927845 DOI: 10.1007/978-1-4939-0805-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Estrogen and androgen are important endocrine hormones that control physiological functions in reproductive organs and play roles in the generation and/or progression of steroid hormone-related cancers. Their cognate receptors function as hormone-dependent transcription factors, which directly regulate the expression of their target genes. Genome-wide analysis of hormone receptor-related networks will provide new insights into the understanding of the molecular mechanism orchestrated by estrogen and androgen receptors, and will enable the development of new methods for the diagnosis and treatment of steroid hormone-related cancers.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | | | | |
Collapse
|