1
|
Patel M, Pottier C, Fan KH, Cetin A, Johnson M, Ali M, Liu M, Gorijala P, Budde J, Shi R, Cohen AD, Becker JT, Snitz BE, Aizenstein H, Lopez OL, Morris JC, Kamboh MI, Cruchaga C. Whole-genome sequencing reveals the impact of lipid pathway and APOE genotype on brain amyloidosis. Hum Mol Genet 2025; 34:739-748. [PMID: 39927718 PMCID: PMC11973900 DOI: 10.1093/hmg/ddaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Amyloid-PET imaging tracks the accumulation of amyloid beta (Aβ) deposits in the brain. Amyloid plaques accumulation may begin 10 to 20 years before the individual experiences clinical symptoms associated with Alzheimer's diseases (ad). Recent large-scale genome-wide association studies reported common risk factors associated with brain amyloidosis, suggesting that this endophenotype is driven by genetic variants. However, these loci pinpoint to large genomic regions and the functional variants remain to be identified. To identify new risk factors associated with brain amyloid deposition, we performed whole-genome sequencing on a large cohort of European descent individuals with amyloid PET imaging data (n = 1,888). Gene-based analysis for coding variants was performed using SKAT-O for amyloid PET as a quantitative endophenotype that identified genome-wide significant association for APOE (P = 2.45 × 10-10), and 26 new candidate genes with suggestive significance association (P < 5. 0 × 10-03) including SCN7A (P = 7.31 × 10-05), SH3GL1 (P = 7.56 × 10-04), and MFSD12 (P = 8.51 × 10-04). Enrichment analysis highlighted the lipid binding pathways as associated with Aβ deposition in brain driven by PITPNM3 (P = 4.27 × 10-03), APOE (P = 2.45 × 10-10), AP2A2 (P = 1.06 × 10-03), and SH3GL1 (P = 7.56 × 10-04). Overall, our data strongly support a connection between lipid metabolism and the deposition of Aβ in the brain. Our study illuminates promising avenues for therapeutic interventions targeting lipid metabolism to address brain amyloidosis.
Collapse
Affiliation(s)
- Maulikkumar Patel
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Cyril Pottier
- Department of Psychiatry, Neurogenomics and Informatics, Department of Neurology, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Arda Cetin
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Matthew Johnson
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Muhammad Ali
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Menghan Liu
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Priyanka Gorijala
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - John Budde
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Ruyu Shi
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, United States
| | - James T Becker
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Howard Aizenstein
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - John C Morris
- Department of Neurology, Hope Center for Neurologic Diseases, Section on Aging & Dementia, Institute of Clinical and Translational Sciences, Knight Alzheimer Disease Research Center Washington University School of Medicine, 4901 Forest Park Ave 4th floor, St. Louis, MO 63108, United States
| | - M Ilyas Kamboh
- Department of Human Genetics, Department of Psychiatry University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Neurogenomics and Informatics, Department of Neurology, Hope Center for Neurologic Diseases, Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| |
Collapse
|
2
|
Voigt S, Rasing I, van der Plas MC, Khidir SJH, Koemans EA, Kaushik K, van Etten ES, Schoones JW, van Zwet EW, Wermer MJH. The Impact of Vascular Risk Factors on Cerebral Amyloid Angiopathy: A Cohort Study in Hereditary Cerebral Amyloid Angiopathy and a Systemic Review in Sporadic Cerebral Amyloid Angiopathy. Cerebrovasc Dis 2024:1-15. [PMID: 39557031 DOI: 10.1159/000542666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
INTRODUCTION Cerebral amyloid angiopathy (CAA) has a remarkably variable disease course, even in monogenetic hereditary forms. Our aim was to investigate the prevalence of vascular risk factors and their effect on disease onset and course in Dutch-type hereditary (D-)CAA and sporadic CAA. METHODS We performed a cohort study in D-CAA to investigate the association between vascular risk factors (hypertension, hypercholesterolemia, smoking, and alcohol use) and age of intracerebral hemorrhage (ICH) onset and time of ICH recurrence with survival analyses. In addition, we performed a systematic review to assess the prevalence of vascular risk factors and their effect on clinical outcome in sporadic CAA. We searched PubMed, Embase, Web of Science, and Cochrane Library from 1987 to 2022 and included cohorts with ≥10 patients. We created forest plots, calculated pooled estimates, and reported variability (heterogeneity plus sampling variability) and risk of bias. RESULTS We included 70 participants with D-CAA (47% women, mean age 53 years). Sixteen (23%) had hypertension, 15 (21%) had hypercholesterolemia, 45 (64%) were smokers, and 61 (87%) used alcohol. We found no clear effect of vascular risk factors on age of first ICH (log-rank test hypertension: p = 0.35, hypercholesterolemia: p = 0.41, smoking: p = 0.61, and alcohol use: p = 0.55) or time until ICH recurrence (log-rank test hypertension: p = 0.71, hypercholesterolemia: p = 0.20, and smoking: p = 0.71). We identified 25 out of 1,234 screened papers that assessed the prevalence of risk factors in CAA and 6 that reported clinical outcomes. The pooled prevalence estimates of hypertension was 62% (95% CI: 55-69%), diabetes was 17% (95% CI: 14-20%), dyslipidemia was 32% (95% CI: 23-41%), and tobacco use was 27% (95% CI: 18-36%). One study reported study diabetes and hypertension to be associated with a lower risk of recurrent ICH, whereas another study reported hypertension to be associated with an increased risk. All other studies showed no association between vascular risk factors and clinical outcome. High-quality studies focusing on vascular risk factors were lacking. CONCLUSION In patients with D-CAA and sporadic CAA, the prevalence of vascular risk factors is high. Although this suggests an opportunity for prevention, there is no clear association between these risk factors and CAA-related ICH onset and recurrence.
Collapse
Affiliation(s)
- Sabine Voigt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sarah J H Khidir
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik W van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024; 46:4585-4602. [PMID: 38753231 PMCID: PMC11335993 DOI: 10.1007/s11357-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. Specifically, we uncovered that Aβ expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aβ toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90191, USA.
| | - Manish Chamoli
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Christina D King
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Xueshu Xie
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Anna Foulger
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Julie K Andersen
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
4
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548937. [PMID: 37503138 PMCID: PMC10369951 DOI: 10.1101/2023.07.13.548937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. We demonstrate that Aβ expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aβ and that the gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and other age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191
| | - Manish Chamoli
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Christina D. King
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Xueshu Xie
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Anna Foulger
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Julie K. Andersen
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Birgit Schilling
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
5
|
TOMM40 Genetic Variants Cause Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24044085. [PMID: 36835494 PMCID: PMC9962462 DOI: 10.3390/ijms24044085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.
Collapse
|
6
|
Vargas-George S, Dave KR. Models of cerebral amyloid angiopathy-related intracerebral hemorrhage. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
APOE, TOMM40, and sex interactions on neural network connectivity. Neurobiol Aging 2022; 109:158-165. [PMID: 34740077 PMCID: PMC8694046 DOI: 10.1016/j.neurobiolaging.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.
Collapse
|
8
|
Association and interaction of TOMM40 and PVRL2 with plasma amyloid-β and Alzheimer's disease among Chinese older adults: a population-based study. Neurobiol Aging 2022; 113:143-151. [DOI: 10.1016/j.neurobiolaging.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
|
9
|
Bezuch N, Bradburn S, Robinson AC, Pendleton N, Payton A, Murgatroyd C. Superior Frontal Gyrus TOMM40-APOE Locus DNA Methylation in Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:275-282. [PMID: 34113784 PMCID: PMC8150259 DOI: 10.3233/adr-201000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The APOE ɛ4 allele is the strongest known genetic risk factor for sporadic Alzheimer’s disease (AD). The neighboring TOMM40 gene has also been implicated in AD due to its close proximity to APOE. Objective: Here we tested whether methylation of the TOMM40-APOE locus may influence ApoE protein levels and AD pathology. Methods: DNA methylation levels across the TOMM40-APOE locus and ApoE levels were measured in superior frontal gyrus tissues of 62 human brains genotyped for APOE and scored for AD neuropathology. Results: Methylation levels within the TOMM40 CpG island in the promoter or APOE CpG island in Exon 4 did not differ between APOE ɛ4 carriers versus non-carriers. However, APOE ɛ4 carriers had significantly higher methylation the APOE promoter compared with non-carriers. Although DNA methylation at TOMM40, APOE promoter region, or APOE did not differ between AD pathological groups, there was a negative association between TOMM40 methylation and CERAD scores. ApoE protein concentrations did not significantly different between APOE ɛ4 carriers and non-carriers, or between AD pathological groups. Finally, there was no correlation between ApoE protein concentrations and DNA methylation levels. Conclusion: APOE gene methylation may not be affected by genotype, relate to AD pathology or ApoE protein levels in the superior frontal gyrus, though, DNA methylation at the ApoE promoter differed between genotype. DNA methylation at TOMM40 associated with amyloid-β plaques and longitudinal fluid intelligence. In sum, these results suggest a complicated regulation of the TOMM40-APOE locus in the brain in controlling ApoE protein levels and AD neuropathology.
Collapse
Affiliation(s)
- Natalia Bezuch
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Neil Pendleton
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
10
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 812] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
11
|
Cacabelos R, Torrellas C, Teijido O, Carril JC. Pharmacogenetic considerations in the treatment of Alzheimer's disease. Pharmacogenomics 2016; 17:1041-74. [PMID: 27291247 DOI: 10.2217/pgs-2016-0031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The practical pharmacogenetics of Alzheimer's disease (AD) is circumscribed to acetylcholinesterase inhibitors (AChEIs) and memantine. However, pharmacogenetic procedures should be applied to novel strategies in AD therapeutics including: novel AChEIs and neurotransmitter regulators, anti-Aβ treatments, anti-tau treatments, pleiotropic products, epigenetic drugs and combination therapies. Genes involved in the pharmacogenetic network are under the influence of the epigenetic machinery which regulates gene expression transcriptionally and post-transcriptionally, configuring the fundamentals of pharmacoepigenomics. Over 60% of AD patients present concomitant pathologies demanding additional treatments which increase the likelihood of drug-drug interactions. Lipid metabolism dysfunction is a pathogenic mechanism inherent to AD neurodegeneration. The therapeutic response to hypolipidemic compounds is influenced by the APOE and CYP genotypes. The development of novel compounds and the use of combination/multifactorial treatments require the implantation of pharmacogenomic procedures for the avoidance of ADRs and the optimization of therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, Camilo José Cela University, Madrid, Spain.,EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan Carlos Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
12
|
Manso-Calderón R, González-Sarmiento R. Genetic susceptibility to vascular cognitive impairment: a pathophysiological view. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneity of the vascular cognitive impairment (VCI) creates challenges for research on its genetic basis and pathophysiology. Despite well-known monogenic forms may be useful to understand some pathogenic mechanisms leading to VCI, most of VCIs are sporadic disorders resulting from the interaction between environmental, vascular and genetic factors. Genetic investigation for VCI may encompass both candidate genes that affect critical biological processes to VCI and common and rare genetic variants identified across the entire genome study technology, thereby enabling us to confirm or expose new biological mechanisms in VCI and develop new therapeutic and preventive approaches. Notwithstanding genetic susceptibility to VCI remains largely unknown owing to methodological issues. Collaborative efforts emerge as an interesting strategy to overcome these problems.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine & Institute of Molecular & Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
13
|
Bao J, Wang XJ, Mao ZF. Associations Between Genetic Variants in 19p13 and 19q13 Regions and Susceptibility to Alzheimer Disease: A Meta-Analysis. Med Sci Monit 2016; 22:234-43. [PMID: 26795201 PMCID: PMC4727495 DOI: 10.12659/msm.895622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) has become an epidemic within the growing elderly population and effective therapies of AD have not been discovered. Genetic factors accounted for over 70% of the incidence of AD and the disease-related polymorphisms are located on chromosome 19, which is one of several prominent chromosomes related to the development of AD. Many inconsistent associations between polymorphisms in ABCA7, CD33, and TOMM40 genes and the susceptibility to AD have been suggested by several independent studies. MATERIAL/METHODS A comprehensive literature search for studies involving the association between gene polymorphisms and AD was performed, and we finally selected 3 genes (4 polymorphisms) for the meta-analysis: ABCA7 (rs3764650), CD33 (rs3865444), and TOMM40 (rs157580, rs2075650). RESULTS A total of 25 articles investigating 3 genes (4 polymorphisms) were included in the meta-analysis. The pooled results of 4 polymorphisms were all significantly associated with the susceptibility to AD. The pooled effect of ABCA7 rs3764605 allele G was significantly associated with an increased the risk of AD (OR=1.20, 95% CI: 1.14-1.26, P value <0.001). Similarly, our evidence suggested that allele A of TOMM40 rs2075650 polymorphism was a risk factor for AD (OR=2.87, 95% CI: 2.46-3.34, P value <0.001). Alleles A of CD33 rs3865444 and A of TOMM40 rs157580 were both protective factors for AD onset (OR=0.94, 95% CI: 0.90-0.98, P value=0.003; OR=0.62, 95% CI: 0.57-0.66, P value <0.001). CONCLUSIONS" Results from the meta-analysis revealed that the pooled ABCA7 rs376465, CD33 rs3865444, TOMM40 rs157580, and rs2075650 variants were significantly associated with the susceptibility to AD. However, the association differed significantly between Asian and Caucasian groups for SNPs of CD33 rs3865444, TOMM40 rs157580, and rs2075650.
Collapse
Affiliation(s)
- Jie Bao
- Global Health Institute, Wuhan University, Wuhan, Hubei, P.R. China
| | - Xiao-jie Wang
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, P.R. China
| | - Zong-fu Mao
- Global Health Institute, Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
14
|
Payton A, Sindrewicz P, Pessoa V, Platt H, Horan M, Ollier W, Bubb VJ, Pendleton N, Quinn JP. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging. Neurobiol Aging 2015; 39:217.e1-7. [PMID: 26742953 DOI: 10.1016/j.neurobiolaging.2015.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The Translocase of Outer Mitochondrial Membrane 40 Homolog and Apolipoprotein E (TOMM40-APOE) locus has been associated with a number of age-related phenotypes in humans including nonpathologic cognitive aging, late-onset Alzheimer's disease, and longevity. Here, we investigate the influence of the TOMM40 intron 6 poly-T variant (rs10524523) on TOMM40 gene expression and cognitive abilities and decline in a cohort of 1613 community-dwelling elderly volunteers who had been followed for changes in cognitive functioning over a period of 14 years (range = 12-18 years). We showed that the shorter length poly-T variants were found to act as a repressor of luciferase gene expression in reporter gene constructs. Expression was reduced to approximately half of that observed for the very long variant. We further observed that the shorter poly-T variant was significantly associated with reduced vocabulary ability and a slower rate of vocabulary decline with age compared to the very long poly-T variants. No significant associations were observed for memory, fluid intelligence or processing speed, although the direction of effect, where the short variant was correlated with reduced ability and slower rate of decline was observed for all tests. Our results indicate that the poly-T variant has the ability to interact with transcription machinery and differentially modulate reporter gene expression and influence vocabulary ability and decline with age.
Collapse
Affiliation(s)
- A Payton
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK.
| | - P Sindrewicz
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - V Pessoa
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - H Platt
- Centre for Integrated Genomic Medical Research, Institute of Population Health, The University of Manchester, Manchester, UK
| | - M Horan
- Centre for Clinical and Cognitive Neuroscience, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| | - W Ollier
- Centre for Integrated Genomic Medical Research, Institute of Population Health, The University of Manchester, Manchester, UK
| | - V J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - N Pendleton
- Centre for Clinical and Cognitive Neuroscience, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| | - J P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Yu L, Boyle PA, Nag S, Leurgans S, Buchman AS, Wilson RS, Arvanitakis Z, Farfel JM, De Jager PL, Bennett DA, Schneider JA. APOE and cerebral amyloid angiopathy in community-dwelling older persons. Neurobiol Aging 2015; 36:2946-2953. [PMID: 26341746 DOI: 10.1016/j.neurobiolaging.2015.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 11/26/2022]
Abstract
Both cerebral amyloid angiopathy and Alzheimer's disease pathology involve abnormal β-amyloid processing. We aim to elucidate the relationship of the apolipoprotein E (APOE) genotypes with amyloid angiopathy in the presence of variable amounts of Alzheimer's pathology. Data came from 1062 autopsied subjects from 2 community-based studies of aging. Common neuropathologies including Alzheimer's disease and amyloid angiopathy were assessed using uniform methods. APOE was genotyped by sequencing the 2 polymorphisms in codons 112 and 158 of exon 4. We examined the associations of APOE with amyloid angiopathy using ordinal logistic regression analyses, controlling for demographics and subsequently Alzheimer's and other common pathologies. Moderate to severe amyloid angiopathy was identified in 35.2% (n = 374) of the subjects; 15.3% (n = 162) of the subjects were APOE ε2 carriers; and 26.1% (n = 277) ε4 carriers. Adjusting for demographics, the presence of ε4 allele, but not ε2, was associated with more severe amyloid angiopathy. After further adjustment for Alzheimer's pathology, both ε2 (odds ratio 1.707, 95% confidence interval 1.236-2.358, p = 0.001) and ε4 (odds ratio 2.284, 95% confidence interval 1.730-3.014, p < 0.001) were independently associated with amyloid angiopathy. The results were confirmed by path analysis. Furthermore, APOE ε4 carriers, but not ε2 carriers, were more likely to have capillary amyloid angiopathy. Accounting for capillary involvement did not alter the APOE associations with amyloid angiopathy. We conclude that both APOE ε2 and ε4 alleles are associated with more severe cerebral amyloid angiopathy, and the direct effect of ε2 is masked by the allele's negative association with comorbid Alzheimer's pathology. APOE ε4, but not ε2, is associated with capillary amyloid angiopathy.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Sue Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jose M Farfel
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
17
|
Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer's disease. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT In Alzheimer's disease (AD), approximately 10–20% of direct costs are associated with pharmacological treatment. Pharmacogenomics account for 30–90% variability in pharmacokinetics and pharmacodynamics. Genes potentially involved in the pharmacogenomics outcome include pathogenic, mechanistic, metabolic, transporter and pleiotropic genes. Over 75% of the Caucasian population is defective for the CYP2D6+2C9+2C19 cluster. Polymorphic variants in the APOE-TOMM40 region influence AD pharmacogenomics. APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. TOMM40 poly T-S/S carriers are the best responders, VL/VL and S/VL carriers are intermediate responders and L/L carriers are the worst responders. The haplotype 4/4-L/L is probably responsible for early onset of the disease, a faster cognitive decline and a poor response to different treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Iván Carrera
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| |
Collapse
|
18
|
Gottschalk WK, Lutz MW, He YT, Saunders AM, Burns DK, Roses AD, Chiba-Falek O. The Broad Impact of TOM40 on Neurodegenerative Diseases in Aging. ACTA ACUST UNITED AC 2014; 1. [PMID: 25745640 DOI: 10.13188/2376-922x.1000003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction is an important factor in the pathogenesis of age-related diseases, including neurodegenerative diseases like Alzheimer's and Parkinson's spectrum disorders. A polymorphism in Translocase of the Outer Mitochondrial Membrane - 40 kD (TOMM40) is associated with risk and age-of onset of late-onset AD, and is the only nuclear- encoded gene identified in genetic studies to date that presumably contributes to LOAD-related mitochondria dysfunction. In this review, we describe the TOM40-mediated mitochondrial protein import mechanism, and discuss the evidence linking TOM40 with Alzheimer's (AD) and Parkinson's (PD) diseases. All but 36 of the >~1,500 mitochondrial proteins are encoded by the nucleus and are synthesized on cytoplasmic ribosomes, and most of these are imported into mitochondria through the TOM complex, of which TOM40 is the central pore, mediating communication between the cytoplasm and the mitochondrial interior. APP enters and obstructs the TOM40 pore, inhibiting import of OXPHOS-related proteins and disrupting the mitochondrial redox balance. Other pathogenic proteins, such as Aβ and alpha-synuclein, readily pass through the pore and cause toxic effects by directly inhibiting mitochondrial enzymes. Healthy mitochondria normally import and degrade the PD-related protein Pink1, but Pink1 exits mitochondria if the membrane potential collapses and initiates Parkin-mediated mitophagy. Under normal circumstances, this process helps clear dysfunctional mitochondria and contributes to cellular health, but PINK1 mutations associated with PD exit mitochondria with intact membrane potentials, disrupting mitochondrial dynamics, leading to pathology. Thus, TOM40 plays a central role in the mitochondrial dysfunction that underlies age-related neurodegenerative diseases. Learning about the factors that control TOM40 levels and activity, and how TOM40, specifically, and the TOM complex, generally, interacts with potentially pathogenic proteins, will provide deeper insights to AD and PD pathogenesis, and possibly new targets for preventative and/or therapeutic treatments.
Collapse
Affiliation(s)
- William K Gottschalk
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu Ting He
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ann M Saunders
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Zinfandel Pharmaceuticals, Chapel Hill, NC, USA
| | | | - Allen D Roses
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Zinfandel Pharmaceuticals, Chapel Hill, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
19
|
Devan WJ, Falcone GJ, Anderson CD, Jagiella JM, Schmidt H, Hansen BM, Jimenez-Conde J, Giralt-Steinhauer E, Cuadrado-Godia E, Soriano C, Ayres AM, Schwab K, Kassis SB, Valant V, Pera J, Urbanik A, Viswanathan A, Rost NS, Goldstein JN, Freudenberger P, Stögerer EM, Norrving B, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Kidwell CS, Montaner J, Fernandez-Cadenas I, Delgado P, Greenberg SM, Roquer J, Lindgren A, Slowik A, Schmidt R, Woo D, Rosand J, Biffi A. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013; 44:1578-83. [PMID: 23559261 DOI: 10.1161/strokeaha.111.000089] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies suggest that genetic variation plays a substantial role in occurrence and evolution of intracerebral hemorrhage (ICH). Genetic contribution to disease can be determined by calculating heritability using family-based data, but such an approach is impractical for ICH because of lack of large pedigree-based studies. However, a novel analytic tool based on genome-wide data allows heritability estimation from unrelated subjects. We sought to apply this method to provide heritability estimates for ICH risk, severity, and outcome. METHODS We analyzed genome-wide genotype data for 791 ICH cases and 876 controls, and determined heritability as the proportion of variation in phenotype attributable to captured genetic variants. Contribution to heritability was separately estimated for the APOE (encoding apolipoprotein E) gene, an established genetic risk factor, and for the rest of the genome. Analyzed phenotypes included ICH risk, admission hematoma volume, and 90-day mortality. RESULTS ICH risk heritability was estimated at 29% (SE, 11%) for non-APOE loci and at 15% (SE, 10%) for APOE. Heritability for 90-day ICH mortality was 41% for non-APOE loci and 10% (SE, 9%) for APOE. Genetic influence on hematoma volume was also substantial: admission volume heritability was estimated at 60% (SE, 70%) for non-APOEloci and at 12% (SE, 4%) for APOE. CONCLUSIONS Genetic variation plays a substantial role in ICH risk, outcome, and hematoma volume. Previously reported risk variants account for only a portion of inherited genetic influence on ICH pathophysiology, pointing to additional loci yet to be identified.
Collapse
Affiliation(s)
- William J Devan
- Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge St, CPZN-6818, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Intracerebral hemorrhage: mechanisms and therapies. Transl Stroke Res 2012; 3:1-3. [PMID: 24323857 DOI: 10.1007/s12975-012-0189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
|