1
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of AAV Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. Transl Stroke Res 2025; 16:914-924. [PMID: 38977637 PMCID: PMC11968179 DOI: 10.1007/s12975-024-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.v.) delivery of soluble Feline McDonough Sarcoma (FMS)-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84, and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered i.v. or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1f/f mice through i.v. followed by bAVM induction. Transduced cells in organs, vessel density, abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain endothelial cells (ECs) and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. The delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
- Alka Yadav
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Rich Liang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kelly Press
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Annika Schmidt
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Zahra Shabani
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kun Leng
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Abinav Sekhar
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Joshua Shi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Garth W Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Mayorga-Corvacho J, Vergara-Garcia D, Benavides C, Riveros WM. Ruptured brain arteriovenous malformation in a pregnant woman: a case report. Br J Neurosurg 2024; 38:1466-1469. [PMID: 35510560 DOI: 10.1080/02688697.2022.2064426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (bAVMs) are vascular lesions that commonly present with intracranial haemorrhage. Pregnancy has been associated with an increased risk of bAVM rupture. However, their natural history in pregnant women is uncertain. CASE DESCRIPTION A 27-year-old female at 28 weeks of gestation presented with a compromised neurological status secondary to a ruptured left frontal Spetzler-Martin scale (SM) III + bAVM. An emergent caesarean section was performed due to the high risk of foetal distress. Endovascular treatment successfully controlled the bleeding site, and stereotactic radiosurgery was offered as a subsequent treatment option. CONCLUSION bAVMs should be considered in pregnant women with intracranial haemorrhage. The management of these lesions during pregnancy is controversial. Surgical risk and foetal development should be considered when selecting a management strategy.
Collapse
Affiliation(s)
- Juliana Mayorga-Corvacho
- Neurosurgery Department, Center for Research and Training in Neurosurgery (CIEN), Samaritana University Hospital, Rosario University School of Medicine, Bogotá, Colombia
| | - David Vergara-Garcia
- Neurosurgery Department, Center for Research and Training in Neurosurgery (CIEN), Samaritana University Hospital, Rosario University School of Medicine, Bogotá, Colombia
| | - Camilo Benavides
- Neurosurgery Department, Center for Research and Training in Neurosurgery (CIEN), Samaritana University Hospital, Rosario University School of Medicine, Bogotá, Colombia
| | - William Mauricio Riveros
- Neurosurgery Department, Center for Research and Training in Neurosurgery (CIEN), Samaritana University Hospital, Rosario University School of Medicine, Bogotá, Colombia
| |
Collapse
|
3
|
Zhang B, Chen X, Qin W, Ge L, Zhang X, Ding G, Wang S. Enhancing cerebral arteriovenous malformation analysis: Development and application of patient-specific lumped parameter models based on 3D imaging data. Comput Biol Med 2024; 180:108977. [PMID: 39111153 DOI: 10.1016/j.compbiomed.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Cerebral arteriovenous malformations (AVMs) present complex neurovascular challenges, characterized by direct arteriovenous connections that disrupt normal brain blood flow dynamics. Traditional lumped parameter models (LPMs) offer a simplified angioarchitectural representation of AVMs, yet often fail to capture the intricate structure within the AVM nidus. This research aims at refining our understanding of AVM hemodynamics through the development of patient-specific LPMs utilizing three-dimensional (3D) medical imaging data for enhanced structural fidelity. METHODS This study commenced with the meticulous delineation of AVM vascular architecture using threshold segmentation and skeletonization techniques. The AVM nidus's core structure was outlined, facilitating the extraction of vessel connections and the formation of a detailed fistulous vascular tree model. Sampling points, spatially distributed and derived from the pixel intensity in imaging data, guided the construction of a complex plexiform tree within the nidus by generating smaller Y-shaped vascular formations. This model was then integrated with an electrical analog model to enable precise numerical simulations of cerebral hemodynamics with AVMs. RESULTS The study successfully generated two distinct patient-specific AVM networks, mirroring the unique structural and morphological characteristics of the AVMs as captured in medical imaging. The models effectively represented the intricate fistulous and plexiform vessel structures within the nidus. Numerical analysis of these models revealed that AVMs induce a blood shunt effect, thereby diminishing blood perfusion to adjacent brain tissues. CONCLUSION This investigation enhances the theoretical framework for AVM research by constructing patient-specific LPMs that accurately reflect the true vascular structures of AVMs. These models offer profound insights into the hemodynamic behaviors of AVMs, including their impact on cerebral circulation and the blood steal phenomenon. Further incorporation of clinical data into these models holds the promise of deepening the theoretical comprehension of AVMs and fostering advancements in the diagnosis and treatment of AVMs.
Collapse
Affiliation(s)
- Bowen Zhang
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Xi Chen
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Wang Qin
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Liang Ge
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Guanghong Ding
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China; Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai, 200043, China
| | - Shengzhang Wang
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China; Institute of Biomedical Engineering & Technology, Academy of Engineering Technology, Fudan University, No. 220 Handan Road, Shanghai, 200043, China.
| |
Collapse
|
4
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of Aav Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. RESEARCH SQUARE 2024:rs.3.rs-4469011. [PMID: 38947073 PMCID: PMC11213183 DOI: 10.21203/rs.3.rs-4469011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous delivery of soluble FMS-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84 and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered intravenously (i.v.) or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1 f/f mice through i.v. injection followed by brain AVM induction. Transduced cells in different organs, vessel density and abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain ECs and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and skeletal muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. Delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1 f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Leng
- University of California, San Francisco
| | | | | | | | | | | | | | - Hua Su
- University of California, San Francisco
| |
Collapse
|
5
|
Bashir H, Ahmed AA, Akhtar M, Beering AR, Ratajczak TM. A Rare Case of Left Main Coronary Artery Coronary Sinus Fistula in an 85-Year-Old Female. Cureus 2024; 16:e61320. [PMID: 38947675 PMCID: PMC11213488 DOI: 10.7759/cureus.61320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Coronary arteriovenous fistulas (CAVFs) are congenital or acquired communications between the coronary arteries and coronary venous system, and they can also include other cardiac structures or vasculature. We discuss a case of a large fistula between the left main coronary artery and the right atrium in a geriatric patient with a history of gastrointestinal arteriovenous malformations (AVM). The occurrence of CAVFs, an uncommon cardiac irregularity, is particularly infrequent among older adults. Typically, it is discovered by chance when investigating symptoms such as shortness of breath or chest pain, where coronary angiography is necessary to determine the most effective treatment strategy. This case highlights the possible utility of evaluating CAVFs in patients with a history of gastrointestinal AVM who similarly present with clinical symptoms of high-output heart failure. Once identified, this could simplify the treatment approach and improve communication between healthcare providers to minimize the risk of harm to the patient.
Collapse
Affiliation(s)
- Hanad Bashir
- Cardiovascular Medicine, The Christ Hospital, Cincinnati, USA
| | - Ahmed A Ahmed
- Internal Medicine, Rochester Unity Hospital, Rochester, USA
| | | | | | | |
Collapse
|
6
|
Do D, Suhaj P, Benes J, Matej R, Lang O. Aneurysmal 99m Tc-HMPAO Uptake in Brain Death. Clin Nucl Med 2024; 49:348-350. [PMID: 38350074 DOI: 10.1097/rlu.0000000000005103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ABSTRACT A 41-year-old man was admitted to hospital due to sudden loss of consciousness. A regional brain perfusion SPECT/low-dose CT showed abnormal 99m Tc-HMPAO uptake in the right hemisphere frontotemporally without any other supratentorial or infratentorial radiotracer uptake. A neuropathological examination disclosed a middle cerebral artery aneurysm. Presumably, vessel wall fibrosis prevented collapse. Multiple transmural dissections of the fibrotic aneurysmal wall were the source of the subarachnoid hemorrhage. This interesting image shows that radiotracer accumulation in cerebral artery aneurysms can be a diagnostic pitfall in brain death scintigraphy assessment.
Collapse
Affiliation(s)
| | - Petr Suhaj
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Thomayer University Hospital
| | - Jiri Benes
- Department of Radiology, General University Hospital Prague, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Thomayer University Hospital
| | - Otto Lang
- From the Department of Radiology and Nuclear Medicine, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady
| |
Collapse
|
7
|
Astudillo Potes MD, Bauman MMJ, Shoushtari A, Winter BM, Singh R, Rahmani R, Catapano J, Lawton MT. Elucidating the pathogenesis behind arteriovenous malformations of the central nervous system: a bibliometric analysis. Neurosurg Rev 2024; 47:133. [PMID: 38556597 DOI: 10.1007/s10143-024-02367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Arteriovenous malformations (AVMs) are vascular malformations of the central nervous system (CNS) with potential for significant consequences. The exact pathophysiologic mechanism of AVM formation is not fully understood. This study aims to evaluate bibliometric parameters and citations of the literature of AVMs to provide an overview of how the field has evolved. We performed an electronic search on Web of Science to identify the top 100 published and indexed articles with the highest number of citations discussing the pathogenesis of AVMs. This study yielded 1863 articles, of which the top 100 were selected based on the highest total citation count. These articles included 24% basic science, 46% clinical, and 30% review articles. The most-cited article was a clinical article from 2003, and the most recent was published in 2022. The median number of authors was 6, with the highest being 46 for a clinical article. The top 5 journals were identified, with the highest impact factor being 20.1. 13 countries were identified, with the US contributing the most articles (approximately 70%). Regarding genes of investigation, VEGF was one of the early genes investigated, while more interested in RAS/MAPK has been garnered since 2015. There is a growing interest in AVM genomics and pathogenesis research. While progress has been made in understanding clinical aspects and risk factors, the exact pathophysiological mechanisms and genetic basis of AVM formation remain incompletely understood. Further investigation of key genes in AVM pathogenesis can allow identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Maria D Astudillo Potes
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
- Department of Neurological Surgery, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Megan M J Bauman
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
- Department of Neurological Surgery, Rochester, Minnesota, USA
| | - Ali Shoushtari
- Department of Neurological Surgery, Rochester, Minnesota, USA
| | - Bailey M Winter
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
- Department of Neurological Surgery, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Rohin Singh
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA.
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
- Barrow Neurological Institute, Phoenix, AZ, USA
| | | | | |
Collapse
|
8
|
Al-Smadi MW, Fazekas LA, Varga A, Matrai AA, Aslan S, Beqain A, Al-Khafaji MQM, Bedocs-Barath B, Novak L, Nemeth N. Minor micro-rheological alterations in the presence of an artificial saphenous arteriovenous shunt, as an arteriovenous malformation model in the rat. Clin Hemorheol Microcirc 2024; 87:27-37. [PMID: 38250764 DOI: 10.3233/ch-231825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) are vascular anomalies characterized by abnormal shunting between arteries and veins. The progression of the AVMs and their hemodynamic and rheological relations are poorly studied, and there is a lack of a feasible experimental model. OBJECTIVE To establish a model that cause only minimal micro-rheological alterations, compared to other AV models. METHODS Sixteen female Sprague Dawley rats were randomly divided into control and AVM groups. End-to-end anastomoses were created between the saphenous veins and arteries to mimic AVM nidus. Hematological and hemorheological parameters were analyzed before surgery and on the 1st, 3rd, 5th, 7th, 9th, and 12th postoperative weeks. RESULTS Compared to sham-operated Control group the AVM group did not show important alterations in hematological parameters nor in erythrocyte aggregation and deformability. However, slightly increased aggregation and moderately decreased deformability values were found, without significant differences. The changes normalized by the 12th postoperative week. CONCLUSIONS The presented rat model of a small-caliber AVM created on saphenous vessels does not cause significant micro-rheological changes. The alterations found were most likely related to the acute phase reactions and not to the presence of a small-caliber shunt. The model seems to be suitable for further studies of AVM progression.
Collapse
Affiliation(s)
- Mohammad Walid Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kalman Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Siran Aslan
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anas Beqain
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mustafa Qais Muhsin Al-Khafaji
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Novak
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Al-Smadi MW, Fazekas LA, Aslan S, Bernat B, Beqain A, Al-Khafaji MQM, Priksz D, Orlik B, Nemeth N. A Microsurgical Arteriovenous Malformation Model on Saphenous Vessels in the Rat. Biomedicines 2023; 11:2970. [PMID: 38001970 PMCID: PMC10669800 DOI: 10.3390/biomedicines11112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Arteriovenous malformation (AVM) is an anomaly of blood vessel formation. Numerous models have been established to understand the nature of AVM. These models have limitations in terms of the diameter of the vessels used and the impact on the circulatory system. Our goal was to establish an AVM model that does not cause prompt and significant hemodynamic and cardiac alterations but is feasible for follow-up of the AVM's progression. Sixteen female rats were randomly divided into sham-operated and AVM groups. In the AVM group, the saphenous vein and artery were interconnected using microsurgical techniques. The animals were followed up for 12 weeks. Anastomosis patency and the structural and hemodynamic changes of the heart were monitored. The hearts and vessels were histologically analyzed. During the follow-up period, shunts remained unobstructed. Systolic, diastolic, mean arterial pressure, and heart rate values slightly and non-significantly decreased in the AVM group. Echocardiogram results indicated minor systolic function impact, with slight and insignificant changes in aortic pressure and blood velocity, and minimal left ventricular wall enlargement. The small-caliber saphenous AVM model does not cause acute hemodynamic changes. Moderate but progressive alterations and venous dilatation confirmed AVM-like features. The model seems to be suitable for studying further the progression, enlargement, or destabilization of AVM.
Collapse
Affiliation(s)
- Mohammad Walid Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
- Kalman Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Siran Aslan
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Brigitta Bernat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Anas Beqain
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Mustafa Qais Muhsin Al-Khafaji
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Brigitta Orlik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| |
Collapse
|
10
|
Lan J, Ma YH, Feng Y, Zhang TB, Zhao WY, Chen JC. Endovascular embolization for basal ganglia and thalamic arteriovenous malformations. Front Neurol 2023; 14:1244782. [PMID: 38020631 PMCID: PMC10652870 DOI: 10.3389/fneur.2023.1244782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Basal ganglia and thalamic arteriovenous malformations (AVMs) represent a special subset of malformations. Due to the involvement of vital brain structures and the specifically fine and delicate angioarchitecture of these lesions, it presents unique therapeutic challenges and technical difficulties that require thorough treatment planning, individualized treatment strategies, and advanced techniques for good clinical outcome. Method In this study, we presented a series of ruptured basal ganglia and thalamic AVMs embolized via a transarterial, transvenous or combined approach. Herein, we summarized our treatment experience and clinical outcomes to further evaluate the effectiveness and safety of endovascular embolization for these AVMs as well as the indications, therapy strategies, and techniques of embolization procedures. Results Twelve patients with basal ganglia and thalamus AVMs were included in the study. Their average age was 23.83 ± 16.51 years (range, 4-57 years) with a female predominance of 67% at presentation. The AVMs were located in the thalamus in 3 (25%) patients, in the basal ganglia in 3 (25%) patients, and in both sites of the brain in 6 (50%) patients. There were 5 AVMs located on the left side and 7 on the right. The mean nidus diameter was 3.32 ± 1.43 cm (range 1.3-6.1 cm). According to the Spetzler-Martin grading classification, 4 (33.3%) brain AVMs were Grade III, 7 (58.3%) were Grade IV, and 1 (8.3%) was Grade V. All of them presented with bleeding at admission: four of these patients presented with an intracerebral hemorrhage (ICH), 8 ICH in combination with intraventricular hemorrhage (IVH), and no patient with subarachnoid hemorrhage (SAH). Among these patients treated with endovascular embolization, 7 patients were treated by the transarterial approach, 4 patients transvenous approach, and 1 patient underwent the combined approach. A single embolization procedure was performed in 6 patients (50%) and the other 6 cases (50%) were treated in a staged manner with up to three procedures. Procedure-related complications occurred only in two patient (16.7%). Complete AVM obliteration was obtained in 7 patients (58.3%), and partial obliteration was in 4 patients (33.3%). Overall, good or excellent outcomes were obtained in 7 patients (58.3%), and poor functional outcome was observed in 5 patients (41.7%) at the last follow-up. All survived patients achieved anatomic stabilization and there was no postoperative bleeding or recurrence in the follow-up. Conclusion The management of the basal ganglia and thalamic AVMs is a great challenge, which needs multimodal individualized treatment to improve the chances of radiographic cure and good outcomes. Endovascular therapy is safe and effective in the treatment of cerebral AVMs particularly for deep-seated AVMs such as the basal ganglia and thalamus. Our results demonstrate a high rate of anatomic obliteration with an acceptable rate of complications in the endovascular treatment of these vasculopathies via a transarterial approach or a transvenous approach.
Collapse
Affiliation(s)
| | | | | | | | - Wen-yuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-cao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Dannhoff G, Chibbaro S, Mallereau CH, Ganau M, Agbo-Ponzo M, Santin MDN, Ollivier I, Pop R, Proust F, Todeschi J. Delayed Intracerebral Hematoma after Ventriculoperitoneal Shunt in the Context of Ruptured Brain Arteriovenous Malformation: A Literature Review. Brain Sci 2023; 13:1159. [PMID: 37626515 PMCID: PMC10452536 DOI: 10.3390/brainsci13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hemorrhagic complications arising from ventricular drainage procedures are typically asymptomatic and of low volume. A particular subset of these complications, known as delayed intracranial hemorrhage (DICH), is however recognized for its particularly poor prognosis. We primarily aimed to identify epidemiological characteristics associated with DICH, to shed light on its occurrence and potential risk factors. To do so, we performed a retrospective analysis of a series of ten patients who presented with DICH in the context of a ruptured brain arteriovenous malformation (bAVM) and a systematic literature review of all DICH cases reported in the literature. Our ten patients showed delayed neurological deterioration after a ventriculoperitoneal shunt (VPS) procedure, with a computed tomography (CT) scan revealing a DICH surrounding the ventricular catheter, distinct and away from the nidus of their previously ruptured bAVM. Four patients (40%) rapidly declined and passed away, three (30%) required surgical management and the remaining three (30%) demonstrated gradual clinical improvement with conservative management. In the literature, most patients presenting with DICH had hydrocephalus associated with neurovascular disorders (47% of cases), such as bAVM rupture in our present series. These constatations point out the significance of the underlying pathologies potentially being predisposed to these unusual complications.
Collapse
Affiliation(s)
- Guillaume Dannhoff
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Salvatore Chibbaro
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | | | - Mario Ganau
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Martial Agbo-Ponzo
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | | | - Irène Ollivier
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Raoul Pop
- Department of Interventional Radiology, Strasbourg University Hospital, 67000 Strasbourg, France
| | - François Proust
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Julien Todeschi
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| |
Collapse
|
13
|
Quintin S, Figg JW, Mehkri Y, Hanna CO, Woolridge MG, Lucke-Wold B. Arteriovenous Malformations: An Update on Models and Therapeutic Targets. JOURNAL OF NEUROSCIENCE AND NEUROLOGICAL SURGERY 2023; 13:250. [PMID: 36846724 PMCID: PMC9956274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arteriovenous malformations (AVMs) are an anomaly of the vascular system where feeding arteries are directly connected to the venous drainage network. While AVMs can arise anywhere in the body and have been described in most tissues, brain AVMs are of significant concern because of the risk of hemorrhage which carries significant morbidity and mortality. The prevalence of AVM's and the mechanisms underlying their formation are not well understood. For this reason, patients who undergo treatment for symptomatic AVM's remain at increased risk of subsequent bleeds and adverse outcomes. The cerebrovascular network is delicate and novel animal models continue to provide insight into its dynamics in the context of AVM's. As the molecular players in the formation of familial and sporadic AVM's are better understood, novel therapeutic approaches have been developed to mitigate their associated risks. Here we discuss the current literature surrounding AVM's including the development of models and therapeutic targets which are currently being investigated.
Collapse
Affiliation(s)
- Stephan Quintin
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - John W Figg
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Chadwin O Hanna
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
14
|
Ung TH, Belanger K, Hashmi A, Sekar V, Meola A, Chang SD. Microenvironment changes in arteriovenous malformations after stereotactic radiation. Front Hum Neurosci 2022; 16:982190. [PMID: 36590065 PMCID: PMC9797682 DOI: 10.3389/fnhum.2022.982190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebral arteriovenous malformations are dysplastic vascular tangles with aberrant vascular dynamics and can result significant morbidity and mortality. A myriad of challenges are encountered when treating these lesions and are largely based on nidal size, location, and prior hemorrhage. Currently, stereotactic radiosurgery is an accepted form of treatment for small to medium sized lesions and is especially useful in the treatment of lesions in non-surgically assessable eloquent areas of the brain. Despite overall high rates of nidal obliteration, there is relatively limited understand on the mechanisms that drive the inflammatory and obliterative pathways observed after treatment with stereotactic radiosurgery. This review provides an overview of arteriovenous malformations with respect to stereotactic radiosurgery and the current understanding of the mechanisms that lead to nidal obliteration.
Collapse
Affiliation(s)
- Timothy H. Ung
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Timothy H. Ung
| | - Katherine Belanger
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ayesha Hashmi
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States
| | - Vashisht Sekar
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States
| | - Antonio Meola
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States
| | - Steven D. Chang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
15
|
State of the Art in the Role of Endovascular Embolization in the Management of Brain Arteriovenous Malformations-A Systematic Review. J Clin Med 2022; 11:jcm11237208. [PMID: 36498782 PMCID: PMC9739246 DOI: 10.3390/jcm11237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
As a significant cause of intracerebral hemorrhages, seizures, and neurological decline, brain arteriovenous malformations (bAVMs) are a rare group of complex vascular lesions with devastating implications for patients' quality of life. Although the concerted effort of the scientific community has improved our understanding of bAVM biology, the exact mechanism continues to be elucidated. Furthermore, to this day, due to the high heterogeneity of bAVMs as well as the lack of objective data brought by the lack of evaluative and comparative studies, there is no clear consensus on the treatment of this life-threatening and dynamic disease. As a consequence, patients often fall short of obtaining the optimal treatment. Endovascular embolization is an inherent part of multidisciplinary bAVM management that can be used in various clinical scenarios, each with different objectives. Well-trained neuro-interventional centers are proficient at curing bAVMs that are smaller than 3 cm; are located superficially in noneloquent areas; and have fewer, larger, and less tortuous feeding arteries. The transvenous approach is an emerging effective and safe technique that potentially offers a chance to cure previously untreatable bAVMs. This review provides the state of the art in all aspects of endovascular embolization in the management of bAVMs.
Collapse
|
16
|
Brain AVMs-Related microRNAs: Machine Learning Algorithm for Expression Profiles of Target Genes. Brain Sci 2022; 12:brainsci12121628. [PMID: 36552089 PMCID: PMC9775264 DOI: 10.3390/brainsci12121628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION microRNAs (miRNAs) are a class of non-coding RNAs playing a myriad of important roles in regulating gene expression. Of note, recent work demonstrated a critical role of miRNAs in the genesis and progression of brain arteriovenous malformations (bAVMs). Accordingly, here we examine miRNA signatures related to bAVMs and associated gene expression. In so doing we expound on the potential prognostic, diagnostic, and therapeutic significance of miRNAs in the clinical management of bAVMs. METHODS A PRISMA-based literature review was performed using PubMed/Medline database with the following search terms: "brain arteriovenous malformations", "cerebral arteriovenous malformations", "microRNA", and "miRNA". All preclinical and clinical studies written in English, regardless of date, were selected. For our bioinformatic analyses, miRWalk and miRTarBase machine learning algorithms were employed; the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was quired for associated pathways/functions. RESULTS four studies were ultimately included in the final analyses. Sequencing data consistently revealed the decreased expression of miR-18a in bAVM-endothelial cells, resulting in increased levels of vascular endodermal growth factor (VEGF), Id-1, matrix metalloproteinase, and growth signals. Our analyses also suggest that the downregulation of miR-137 and miR-195* within vascular smooth muscle cells (VSMCs) may foster the activation of inflammation, aberrant angiogenesis, and phenotypic switching. In the peripheral blood, the overexpression of miR-7-5p, miR-629-5p, miR-199a-5p, miR-200b-3p, and let-7b-5p may contribute to endothelial proliferation and nidus development. The machine learning algorithms employed confirmed associations between miRNA-related target networks, vascular rearrangement, and bAVM progression. CONCLUSION miRNAs expression appears to be critical in managing bAVMs' post-transcriptional signals. Targets of microRNAs regulate canonical vascular proliferation and reshaping. Although additional scientific evidence is needed, the identification of bAVM miRNA signatures may facilitate the development of novel prognostic/diagnostic tools and molecular therapies for bAVMs.
Collapse
|
17
|
Nielsen CM, Zhang X, Raygor K, Wang S, Bollen AW, Wang RA. Endothelial Rbpj deletion normalizes Notch4-induced brain arteriovenous malformation in mice. J Exp Med 2022; 220:213722. [PMID: 36441145 PMCID: PMC9700524 DOI: 10.1084/jem.20211390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Upregulation of Notch signaling is associated with brain arteriovenous malformation (bAVM), a disease that lacks pharmacological treatments. Tetracycline (tet)-regulatable endothelial expression of constitutively active Notch4 (Notch4*tetEC) from birth induced bAVMs in 100% of mice by P16. To test whether targeting downstream signaling, while sustaining the causal Notch4*tetEC expression, induces AVM normalization, we deleted Rbpj, a mediator of Notch signaling, in endothelium from P16, by combining tet-repressible Notch4*tetEC with tamoxifen-inducible Rbpj deletion. Established pathologies, including AV connection diameter, AV shunting, vessel tortuosity, intracerebral hemorrhage, tissue hypoxia, life expectancy, and arterial marker expression were improved, compared with Notch4*tetEC mice without Rbpj deletion. Similarly, Rbpj deletion from P21 induced advanced bAVM regression. After complete AVM normalization induced by repression of Notch4*tetEC, virtually no bAVM relapsed, despite Notch4*tetEC re-expression in adults. Thus, inhibition of endothelial Rbpj halted Notch4*tetEC bAVM progression, normalized bAVM abnormalities, and restored microcirculation, providing proof of concept for targeting a downstream mediator to treat AVM pathologies despite a sustained causal molecular lesion.
Collapse
Affiliation(s)
- Corinne M. Nielsen
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Xuetao Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Kunal Raygor
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Shaoxun Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Andrew W. Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA,Correspondence to Rong A. Wang:
| |
Collapse
|
18
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
19
|
Toklu A, Mesa H, Collins K. Incidental adrenal hemangioma clinically suspicious for malignancy: diagnostic considerations and review of the literature. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:444-458. [PMID: 36507066 PMCID: PMC9729942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 12/15/2022]
Abstract
Adrenal hemangiomas are rare lesions often found incidentally during unrelated diagnostic work-up. We report a case of a 67-year-old man with history of hypertension, hyperlipidemia, anemia, arthralgia, joint swelling and unexplained weight loss, which prompted imaging studies. Computed tomography scan revealed a 5.4 cm adrenal mass. The patient had no clinical manifestations of adrenal medullary or cortical hyperfunction. Urine and plasma metanephrines and aldosterone/renin ratio were within normal range. The patient was taking prednisone for hand and ankle swelling, precluding assessment for Cushing syndrome. Given the size of the lesion, the possibility of malignancy was considered, and the patient elected for surgical management. The left adrenalectomy specimen weighed 54 g and revealed a 4.9 cm tan-brown mass with congested cut surface and a thin rim of residual adrenal gland parenchyma. Histologic examination showed thick and thin-walled vessels intermingled with adrenocortical elements at the periphery characteristic of a hemangioma. Surgical resection is the mainstay treatment for large, isolated adrenal masses to exclude malignancy and prevent retroperitoneal hemorrhage. Herein, we report a case of adrenal hemangioma, review a variety of other diagnostic considerations occurring in the adrenal gland, and highlight useful distinguishing features to assist in accurate diagnosis.
Collapse
|
20
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
21
|
Huang H, Wang X, Guo AN, Li W, Duan RH, Fang JH, Yin B, Li DD. De novo brain arteriovenous malformation formation and development: A case report. World J Clin Cases 2022; 10:6277-6282. [PMID: 35949829 PMCID: PMC9254196 DOI: 10.12998/wjcc.v10.i18.6277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain arteriovenous malformation (AVM), an aberrant vascular development during the intrauterine period, is traditionally considered a congenital disease. Sporadic reports of cases of de novo AVM formation in children and adults have challenged the traditional view of its congenital origin.
CASE SUMMARY In this report, we have presented the case of a child with a de novo brain AVM. Magnetic resonance imaging and magnetic resonance angiography of the brain showed no AVM at the age of 5 years and 2 mo. Brain AVM was first detected in this child at the age of 7 years and 4 mo. The brain AVM was significantly advanced, and hemorrhage was seen for the first time at the age of 12 years and 8 mo. There was further progression in the AVM, and hemorrhage occurred again at the age of 13 years and 5 mo. Genetic analysis of this patient revealed a mutation in the NOTCH2 (p.Asp473Val) gene.
CONCLUSION In short, our case has once again confirmed the view that brain AVM is an acquired disease and is the result of the interaction of genes, environment, and molecules.
Collapse
Affiliation(s)
- Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xue Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - An-Na Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ren-Hua Duan
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jun-Hao Fang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
22
|
Genetics and Emerging Therapies for Brain Arteriovenous Malformations. World Neurosurg 2022; 159:327-337. [PMID: 35255632 DOI: 10.1016/j.wneu.2021.10.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Brain arteriovenous malformations (AVMs) are characterized by a high-pressure, low-resistance vascular nidus created by direct shunting of blood from feeding arteries into arterialized veins, bypassing intervening capillaries. AVMs pose a risk of spontaneous rupture because the vessel walls are continuously exposed to increased shear stress and abnormal flow phenomena, which lead to vessel wall inflammation and distinct morphologic changes. The annual rupture rate is estimated at 2%, and once an AVM ruptures, the risk of rerupture increases 5-fold. The ability of AVMs to grow, regress, recur, and undergo remodeling shows their dynamic nature. Identifying the underlying cellular and molecular pathways of AVMs not only helps us understand their natural physiology but also allows us to directly block vital pathways, thus preventing AVM development and progression. Management of AVMs is challenging and often necessitates a multidisciplinary approach, including neurosurgical, endovascular, and radiosurgical expertise. Because many of these procedures are invasive, carry a risk of inciting hemorrhage, or are controversial, the demand for pharmacologic treatment options is increasing. In this review, we introduce novel findings of cellular and molecular AVM physiology and highlight key signaling mediators that are potential targets for AVM treatment. Furthermore, we give an overview of syndromes associated with hereditary and nonhereditary AVM formation and discuss causative genetic alterations.
Collapse
|
23
|
Shaligram SS, Zhang R, Zhu W, Ma L, Luo M, Li Q, Weiss M, Arnold T, Santander N, Liang R, do Prado L, Tang C, Pan F, Oh SP, Pan P, Su H. Bone Marrow-Derived Alk1 Mutant Endothelial Cells and Clonally Expanded Somatic Alk1 Mutant Endothelial Cells Contribute to the Development of Brain Arteriovenous Malformations in Mice. Transl Stroke Res 2021; 13:494-504. [PMID: 34674144 PMCID: PMC9021325 DOI: 10.1007/s12975-021-00955-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that deletion of activin receptor-like kinase 1 (Alk1) or endoglin in a fraction of endothelial cells (ECs) induces brain arteriovenous malformations (bAVMs) in adult mice upon angiogenic stimulation. Here, we addressed three related questions: (1) could Alk1- mutant bone marrow (BM)-derived ECs (BMDECs) cause bAVMs? (2) is Alk1- ECs clonally expended during bAVM development? and (3) is the number of mutant ECs correlates to bAVM severity? For the first question, we transplanted BM from PdgfbiCreER;Alk12f/2f mice (EC-specific tamoxifen-inducible Cre with Alk1-floxed alleles) into wild-type mice, and then induced bAVMs by intra-brain injection of an adeno-associated viral vector expressing vascular endothelial growth factor and intra-peritoneal injection of tamoxifen. For the second question, clonal expansion was analyzed using PdgfbiCreER;Alk12f/2f;confetti+/- mice. For the third question, we titrated tamoxifen to limit Alk1 deletion and compared the severity of bAVM in mice treated with low and high tamoxifen doses. We found that wild-type mice with PdgfbiCreER;Alk12f/2f BM developed bAVMs upon VEGF stimulation and Alk1 gene deletion in BMDECs. We also observed clusters of ECs expressing the same confetti color within bAVMs and significant proliferation of Alk1- ECs at early stage of bAVM development, suggesting that Alk1- ECs clonally expanded by local proliferation. Tamoxifen dose titration revealed a direct correlation between the number of Alk1- ECs and the burden of dysplastic vessels in bAVMs. These results provide novel insights for the understanding of the mechanism by which a small fraction of Alk1 or endoglin mutant ECs contribute to development of bAVMs.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Man Luo
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Qiang Li
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Miriam Weiss
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Thomas Arnold
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Nicolas Santander
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rich Liang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Leandro do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Chaoliang Tang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Felix Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
24
|
Abstract
Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.
Collapse
|
25
|
Current concepts and perspectives on brain arteriovenous malformations: A review of pathogenesis and multidisciplinary treatment. World Neurosurg 2021; 159:314-326. [PMID: 34339893 DOI: 10.1016/j.wneu.2021.07.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are unusual vascular pathologies characterized by the abnormal aggregation of dilated arteries and veins in the brain parenchyma and for which the absence of a normal vascular structure and capillary bed leads to direct connections between arteries and veins. Although bAVMs have long been believed to be congenital anomalies that develop during the prenatal period, current studies show that inflammation is associated with AVM genesis, growth, and rupture. Interventional treatment options include microsurgery, stereotactic radiosurgery, and endovascular embolization, and management often comprises a multidisciplinary combination of these modalities. The appropriate selection of patients with brain arteriovenous malformations for interventional treatment requires balancing the risk of treatment complications against the risk of hemorrhaging during the natural course of the pathology; however, no definitive guidelines have been established for the management of brain arteriovenous malformations. In this paper, we comprehensively review the current basic and clinical studies on bAVMs and discuss the contemporary status of multidisciplinary management of bAVMs.
Collapse
|
26
|
Wang M, Jiao Y, Zeng C, Zhang C, He Q, Yang Y, Tu W, Qiu H, Shi H, Zhang D, Kang D, Wang S, Liu AL, Jiang W, Cao Y, Zhao J. Chinese Cerebrovascular Neurosurgery Society and Chinese Interventional & Hybrid Operation Society, of Chinese Stroke Association Clinical Practice Guidelines for Management of Brain Arteriovenous Malformations in Eloquent Areas. Front Neurol 2021; 12:651663. [PMID: 34177760 PMCID: PMC8219979 DOI: 10.3389/fneur.2021.651663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this guideline is to present current and comprehensive recommendations for the management of brain arteriovenous malformations (bAVMs) located in eloquent areas. Methods: An extended literature search on MEDLINE was performed between Jan 1970 and May 2020. Eloquence-related literature was further screened and interpreted in different subcategories of this guideline. The writing group discussed narrative text and recommendations through group meetings and online video conferences. Recommendations followed the Applying Classification of Recommendations and Level of Evidence proposed by the American Heart Association/American Stroke Association. Prerelease review of the draft guideline was performed by four expert peer reviewers and by the members of Chinese Stroke Association. Results: In total, 809 out of 2,493 publications were identified to be related to eloquent structure or neurological functions of bAVMs. Three-hundred and forty-one publications were comprehensively interpreted and cited by this guideline. Evidence-based guidelines were presented for the clinical evaluation and treatment of bAVMs with eloquence involved. Topics focused on neuroanatomy of activated eloquent structure, functional neuroimaging, neurological assessment, indication, and recommendations of different therapeutic managements. Fifty-nine recommendations were summarized, including 20 in Class I, 30 in Class IIa, 9 in Class IIb, and 2 in Class III. Conclusions: The management of eloquent bAVMs remains challenging. With the evolutionary understanding of eloquent areas, the guideline highlights the assessment of eloquent bAVMs, and a strategy for decision-making in the management of eloquent bAVMs.
Collapse
Affiliation(s)
- Mingze Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - A-li Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Gamma Knife Center, Beijing Neurosurgical Institute, Beijing, China
| | - Weijian Jiang
- Department of Vascular Neurosurgery, Chinese People's Liberation Army Rocket Army Characteristic Medical Center, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Krithika S, Sumi S. Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 2020; 236:4841-4856. [PMID: 33345330 DOI: 10.1002/jcp.30226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Collapse
Affiliation(s)
- S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
28
|
Takagi Y, Kanematsu Y, Mizobuchi Y, Mure H, Shimada K, Tada Y, Morigaki R, Sogabe S, Fujihara T, Miyamoto T, Miyake K. Basic research and surgical techniques for brain arteriovenous malformations. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:222-228. [PMID: 33148892 DOI: 10.2152/jmi.67.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Arteriovenous malformations (AVMs) are hemorrhagic vascular diseases in which arteries and veins are directly connected with no capillary bed between the two. We herein introduce the results of basic research of this disease and surgical techniques based on our data and experiences. The results obtained from our research show that cell death- and inflammation-related molecules changed or became activated compared with control specimens. These findings indicate that chronic inflammation occurs in and around the nidus of AVMs. Various molecules are involved in the mechanisms of cell death and angiogenesis during this process. Confirmation of blood flow in the nidus is very important to avoid hemorrhagic complications during surgical removal of the nidus. The risk of hemorrhage increases when the blood flow in the nidus is not reduced. We reported the advantages of serial indocyanine green videoangiography, which is used to assess the blood flow during AVM nidus removal. Since publication of the ARUBA trial and Scottish Audit, treatments with high morbidity have not been allowed. It is especially important for neurosurgeons to treat low Spetzler-Martin grade AVMs with low morbidity. J. Med. Invest. 67 : 222-228, August, 2020.
Collapse
Affiliation(s)
- Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshifumi Mizobuchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hideo Mure
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shu Sogabe
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshitaka Fujihara
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
29
|
Cheng P, Ma L, Shaligram S, Walker EJ, Yang ST, Tang C, Zhu W, Zhan L, Li Q, Zhu X, Lawton MT, Su H. Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation. J Neurosurg 2020; 132:1566-1573. [PMID: 31026826 PMCID: PMC6817409 DOI: 10.3171/2019.1.jns183112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A high level of vascular endothelial growth factor (VEGF) has been implicated in brain arteriovenous malformation (bAVM) bleeding and rupture. However, direct evidence is missing. In this study the authors used a mouse bAVM model to test the hypothesis that elevation of focal VEGF levels in bAVMs exacerbates the severity of bAVM hemorrhage. METHODS Brain AVMs were induced in adult mice in which activin receptor-like kinase 1 (Alk1, a gene that causes AVM) gene exons 4-6 were floxed by intrabasal ganglia injection of an adenoviral vector expressing Cre recombinase to induce Alk1 mutation and an adeno-associated viral vector expressing human VEGF (AAV-VEGF) to induce angiogenesis. Two doses of AAV-VEGF (5 × 109 [high] or 2 × 109 [low]) viral genomes were used. In addition, the common carotid artery and external jugular vein were anastomosed in a group of mice treated with low-dose AAV-VEGF 6 weeks after the model induction to induce cerebral venous hypertension (VH), because VH increases the VEGF level in the brain. Brain samples were collected 8 weeks after the model induction. Hemorrhages in the bAVM lesions were quantified on brain sections stained with Prussian blue, which detects iron deposition. VEGF levels were quantified in bAVM tissue by enzyme-linked immunosorbent assay. RESULTS Compared to mice injected with a low dose of AAV-VEGF, the mice injected with a high dose had higher levels of VEGF (p = 0.003) and larger Prussian blue-positive areas in the bAVM lesion at 8 or 9 weeks after model induction (p = 0.002). VH increased bAVM hemorrhage in the low-dose AAV-VEGF group. The overall mortality in the high-dose AAV-VEGF group was 26.7%, whereas no mouse died in the low-dose AAV-VEGF group without VH. In contrast, VH caused a mortality of 50% in the low-dose AAV-VEGF group. CONCLUSIONS Using mouse bAVM models, the authors provided direct evidence that elevation of the VEGF level increases bAVM hemorrhage and mouse mortality.
Collapse
Affiliation(s)
- Philip Cheng
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Li Ma
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sonali Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Espen J. Walker
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Shun-Tai Yang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Chaoliang Tang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Lei Zhan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Qiang Li
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Xiaonan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Michael T. Lawton
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| |
Collapse
|
30
|
Lopez-Rivera V, Sheriff FG, Sandberg DI, Blackburn S, Dannenbaum M, Sheth SA, Day AL, Chen PR. De novo thalamic arteriovenous malformation in a boy with a brainstem cavernous malformation. J Clin Neurosci 2020; 76:226-228. [PMID: 32331948 DOI: 10.1016/j.jocn.2020.04.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Brain arteriovenous malformations (bAVMs) have long been considered to be congenital, developing between the third and eighth weeks of embryogenesis. However, cases reporting their de novo formation suggest that these lesions can develop after birth and have challenged this concept. We present a case of a 6-year-old boy with a history of a brainstem cavernous malformation diagnosed after birth who later developed a de novo bAVM. The de novo occurrence of this bAVM distant to the site of the cavernous malformation and a prior negative catheter angiography contributes to the uncertainty of the dynamics and pathophysiology of bAVMs.
Collapse
Affiliation(s)
- Victor Lopez-Rivera
- Departments of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Faheem G Sheriff
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - David I Sandberg
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States; Departments of Division of Pediatric Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Spiros Blackburn
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mark Dannenbaum
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sunil A Sheth
- Departments of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Arthur L Day
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Peng Roc Chen
- Departments of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
31
|
Unnithan AKA. Overview of the current concepts in the management of arteriovenous malformations of the brain. Postgrad Med J 2020; 96:212-220. [DOI: 10.1136/postgradmedj-2019-137202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/12/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
BackgroundThere is a lack of consensus in the management of arteriovenous malformations (AVMs) of the brain since ARUBA (A Randomised trial of Unruptured Brain Arteriovenous malformations) trial showed that medical management is superior to interventional therapy in patients with unruptured brain AVMs. The treatment of brain AVM is associated with significant morbidity.Objectives and methodsA review was done to determine the behaviour of brain AVMs and analyse the risks and benefits of the available treatment options. A search was done in the literature for studies on brain AVMs. Descriptive analysis was also done.ResultsThe angiogenic factors such as vascular endothelial growth factor and inflammatory cytokines are involved in the growth of AVMs. Proteinases such as matrix metalloproteinase-9 contribute to the weakening and rupture of the nidus. The risk factors for haemorrhage are prior haemorrhage, deep and infratentorial AVM location, exclusive deep venous drainage and associated aneurysms. The advancements in operating microscope and surgical techniques have facilitated microsurgery. Stereotactic radiosurgery causes progressive vessel obliteration over 2–3 years. Endovascular embolisation can be done prior to microsurgery or radiosurgery and for palliation.ConclusionsSpetzler-Martin grades I and II have low surgical risks. The AVMs located in the cerebellum, subarachnoid cisterns and pial surfaces of the brainstem can be treated surgically. Radiosurgery is preferable for deep-seated AVMs. A combination of microsurgery, embolisation and radiosurgery is recommended for deep-seated and Spetzler-Martin grade III AVMs. Observation is recommended for grades IV and V.
Collapse
|
32
|
Rozhchenko LV. [Molecular mechanisms of growth and relapse of cerebral arteriovenous malformations]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2020; 84:94-100. [PMID: 32207748 DOI: 10.17116/neiro20208401194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cerebral AVMs are not static congenital formations, they may grow, recur, and even appear de novo after complete resection, embolization, or radiosurgery. The author analyzes modern literature on the molecular mechanisms of AVM growth. The AVM intranidal vessels are exposed to abnormally high blood flows, which leads to the activation of molecular pathways in endothelial cells, causing proliferation and remodeling of AVM vessels. The existence of cerebral AVM is determined by more than 860 genes, the most important among them are the genetic mutations (SNPs) of VEGF, TGF-β, IL-6, MMP, ANG, ENG. The possible causes of AVM relapse after removal or total embolization are described, as well as the mechanisms of stimulation of angiogenesis after partial embolization: hemodynamic changes in AVM, aseptic inflammation in response to embolizate and the local regional hypoxia inside the AVM. In response to this, growth factors are expressed in the endothelium that further stimulate angiogenesis in AVM. Understanding the complex molecular biology of AVMs is critical to identifying and predicting their behavior, developing new treatments that improve the results of endovascular and surgical treatment.
Collapse
Affiliation(s)
- L V Rozhchenko
- A.L. Polenov Russian Neurosurgical Research Institute - branch of V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| |
Collapse
|
33
|
Barbosa Do Prado L, Han C, Oh SP, Su H. Recent Advances in Basic Research for Brain Arteriovenous Malformation. Int J Mol Sci 2019; 20:ijms20215324. [PMID: 31731545 PMCID: PMC6862668 DOI: 10.3390/ijms20215324] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.
Collapse
Affiliation(s)
- Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
| | - Chul Han
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - S. Paul Oh
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +01-415-206-3162
| |
Collapse
|
34
|
He Y, Ding Y, Bai W, Li T, Hui FK, Jiang WJ, Xue J. Safety and Efficacy of Transvenous Embolization of Ruptured Brain Arteriovenous Malformations as a Last Resort: A Prospective Single-Arm Study. AJNR Am J Neuroradiol 2019; 40:1744-1751. [PMID: 31537516 DOI: 10.3174/ajnr.a6197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The efficacy and safety of transvenous embolization for brain arteriovenous malformations remains unclear, given the very limited number of cases reported. This prospective study was performed to assess this technique in ruptured AVMs. MATERIALS AND METHODS Twenty-one consecutive patients with ruptured brain AVMs who underwent transvenous embolization were prospectively followed between November 2016 and November 2018. The Spetzler-Martin grade was I in 3 AVMs (14.3%), II in four (19.0%), III in eleven (52.4%), and IV in three (14.3%). The complete AVM occlusion rate was calculated from 6-month follow-up DSA images. Occurrence of hemorrhage and infarction after embolization was evaluated using CT and MR imaging within 1 month after the operation. The mRS was used to assess the functional outcomes. RESULTS Complete AVM nidus obliteration was shown in 16 (84%) of 19 patients with technically feasible AVMs immediately after embolization. One (5%) patient with a small residual nidus after treatment showed complete obliteration at 13-month follow-up. There were 5 hemorrhages and 1 infarction; 4 patients' symptoms improved gradually. The percentage of cases with mRS ≤ 2 rose from 57.1% (12/21) before embolization to 66.7% (14/21) at 1-month follow-up. Both the morbidity and mortality rates were 4.8% (1/21). CONCLUSIONS Transvenous embolization can be performed only in highly selected hemorrhagic brain AVMs with high complete obliteration rates, improved functional outcomes, and acceptable morbidity and mortality rates, but it should not be considered as a first-line treatment.
Collapse
Affiliation(s)
- Y He
- From the Department of Interventional Neuroradiology (Y.H., W.B., T.L., J.X.), Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, and Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Y Ding
- Department of Radiology (Y.D.), Mayo Clinic, Rochester, Minnesota
| | - W Bai
- From the Department of Interventional Neuroradiology (Y.H., W.B., T.L., J.X.), Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, and Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - T Li
- From the Department of Interventional Neuroradiology (Y.H., W.B., T.L., J.X.), Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, and Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - F K Hui
- Department of Radiology (F.K.H.), Johns Hopkins Hospital, Baltimore, Maryland
| | - W-J Jiang
- Department of Vascular Neurosurgery (W.-J.J.), the PLA Rocket Force General Hospital, Beijing, China
| | - J Xue
- From the Department of Interventional Neuroradiology (Y.H., W.B., T.L., J.X.), Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, and Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| |
Collapse
|
35
|
Koch MJ, Mahal BAV, Hadzipasic M, Fehnel KP, Chapman PH, Loeffler JS, Orbach DB, Smith ER. Dynamic Changes in Arteriovenous Malformations (AVMs): Spontaneous Growth and Resolution of AVM-Associated Aneurysms in Two Pediatric Patients. Pediatr Neurosurg 2019; 54:394-398. [PMID: 31597140 DOI: 10.1159/000501041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/19/2019] [Indexed: 11/19/2022]
Abstract
Arteriovenous malformations (AVMs) of the central nervous system are dynamic lesions that can change with time. One of the most clinically important concerns is the development and potential rupture of AVM-associated aneurysms. In this report, we review pediatric cases of de novo development of AVM-associated aneurysms in 2 children and present the relevant clinical and radiographic records. These 2 cases, coupled with a review of the current literature, offer insight into the risks of AVMs in children and underline the importance of timely treatment of appropriate cases.
Collapse
Affiliation(s)
- Matthew J Koch
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brandon A Virgil Mahal
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Muhamed Hadzipasic
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katie P Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Paul H Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay S Loeffler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA,
| |
Collapse
|
36
|
Zhu W, Saw D, Weiss M, Sun Z, Wei M, Shaligram S, Wang S, Su H. Induction of Brain Arteriovenous Malformation Through CRISPR/Cas9-Mediated Somatic Alk1 Gene Mutations in Adult Mice. Transl Stroke Res 2018; 10:557-565. [PMID: 30511203 DOI: 10.1007/s12975-018-0676-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. The pathogenesis of bAVM has not been fully understood. Animal models are important tools for dissecting bAVM pathogenesis and testing new therapies. We have developed several mouse bAVM models using genetically modified mice. However, due to the body size, mouse bAVM models have some limitations. Recent studies identified somatic mutations in sporadic human bAVM. To develop a feasible tool to create sporadic bAVM in rodent and animals larger than rodent, we made tests using the CRISPR/Cas9 technique to induce somatic gene mutations in mouse brain in situ. Two sequence-specific guide RNAs (sgRNAs) targeting mouse Alk1 exons 4 and 5 were cloned into pAd-Alk1e4sgRNA + e5sgRNA-Cas9 plasmid. These sgRNAs were capable to generate mutations in Alk1 gene in mouse cell lines. After packaged into adenovirus, Ad-Alk1e4sgRNA + e5sgRNA-Cas9 was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brains of wild-type C57BL/6J mice. Eight weeks after viral injection, bAVMs were detected in 10 of 12 mice. Compared to the control (Ad-GFP/AAV-VEGF-injected) brain, 13% of Alk1 alleles were mutated and Alk1 expression was reduced by 26% in the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF-injected brains. Around the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF injected site, Alk1-null endothelial cells were detected. Our data demonstrated that CRISPR/Cas9 is a feasible tool for generating bAVM model in animals.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Saw
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam Weiss
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sen Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Li K, Guo Y, Qu L, Xu B, Xu K, Yu J. Hybrid surgery for an arteriovenous malformation fed by an accessory middle cerebral artery and drained by a developmental venous anomaly: A case report and literature review. Exp Ther Med 2018; 16:1994-2000. [PMID: 30186430 PMCID: PMC6122327 DOI: 10.3892/etm.2018.6372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/21/2018] [Indexed: 11/05/2022] Open
Abstract
An accessory middle cerebral artery (AMCA), which mainly acts in the collateral circulation of the middle cerebral artery (MCA), is a rare anatomic malformation. Similar to other intracranial vessels, cerebrovascular disease can occur in the AMCA. However, the development of an arteriovenous malformation (AVM) in the AMCA is very rare, especially in conjuction with developmental venous anomalies (DVAs). Here, a rare case of an AMCA combined with an AVM and a DVA was reported. The patient was a 47-year-old female with intracranial hemorrhage at symptom onset. CT and MRI showed lesions in the left Sylvian fissure and insula accompanied by hemorrhage. DSA suggested a left AMCA; an AVM of the AMCA was located in the deep Sylvian fissure. The AVM was diffusely developed and drained into the DVA. The operation was performed in a hybrid operating room. The major feeding artery of the AVM, which was derived from the AMCA, was clipped, then the AVM and DVA were subsequently removed. Intraoperative DSA showed that the AVM and DVA were radically removed. A pathological examination confirmed the presence of an AVM. The patient recovered well and was discharged. Therefore, as highlighted in this case report, rare AVMs can be found in AMCAs and can even occur simultaneously with a DVA. Hybrid surgical treatment can be used to remove AVMs and can lead to an improved prognosis.
Collapse
Affiliation(s)
- Kailing Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunbao Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
38
|
Santos R, Aguilar-Salinas P, Entwistle JJ, Aldana PR, Beier AD, Hanel RA. De Novo Arteriovenous Malformation in a Pediatric Patient: Case Report and Review of the Literature. World Neurosurg 2018; 111:341-345. [DOI: 10.1016/j.wneu.2017.12.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
39
|
Li P, Zhang L, Chen D, Zeng M, Chen F. Focal neurons: another source of vascular endothelial growth factor in brain arteriovenous malformation tissues? Neurol Res 2017; 40:122-129. [PMID: 29191115 DOI: 10.1080/01616412.2017.1405574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Brain arteriovenous malformations (bAVMs) are devastating, hemorrhage-prone, cerebrovascular entities characterized by well-defined feeding arteries, draining veins, and the absence of a capillary bed. The endothelial cells that comprise bAVMs exhibit a loss of arterial and venous specification. The role of abnormal angiogenesis in the formation and progression of bAVMs is still unclear. This study aimed to investigate the expression of vascular endothelial growth factor (VEGF) in neurons and glial cells in bAVMs to try to uncover the multiple cell origin of VEGF. Methods A total of 25 bAVM specimens and 25 control tissues were obtained. Western blot and immunohistochemical analyses were used to evaluate the expression of VEGF. The distribution of VEGF in neurons and glial cells in these bAVMs were observed by double-label immunofluorescence staining and subsequent imaging. Results Western blot analysis revealed a significant overexpression of VEGF in bAVM tissues (P < 0.05). Immunohistochemistry showed that the amount of cells that overexpressed VEGF in bAVM tissues was significantly greater compared to that in normal tissues (P < 0.05). Double-label immunofluorescence staining showed no significant difference between the mean amounts of VEGF-positive cells in astrocytes and in neurons (P < 0.05). Conclusions The formation and progression of bAVMs is related to the local overexpression of VEGF. Similar levels of VEGF overexpression are found in astrocytes, neurons, and vascular endothelial cells, which suggest that VEGF may be derived from astrocytes and neurons. It implied that focal neurons may play a certain role in the pathophysical process of bAVMs, however, identification of the production and functional mechanisms of VEGF in the neurons still requires further investigation.
Collapse
Affiliation(s)
- Pengchen Li
- a Department of Neurosurgery , Xiangya Hospital, Central South University , Changsha , P.R. China
| | - Longbo Zhang
- a Department of Neurosurgery , Xiangya Hospital, Central South University , Changsha , P.R. China
| | - Deshun Chen
- a Department of Neurosurgery , Xiangya Hospital, Central South University , Changsha , P.R. China
| | - Ming Zeng
- a Department of Neurosurgery , Xiangya Hospital, Central South University , Changsha , P.R. China
| | - Fenghua Chen
- a Department of Neurosurgery , Xiangya Hospital, Central South University , Changsha , P.R. China
| |
Collapse
|
40
|
Albandar HJ, Roberto ES, See JRH, Sabiers JH. Arteriovenous malformation and thyroid metastasis from underlying renal cell carcinoma, an unusual presentation of malignancy: A case report. Oncol Lett 2017; 13:3323-3327. [PMID: 28521439 PMCID: PMC5431183 DOI: 10.3892/ol.2017.5822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Renal Clear Cell Carcinoma (RCC) comprises over 80% of renal malignancies in adults. Thyroid gland metastasis is rare in RCC. Few studies have described cases of RCC mistaken for benign arteriovenous malformation (AVM). To the best of our knowledge, an AVM arising from underlying RCC metastasis to the brain has not yet been reported. The current study presents a case of RCC metastasis to the thyroid gland, with an AVM identified to be a result of metastatic involvement in the brain. A 45-year-old African-American female presented with left-sided weakness, slurred speech, facial droop and seizure. The patient's medical history was notable for a diagnosis of RCC, 2010 American Joint Committee on Cancer Tumor-Node-Metastasis Stage 1B (T1B, N0, M0) grade III status post-right partial nephrectomy. Computed tomography (CT) imaging revealed a soft-tissue mass, suspected to be metastasis, in the left lobe of the thyroid, in addition to a 1.9 cm right intracranial mass in the parietal lobe. Positron emission tomography/computed tomography revealed a hypermetabolic area in the thyroid. Fine needle aspiration of the thyroid, and subsequent histopathological analysis, suggested a diagnosis of RCC metastasis. Subsequent immunohistochemical analysis of the thyroid tumor confirmed RCC metastasis. The patient also underwent a right partial craniotomy with resection of the intra-axial mass. Initial pathology was suggestive of an AVM. After several months, the patient was readmitted with headache, nausea and vomiting. Repeat imaging revealed recurrence of a 3.9 cm mass that was negative for AVM on biopsy; however, the immunostaining markers were positive for RCC. Recent literature suggests a link between AVMs and RCC as each exhibit highly vascular characteristics. RCC is a particularly vascular tumor that has been demonstrated to lead to the abnormal expression of various angiogenesis-promoting growth factors, including vascular endothelial growth factor. These angiogenic factors are vital to the pathophysiological pathway involved in the tumorigenesis and progression of RCC, and may explain the development of AVMs within these neoplasms, as demonstrated in the case presented in the current study.
Collapse
Affiliation(s)
- H J Albandar
- Department of Internal Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45409, USA
| | - E S Roberto
- Department of Internal Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45409, USA
| | - J R H See
- Division of Hematology Oncology, Wright State University Boonshoft School of Medicine, Dayton, OH 45409, USA
| | - J H Sabiers
- Division of Hematology Oncology, Wright State University Boonshoft School of Medicine, Dayton, OH 45409, USA
| |
Collapse
|
41
|
Lohkamp LN, Strong C, Rojas R, Anderson M, Laviv Y, Kasper EM. Hypervascular glioblastoma multiforme or arteriovenous malformation associated Glioma? A diagnostic and therapeutic challenge: A case report. Surg Neurol Int 2016; 7:S883-S888. [PMID: 27999714 PMCID: PMC5154202 DOI: 10.4103/2152-7806.194506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Simultaneous presentation of arteriovenous malformation (AVM) and glioblastoma multiforme (GBM) is rarely reported in the literature and needs to be differentiated from “angioglioma”, a highly vascular glioma and other differential diagnosis such as hypervascular glioblastoma. Incorporating critical features of both, malignant glioma and AVM, such lesions lack a standard algorithm for diagnosis and therapy due to their rare incidence as well as their complex radiological and highly individualized clinical presentation. Case Description: We present a case of a 71-year-old female with newly developing motor deficits and radiographic findings of a heterogeneously contrast enhancing right-sided thalamic lesion with highly prominent vasculature. While computed tomography angiogram and cerebral digital subtraction angiography supported the diagnosis of AVM, contrast-enhancing magnetic resonance imaging (MRI) and MR-spectroscopy was suggestive of malignant glioma. A stereotactic biopsy revealed the diagnosis of a GBM (WHO IV) and the patient was treated accordingly. Conclusion: The coincidental presentation of vascular lesions such as AVM and malignant glioma is rare and presents a major challenge when establishing a diagnosis. The respective treatment decision is complicated by the fact that available treatment modalities (e.g. radiosurgery and/or open resection) carry disease specific complications for each entity. Finding a suitable solution for such cases requires standardization of early diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Laura-Nanna Lohkamp
- Department of Neurosurgery with Pediatric Neurosurgery, Charité-University Medicine, Campus Virchow, Berlin, Germany
| | - Christian Strong
- Department of Neurosurgery, Brigham and Woman's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafael Rojas
- Department of Neuroradiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Anderson
- Department of Pathology and Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yosef Laviv
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ekkehard M Kasper
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Pabaney AH, Rammo RA, Tahir RA, Seyfried D. Development of De Novo Arteriovenous Malformation Following Ischemic Stroke: Case Report and Review of Current Literature. World Neurosurg 2016; 96:608.e5-608.e12. [PMID: 27671884 DOI: 10.1016/j.wneu.2016.09.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) are hypothesized to be static, congenital lesions developing as early as 4 weeks of fetal life. New literature has shown that AVMs may represent dynamic and reactive vascular lesions arising from cerebral infarction, inflammation, or trauma. A literature search reveals 17 previously reported cases of new AVM formation after previous negative imaging studies. This reactive development or "second hit" theory suggests that at a molecular level, growth factors may play a vital role in aberrant angiogenesis and maturation of an arteriovenous fistula into an AVM. CASE DESCRIPTION A 52-year-old female presented with a ruptured left frontal AVM demonstrated by computed tomography angiography and digital subtraction angiography. The patient had suffered an acute ischemic stroke in the similar cerebral vascular territory 8 years prior due to left internal carotid artery occlusion. Detailed neuroimaging at that time failed to reveal any vascular malformation, suggesting that the AVM might have developed in response to initial vascular insult. CONCLUSIONS We believe that there might exist a subset of AVMs that display dynamic characteristics and could potentially appear, grow, or resolve spontaneously without intervention, especially in the presence of local growth factors and molecular signaling cascades. When combined with a previous cerebral insult such as stroke, trauma, or inflammation, de novo AVM formation may represent a "second hit" with abnormal angiogenesis and vessel formation.
Collapse
Affiliation(s)
- Aqueel H Pabaney
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.
| | - Richard A Rammo
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Rizwan A Tahir
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Donald Seyfried
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
43
|
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice. Transl Stroke Res 2016; 7:488-496. [PMID: 27352867 DOI: 10.1007/s12975-016-0478-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-β (TGF-β) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin β8 subunit (ITGB8), another member in the TGF-β superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/- : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.
Collapse
|
44
|
Abstract
Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults. Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their pathogenesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiectasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the pathogensis of sporadic bAVMs and in the development of new medical therapies for them.
Collapse
Affiliation(s)
- Masaki Komiyama
- Department of Neuro-Intervention, Osaka City General Hospital
| |
Collapse
|
45
|
Nielsen CM, Huang L, Murphy PA, Lawton MT, Wang RA. Mouse Models of Cerebral Arteriovenous Malformation. Stroke 2015; 47:293-300. [PMID: 26351360 DOI: 10.1161/strokeaha.115.002869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Corinne M Nielsen
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Lawrence Huang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Patrick A Murphy
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Michael T Lawton
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Rong A Wang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.).
| |
Collapse
|
46
|
Ma L, Guo Y, Zhao YL, Su H. The Role of Macrophage in the Pathogenesis of Brain Arteriovenous Malformation. ACTA ACUST UNITED AC 2015; 1:52-56. [PMID: 26495437 DOI: 10.17554/j.issn.2409-3548.2015.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain arteriovenous malformation (BAVM) is an important risk factor for intracranial hemorrhage, especially in children and young adults. Inflammation has been implicated in BAVM lesion progression. Among various inflammatory components, macrophage is one of the major inflammatory cells present in human ruptured and unruptured BAVM and in the BAVM lesions of animal models. The role of macrophage in BAVM pathogenesis is not fully understood. In this review, we summarize recent studies on macrophages and introduce a non-invasive imaging protocol as a potential tool for detecting macrophage in BAVM and predicting the risk of BAVM rupture.
Collapse
Affiliation(s)
- Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China ; China National Clinical Research Center for Neurological Diseases, Beijing, China ; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China ; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
47
|
Raj JA, Stoodley M. Experimental Animal Models of Arteriovenous Malformation: A Review. Vet Sci 2015; 2:97-110. [PMID: 29061934 PMCID: PMC5644622 DOI: 10.3390/vetsci2020097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Arteriovenous malformations (AVMs) are congenital lesions that cause brain haemorrhage in children and young adults. Current treatment modalities include surgery, radiosurgery and embolization. These treatments are generally effective only for small AVMs. Over one third of AVMs cannot be treated safely and effectively with existing options. Several animal models have been developed with the aims of understanding AVM pathophysiology and improving treatment. No animal model perfectly mimics a human AVM. Each model has limitations and advantages. Models contribute to the understanding of AVMs and hopefully to the development of improved therapies. This paper reviews animal models of AVMs and their advantages and disadvantages.
Collapse
Affiliation(s)
- Jude Amal Raj
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.
| | - Marcus Stoodley
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
48
|
Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1. Gene Ther 2015; 22:893-900. [PMID: 26090874 PMCID: PMC4636448 DOI: 10.1038/gt.2015.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
The soluble vascular endothelial growth factor (VEGF) receptor 1 (sFLT1) has been tested in both animals and humans for anti-angiogenic therapies, e.g., age-related macular degeneration. We hypothesized that adeno-associated viral vector (AAV)-mediated sFLT1 expression could be used to inhibit abnormal brain angiogenesis. We tested the anti-angiogenic effect of sFLT1 and the feasibility of using AAV serotype 9 to deliver sFLT1 through intravenous injection (IV) to the brain angiogenic region. AAV vectors were packaged in AAV serotypes 1 and 2 (stereotactic injection) and 9 (IV-injection). Brain angiogenesis was induced in adult mice through stereotactic injection of AAV1-VEGF. AAV2-sFLT02 containing sFLT1 VEGF-binding domain (domain 2) was injected into the brain angiogenic region, and AAV9-sFLT1 was injected into the jugular vein at the time of or 4 weeks after AAV1-VEGF injection. We showed that AAV2-sFLT02 inhibited brain angiogenesis at both time points. Intravenous injection of AAV9-sFLT1 inhibited angiogenesis only when the vector was injected 4 weeks after angiogenic induction. Neither lymphocyte infiltration nor neuron loss was observed in AAV9-sFLT1-treated mice. Our data show that systemically delivered AAV9-sFLT1 inhibits angiogenesis in the mouse brain, which could be utilized to treat brain angiogenic diseases such as brain arteriovenous malformation.
Collapse
|
49
|
Sandu AM, Giovani A, Gorgan M. Experimental model of arteriovenous malformation in vitro using biological grafts. ROMANIAN NEUROSURGERY 2015. [DOI: 10.1515/romneu-2015-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Introduction: Brain arteriovenous malformations (AVMs) represent a serious health problem all around the world. Experimental models help to better understand the pathophysiology of these lesions. Experiment: We performed an experimental model of AVM using biological grafts, arteries and veins harvested from chicken wings at the elbow joint. We used 14 vessels and we performed 20 end-to-end anastomoses to create a nidus with a single feeding artery and a single draining vein. The system was irrigated with colored solution. The experiment was done according with law in force regarding experimental research activity. Conclusions: Experimental models allow us to understand the hemodynamics and predict the outcome of brain AVMs in humans. This experimental model is a useful tool in understanding the hemodynamic properties of brain AVMs. It is very useful in vascular anastomosis training
Collapse
|
50
|
Chen S, Chen Y, Xu L, Matei N, Tang J, Feng H, Zhang J. Venous system in acute brain injury: Mechanisms of pathophysiological change and function. Exp Neurol 2015; 272:4-10. [PMID: 25783658 DOI: 10.1016/j.expneurol.2015.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/09/2015] [Indexed: 01/31/2023]
Abstract
Cerebral vascular injury is a major component of acute brain injury. Currently, neuroprotective strategies primarily focus on the recanalization of cerebral arteries and capillaries, and the protection of insulted neurons. Hitherto, the role of vein drainage in the pathophysiology of acute brain injury has been overlooked, due to an under appreciation of the magnitude of the impact of veins in circulation. In this review, we summarize the changes in the vein morphology and functions that are known, or likely to occur related to acute brain injury, and aim to advance the therapeutic management of acute brain injury by shifting the focus from reperfusion to another term: recirculation. Recent progress in the neurobiological understanding of the vascular neural network has demonstrated that cerebral venous systems are able to respond to acute brain injury by regulating the blood flow disharmony following brain edema, blood brain barrier disruption, ischemia, and hemorrhage. With the evidence presented in this review, future clinical management of acutely brain injured patients will expand to include the recirculation concept, establishing a harmony between arterial and venous systems, in addition to the established recanalization and reperfusion strategies.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nathanael Matei
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - JohnH Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|