1
|
He P, Zhang H, Wang J, Guo Y, Tian Q, Liu C, Gong P, Ye Q, Peng Y, Li M. Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway. Neurochem Res 2025; 50:91. [PMID: 39883266 DOI: 10.1007/s11064-025-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.
Collapse
Affiliation(s)
- Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Youjian Peng
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Wroe W, Dienel A, Hong S, Matsumura K, Guzman J, Torres K, Bernal A, Zeineddine HA, Pandit PT, Blackburn SL, McBride DW. Incidence and Factors in Delayed Neurological Deficits after Subarachnoid Hemorrhage in Mice. BRAIN HEMORRHAGES 2024; 5:99-106. [PMID: 39830728 PMCID: PMC11741540 DOI: 10.1016/j.hest.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background Delayed cerebral ischemia (DCI) is one of the most feared complications in aneurysmal subarachnoid hemorrhage (SAH). Animal models are crucial to studying the disease mechanisms and potential treatments. DCI in rodents was thought to not exist; herein we examine literature and our experience with DCI in rodents. Methods Daily behavioral performance was assessed every day from day 1 to up to 7 days post-SAH on mice from 5 different studies that used the endovascular perforation model. Performance was graded using an 8-test sensorimotor neuroscore previously described. The daily neuroscore was then used to identify the incidence and timing of delayed neurological deficits, a clinical surrogate for DCI. A total number of 298 mice (134 males, 164 females) were subjected to SAH. Fifty-one mice had histological staining done to identify infarct volume. Results The overall incidence of DND was 33.9%; 27.6% in males and 39.0% in females, but this difference was not statistically significant. The overall incidence of delayed death was 21.1%, and there was no significant difference for delayed mortality in females versus male mice. There is a non-statistically significant trend towards increased infarct volume in mice suffering DND. Conclusions Mice with endovascular puncture induced SAH develop DND at rates comparable to human patients. Future work needs to correlate the DND seen with decreased regional cerebral blood flow, another hallmark of DCI, but in spite of this need, researchers may use the murine models to test therapies for DCI after SAH.
Collapse
Affiliation(s)
- William Wroe
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Fürstenau E, Lindauer U, Koch H, Höllig A. Secondary Ischemia Assessment in Murine and Rat Preclinical Subarachnoid Hemorrhage Models: A Systematic Review. J Am Heart Assoc 2024; 13:e032694. [PMID: 38420758 PMCID: PMC10944078 DOI: 10.1161/jaha.123.032694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Delayed cerebral ischemia represents a significant contributor to death and disability following aneurysmal subarachnoid hemorrhage. Although preclinical models have shown promising results, clinical trials have consistently failed to replicate the success of therapeutic strategies. The lack of standardized experimental setups and outcome assessments, particularly regarding secondary vasospastic/ischemic events, may be partly responsible for the translational failure. The study aims to delineate the procedural characteristics and assessment modalities of secondary vasospastic and ischemic events, serving as surrogates for clinically relevant delayed cerebral ischemia, in recent rat and murine subarachnoid hemorrhage models. METHODS AND RESULTS We conducted a systematic review of rat and murine in vivo subarachnoid hemorrhage studies (published: 2016-2020) using delayed cerebral ischemia/vasospasm as outcome parameters. Our analysis included 102 eligible studies. In murine studies (n=30), the endovascular perforation model was predominantly used, while rat studies primarily employed intracisternal blood injection to mimic subarachnoid hemorrhage. Particularly, the injection models exhibited considerable variation in injection volume, rate, and cerebrospinal fluid withdrawal. Peri-interventional monitoring was generally inadequately reported across all models, with body temperature and blood pressure being the most frequently documented parameters (62% and 34%, respectively). Vasospastic events were mainly assessed through microscopy of large cerebral arteries. In 90% of the rat and 86% of the murine studies, only male animals were used. CONCLUSIONS Our study underscores the substantial heterogeneity in procedural characteristics and outcome assessments of experimental subarachnoid hemorrhage research. To address these challenges, drafting guidelines for standardization and ensuring rigorous control of methodological and experimental quality by funders and journals are essential. REGISTRATION URL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42022337279.
Collapse
Affiliation(s)
- Elias Fürstenau
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Ute Lindauer
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
- Translational Neurosurgery and Neurobiology, Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Henner Koch
- Department of Epileptology and NeurologyRWTH Aachen UniversityAachenGermany
| | - Anke Höllig
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Alpdogan S, Sander T, Zhang R, Khan D, Li X, Zhou H, Li K, Nickel AC, Zheng B, Skryabin A, Schieferdecker S, Hofmann BB, Donaldson DM, Cornelius JF, Hänggi D, Muhammad S. Meta-review on Perforation Model of Subarachnoid Hemorrhage in Mice: Filament Material as a Possible Moderator of Mortality. Transl Stroke Res 2024; 15:16-29. [PMID: 36422813 PMCID: PMC10796476 DOI: 10.1007/s12975-022-01106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
Abstract
Robust preclinical models are inevitable for researchers to unravel pathomechanisms of subarachnoidal hemorrhage (SAH). For the mouse perforation model of SAH, the goal of this meta-review was the determination of variances in mortality, SAH severity grade, and vasospasm, and their experimental moderators, as many researchers are facing with incomparable results. We searched on the databases PubMed, Embase, and Web of Science for articles describing in vivo experiments using the SAH perforation mouse model and measuring mortality, SAH grade, and/or vasospasm. After screening, 42 articles (total of 1964 mice) were included into systematic review and meta-analysis. Certain model characteristics were insufficiently reported, e.g., perforation location (not reported in six articles), filament (material (n = 15) and tip texture (n = 25)), mouse age (n = 14), and weight (n = 10). Used injective anesthetics and location of perforation showed large variation. In a random-effects meta-analysis, the overall animal mortality following SAH was 21.3% [95% CI: 17.5%, 25.7%] and increased with longer observational periods. Filament material significantly correlated with animal mortality (p = 0.024) after exclusion of hyperacute studies (time after SAH induction < 24 h). Reported mean SAH grade was 10.7 [9.6, 11.7] on the scale of Sugawara (J Neurosci Methods 167:327-34, 2008). Furthermore, mean diameter of large cerebral arteries after SAH was reduced by 27.6% compared to sham-operated non-SAH mice. Uniforming standards of experimental procedures and their reporting are indispensable to increase overall comparability.
Collapse
Affiliation(s)
- Serdar Alpdogan
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany.
| | - Timo Sander
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Rui Zhang
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Xuanchen Li
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Ke Li
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Ann-Christin Nickel
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Baolong Zheng
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Anastasiya Skryabin
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Simon Schieferdecker
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Björn B Hofmann
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Daniel Maximilian Donaldson
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| |
Collapse
|
5
|
Morelli M, Adcock J, Yim TW, Rook J, Mocco J, Brophy C, Cheung-Flynn J. The Cell Permeant Phosphopetpide mimetic of VASP Alleviates Motor Function Deficits After Experimental Subarachnoid Hemorrhage. J Mol Neurosci 2024; 74:9. [PMID: 38214771 DOI: 10.1007/s12031-023-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm leads to delayed vasospasm and neuroischemia, which can result in profound neurologic deficit and death. Therapeutic options after SAH are currently limited to hemodynamic optimization and nimodipine, which have limited clinical efficacy. Experimental SAH results in cerebral vasospasm have demonstrated the downregulation of nitric oxide (NO)-protein kinase G (PKG) signaling elements. VP3 is a novel cell permeant phosphopeptide mimetic of VASP, a substrate of PKG and an actin-associated protein that modulates vasorelaxation in vascular smooth muscle cells. In this study, we determined that intravenous administration of high doses of VP3 did not induce systemic hypotension in rats except at the maximal soluble dose, implying that VP3 is well-tolerated and has a wide therapeutic window. Using a single cisterna magna injection rat model of SAH, we demonstrated that intravenous administration of low-dose VP3 after SAH improved neurologic deficits for up to 14 days as determined by the rotarod test. These findings suggest that strategies aimed at targeting the cerebral vasculature with VP3 may improve neurologic deficits associated with SAH.
Collapse
Affiliation(s)
- Madeleine Morelli
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie Adcock
- Division of Surgical Research, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tsz Wing Yim
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerri Rook
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Mocco
- Cerebrovascular Center, Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Colleen Brophy
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joyce Cheung-Flynn
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Chen H, Xu C, Zeng H, Zhang Z, Wang N, Guo Y, Zheng Y, Xia S, Zhou H, Yu X, Fu X, Tang T, Wu X, Chen Z, Peng Y, Cai J, Li J, Yan F, Gu C, Chen G, Chen J. Ly6C-high monocytes alleviate brain injury in experimental subarachnoid hemorrhage in mice. J Neuroinflammation 2023; 20:270. [PMID: 37978532 PMCID: PMC10657171 DOI: 10.1186/s12974-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.
Collapse
Affiliation(s)
- Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zhihua Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Ning Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yinghan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| |
Collapse
|
7
|
Becker K. Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage. Cell Mol Neurobiol 2023; 43:3965-3981. [PMID: 37861870 PMCID: PMC11407738 DOI: 10.1007/s10571-023-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Subarachnoid hemorrhage is an acute life-threatening cerebrovascular disease with high socio-economic impact. The most frequent cause, the rupture of an intracerebral aneurysm, is accompanied by abrupt changes in intracerebral pressure, cerebral perfusion pressure and, consequently, cerebral blood flow. As aneurysms rupture spontaneously, monitoring of these parameters in patients is only possible with a time delay, upon hospitalization. To study alterations in cerebral perfusion immediately upon ictus, animal models are mandatory. This article addresses the points necessarily to be included in an animal project proposal according to EU directive 2010/63/EU for the protection of animals used for scientific purposes and herewith offers an insight into animal welfare aspects of using rodent models for the investigation of cerebral perfusion after subarachnoid hemorrhage. It compares surgeries, model characteristics, advantages, and drawbacks of the most-frequently used rodent models-the endovascular perforation model and the prechiasmatic and single or double cisterna magna injection model. The topics of discussing anesthesia, advice on peri- and postanesthetic handling of animals, assessing the severity of suffering the animals undergo during the procedure according to EU directive 2010/63/EU and weighing the use of these in vivo models for experimental research ethically are also presented. In conclusion, rodent models of subarachnoid hemorrhage display pathophysiological characteristics, including changes of cerebral perfusion similar to the clinical situation, rendering the models suited to study the sequelae of the bleeding. A current problem is low standardization of the models, wherefore reporting according to the ARRIVE guidelines is highly recommended. Animal welfare aspects of rodent models of subarachnoid hemorrhage. Rodent models for investigation of cerebral perfusion after subarachnoid hemorrhage are compared regarding surgeries and model characteristics, and 3R measures are suggested. Anesthesia is discussed, and advice given on peri- and postanesthetic handling. Severity of suffering according to 2010/63/EU is assessed and use of these in vivo models weighed ethically.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Translational Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Institute for Cardiovascular Sciences, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Abdallah A. Association between subarachnoid hemorrhage-induced hydrocephalus and hydromyelia: pathophysiological changes developed in an experimental model. Neurol Res 2023; 45:49-56. [PMID: 36062543 DOI: 10.1080/01616412.2022.2119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Subarachnoid hemorrhage-induced hydrocephalus (SAIH) can affect the prognosis of subarachnoid hemorrhage (SAH). The relationship between hydromyelia and SAIH has been rarely investigated. This experimental model aimed to identify the pathophysiological changes developed in the SAH and elucidate the relationship between hydromyelia and SAIH. MATERIAL AND METHODS 25 female rabbits were randomly divided into three groups. The SAH group (n = 15), sham group (n = 5), and control group (n = 5). In the former group, the injection of 0.5 mL/kg of autologous blood was carried out into the cisterna magna on days 0 and 2. All animals were decapitated 21 days thereafter. Histological examinations of the medulla spinalis and brain samples were performed. RESULTS The mean volumes of the central channel were 1.054, 1.287, and 1.776 mm3 in the control, sham, and SAH groups, respectively (p = 0.028). The mean normal ependymal cell densities were 4.210, 3.602, and 2.923 cells/mm2 in the control, sham, and SAH groups, respectively (p = 0.002). The mean ventricular Evans' indices were 0.31, 0.34, and 0.41, in the control, sham, and SAH groups, respectively (p = 0.006). Basement membrane rupture, desquamated ependymal cells, and central channel occlusion were observed on histological examinations of the SAH group. CONCLUSIONS Subependymal basement membrane destruction, blood cell accumulation on it, ependymal cell desquamation, increased cerebrospinal fluid (CSF) secretion, and increased ICP in the central channel that causes hydromyelia. When these pathological changes are chronically apparent, they may reflect on CSF pathways and cause permanent SAIH. Preventing long-time SAH-induced hydromyelia is believed to reduce the high rate of treatment-requiring SAIH.
Collapse
Affiliation(s)
- Anas Abdallah
- Department of Neurosurgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
9
|
Devlin P, Ishrat T, Stanfill AG. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
Affiliation(s)
- Patrick Devlin
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Ansley Grimes Stanfill
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA.
- Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, 874 Union Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Lucke-Wold B, Dodd W, Motwani K, Hosaka K, Laurent D, Martinez M, Dugan V, Chalouhi N, Lucke-Wold N, Barpujari A, von Roemeling C, Li C, Johnson RD, Hoh B. Investigation and modulation of interleukin-6 following subarachnoid hemorrhage: targeting inflammatory activation for cerebral vasospasm. J Neuroinflammation 2022; 19:228. [PMID: 36114540 PMCID: PMC9479230 DOI: 10.1186/s12974-022-02592-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral vasospasm (CV) can contribute to significant morbidity in subarachnoid hemorrhage (SAH) patients. A key unknown is how CV induction is triggered following SAH. METHODS Human aneurysmal blood and cerebral spinal fluid were collected for evaluation. To confirm mechanism, c57/bl6 wild type and c57/bl6 IL-6 female knockout (KO) mice were utilized with groups: saline injected, SAH, SAH + IL-6 blockade, SAH IL-6 KO, SAH IL-6 KO + IL-6 administration, SAH + p-STAT3 inhibition. Dual-labeled microglia/myeloid mice were used to show myeloid diapedesis. For SAH, 50 μm blood was collected from tail puncture and administered into basal cisterns. IL-6 blockade was given at various time points. Various markers of neuroinflammation were measured with western blot and immunohistochemistry. Cerebral blood flow was also measured. Vasospasm was measured via cardiac injection of India ink/gelatin. Turning test and Garcia's modified SAH score were utilized. P < 0.05 was considered significant. RESULTS IL-6 expression peaked 3 days following SAH (p < 0.05). Human IL-6 was increased in aneurysmal blood (p < 0.05) and in cerebral spinal fluid (p < 0.01). Receptor upregulation was periventricular and perivascular. Microglia activation following SAH resulted in increased caveolin 3 and myeloid diapedesis. A significant increase in BBB markers endothelin 1 and occludin was noted following SAH, but reduced with IL-6 blockade (p < 0.01). CV occurred 5 days post-SAH, but was absent in IL-6 KO mice and mitigated with IL-6 blockade (p < 0.05). IL-6 blockade, and IL-6 KO mitigated effects of SAH on cerebral blood flow (p < 0.05). SAH mice had impaired performance on turn test and poor modified Garcia scores compared to saline and IL-6 blockade. A distinct microglia phenotype was noted day 5 in the SAH group (overlap coefficients r = 0.96 and r = 0.94) for Arg1 and iNOS, which was altered by IL-6 blockade. Day 7, a significant increase in toll-like receptor 4 and Stat3 was noted. This was mitigated by IL-6 blockade and IL-6 KO, which also reduced Caspase 3 (p < 0.05). To confirm the mechanism, we developed a p-STAT3 inhibitor that targets the IL-6 pathway and this reduced NFΚB, TLR4, and nitrotyrosine (p < 0.001). Ventricular dilation and increased Tunel positivity was noted day 9, but resolved by IL-6 blockade (p < 0.05). CONCLUSION Correlation between IL-6 and CV has been well documented. We show that a mechanistic connection exists via the p-STAT3 pathway, and IL-6 blockade provides benefit in reducing CV and its consequences mediated by myeloid cell origin diapedesis.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
| | - William Dodd
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Melanie Martinez
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Victoria Dugan
- Department of Physiologic Sciences, University of Florida, Gainesville, FL, USA
| | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Noelle Lucke-Wold
- Department of Radiology, Neuroradiology Division, University of Florida, Gainesville, FL, USA
| | - Arnav Barpujari
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Richard D Johnson
- Department of Physiologic Sciences, University of Florida, Gainesville, FL, USA
| | - Brian Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Tan J, Song R, Luo S, Fu W, Ma Y, Zheng L, He Z. Efficacy of Resveratrol in Experimental Subarachnoid Hemorrhage Animal Models: A Stratified Meta-Analysis. Front Pharmacol 2022; 13:905208. [PMID: 35847035 PMCID: PMC9277348 DOI: 10.3389/fphar.2022.905208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic phytoalexin, is broadly presented in a wide variety of plants. Previous research had reasonably revealed its neuroprotective effects on experimental SAH animal models to some extent. But the results were more controversial. Therefore, we conducted a meta-analysis to evaluate the evidence on the effectiveness of RES in improving outcomes in SAH animal models. Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web of Science databases to incorporate experimental control studies on the efficacy of RES on SAH models into our research. The standardized mean difference (SMD) was used to compare the brain water content (BWC) and neurological score (NS) between the treatment and control groups. Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD: -1.026; 95% CI: -1.380, -0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 = 60.0%; p = 0.000). Further stratified analysis was performed for methodological differences, especially dosage, time of treatments, and time-point of outcome assessment. The meta-analysis of NS showed a significant difference in favor of RES treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q = 25.58; I2 = 17.9%; p = 0.223). Conclusion: Generally, RES treatment showed an improvement in both pathological and behavioral outcomes in SAH animal models. The results of this study may provide a reference for preclinical and clinical studies in the future to some extent, with great significance for human health.
Collapse
Affiliation(s)
- Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyue Luo
- Clinical Medicine, The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Zheng
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing Municipality, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Shah KA, White TG, Powell K, Woo HH, Narayan RK, Li C. Trigeminal Nerve Stimulation Improves Cerebral Macrocirculation and Microcirculation After Subarachnoid Hemorrhage: An Exploratory Study. Neurosurgery 2022; 90:485-494. [PMID: 35188109 PMCID: PMC9514749 DOI: 10.1227/neu.0000000000001854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is the most consequential secondary insult after aneurysmal subarachnoid hemorrhage (SAH). It is a multifactorial process caused by a combination of large artery vasospasm and microcirculatory dysregulation. Despite numerous efforts, no effective therapeutic strategies are available to prevent DCI. The trigeminal nerve richly innervates cerebral blood vessels and releases a host of vasoactive agents upon stimulation. As such, electrical trigeminal nerve stimulation (TNS) has the capability of enhancing cerebral circulation. OBJECTIVE To determine whether TNS can restore impaired cerebral macrocirculation and microcirculation in an experimental rat model of SAH. METHODS The animals were randomly assigned to sham-operated, SAH-control, and SAH-TNS groups. SAH was induced by endovascular perforation on Day 0, followed by KCl-induced cortical spreading depolarization on day 1, and sample collection on day 2. TNS was delivered on day 1. Multiple end points were assessed including cerebral vasospasm, microvascular spasm, microthrombosis, calcitonin gene-related peptide and intercellular adhesion molecule-1 concentrations, degree of cerebral ischemia and apoptosis, and neurobehavioral outcomes. RESULTS SAH resulted in significant vasoconstriction in both major cerebral vessels and cortical pial arterioles. Compared with the SAH-control group, TNS increased lumen diameters of the internal carotid artery, middle cerebral artery, and anterior cerebral artery, and decreased pial arteriolar wall thickness. Additionally, TNS increased cerebrospinal fluid calcitonin gene-related peptide levels, and decreased cortical intercellular adhesion molecule-1 expression, parenchymal microthrombi formation, ischemia-induced hypoxic injury, cellular apoptosis, and neurobehavioral deficits. CONCLUSION Our results suggest that TNS can enhance cerebral circulation at multiple levels, lessen the impact of cerebral ischemia, and ameliorate the consequences of DCI after SAH.
Collapse
Affiliation(s)
- Kevin A. Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA;
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Timothy G. White
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA;
| | - Henry H. Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA;
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA;
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
13
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
14
|
Croci DM, Wanderer S, Strange F, Grüter BE, Sivanrupan S, Andereggen L, Casoni D, von Gunten M, Widmer HR, Di Santo S, Fandino J, Mariani L, Marbacher S. Tocilizumab Reduces Vasospasms, Neuronal Cell Death, and Microclot Formation in a Rabbit Model of Subarachnoid Hemorrhage. Transl Stroke Res 2021; 12:894-904. [PMID: 33409731 DOI: 10.1007/s12975-020-00880-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Early brain injury (EBI), delayed cerebral vasospasm (DCVS), and delayed cerebral ischemia (DCI) are common complications of subarachnoid hemorrhage (SAH). Inflammatory processes in the cerebrospinal fluid (CSF) are one of the causes for such complications. Our aim to study the effects of an IL-6 receptor antagonist (Tocilizumab) examines the occurrence of DCVS, neuronal cell death, and microclot formation in an acute SAH rabbit model. Twenty-nine New Zealand white rabbits were randomized into one of three groups as the SAH, SAH + Tocilizumab, and sham groups. In SAH groups, hemorrhage was induced by extracranial-intracranial arterial blood shunting from the subclavian artery into the cisterna magna under intracranial pressure (ICP) monitoring. In the second group, Tocilizumab was given once intravenously 1 h after SAH induction. Digital subtraction angiography was performed, and CSF and blood were sampled before and after (day 3) SAH induction. IL-6 plasma and CSF levels were measured. TUNEL, FJB, NeuN, and caspase-3 immunostaining were used to assess cell apoptosis, neurodegeneration, and neuronal cell death, respectively. Microclot formation was detected by fibrinogen immunostaining. Between baseline and follow-up, there was a significant reduction of angiographic DCVS (p < 0.0001) in the Tocilizumab compared with the SAH group. Tocilizumab treatment resulted in decreased neuronal cell death in the hippocampus (p = 0.006), basal cortex (p = 0.001), and decreased microclot formation (p = 0.02). Tocilizumab reduced DCVS, neuronal cell death, and microclot formation in a rabbit SAH model, and could be a potential treatment to prevent DCVS and DCI in SAH patients.
Collapse
Affiliation(s)
- Davide M Croci
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| | - Stefan Wanderer
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Fabio Strange
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Basil E Grüter
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sivani Sivanrupan
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Lukas Andereggen
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniela Casoni
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Hans Rudolf Widmer
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefano Di Santo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Cerebral Organoids-Challenges to Establish a Brain Prototype. Cells 2021; 10:cells10071790. [PMID: 34359959 PMCID: PMC8306666 DOI: 10.3390/cells10071790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
The new cellular models based on neural cells differentiated from induced pluripotent stem cells have greatly enhanced our understanding of human nervous system development. Highly efficient protocols for the differentiation of iPSCs into different types of neural cells have allowed the creation of 2D models of many neurodegenerative diseases and nervous system development. However, the 2D culture of neurons is an imperfect model of the 3D brain tissue architecture represented by many functionally active cell types. The development of protocols for the differentiation of iPSCs into 3D cerebral organoids made it possible to establish a cellular model closest to native human brain tissue. Cerebral organoids are equally suitable for modeling various CNS pathologies, testing pharmacologically active substances, and utilization in regenerative medicine. Meanwhile, this technology is still at the initial stage of development.
Collapse
|
16
|
Activation of Nurr1 with Amodiaquine Protected Neuron and Alleviated Neuroinflammation after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6669787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Nurr1, a member of the nuclear receptor 4A family (NR4A), played a role in neuron protection, anti-inflammation, and antioxidative stress in multidiseases. We explored the role of Nurr1 on subarachnoid hemorrhage (SAH) progression and investigated the feasibility of its agonist (amodiaquine, AQ) as a treatment for SAH. Methods. SAH rat models were constructed by the endovascular perforation technique. AQ was administered intraperitoneally at 2 hours after SAH induction. SAH grade, mortality, weight loss, neurological performance tests, brain water content, western blot, immunofluorescence, Nissl staining, and qPCR were assessed post-SAH. In vitro, hemin was introduced into HT22 cells to develop a model of SAH. Results. Stimulation of Nurr1 with AQ improved the outcomes and attenuated brain edema. Nurr1 was mainly expressed in neuron, and administration of AQ alleviated neuron injury in vivo and enhanced the neuron viability and inhibited neuron apoptosis and necrosis in vitro. Besides, AQ reduced the amount of IL-1β+Iba-1+ cells and inhibited the mRNA level of proinflammatory cytokines (IL-1β and TNF-α) and the M1-like phenotype markers (CD68 and CD86). AQ inhibited the expression of MMP9 in HT22 cells. Furthermore, AQ reduced the expression of nuclear NF-κB and Nurr1 while increased cytoplasmic Nurr1 in vivo and in vitro. Conclusion. Pharmacological activation of Nurr1 with AQ alleviated the neuron injury and neuroinflammation. The mechanism of antineuroinflammation may be associated with the Nurr1/NF-κB/MMP9 pathway in the neuron. The data supported that AQ might be a promising treatment strategy for SAH.
Collapse
|
17
|
Spencer P, Jiang Y, Liu N, Han J, Li Y, Vodovoz S, Dumont AS, Wang X. Update: Microdialysis for Monitoring Cerebral Metabolic Dysfunction after Subarachnoid Hemorrhage. J Clin Med 2020; 10:jcm10010100. [PMID: 33396652 PMCID: PMC7794715 DOI: 10.3390/jcm10010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms “Subarachnoid Hemorrhage AND Microdialysis” as well as a more targeted search using MeSh with the search terms “Subarachnoid hemorrhage AND Microdialysis AND Metabolism.” Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.
Collapse
Affiliation(s)
| | - Yinghua Jiang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| | | | | | | | | | | | - Xiaoying Wang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| |
Collapse
|
18
|
Liddle LJ, Ralhan S, Ward DL, Colbourne F. Translational Intracerebral Hemorrhage Research: Has Current Neuroprotection Research ARRIVEd at a Standard for Experimental Design and Reporting? Transl Stroke Res 2020; 11:1203-1213. [PMID: 32504197 PMCID: PMC7575495 DOI: 10.1007/s12975-020-00824-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/17/2023]
Abstract
One major aim of preclinical intracerebral hemorrhage (ICH) research is to develop and test potential neuroprotectants. Published guidelines for experimental design and reporting stress the importance of clearly and completely reporting results and methodological details to ensure reproducibility and maximize information availability. The current review has two objectives: first, to characterize current ICH neuroprotection research and, second, to analyze aspects of translational design in preclinical ICH studies. Translational design is the adoption and reporting of experimental design characteristics that are thought to be clinically relevant and critical to reproducibility in animal studies (e.g., conducting and reporting experiments according to the STAIR and ARRIVE guidelines, respectively). Given that ICH has no current neuroprotective treatments and an ongoing reproducibility crisis in preclinical research, translational design should be considered by investigators. We conducted a systematic review of ICH research from 2015 to 2019 using the PubMed database. Our search returned 281 published manuscripts studying putative neuroprotectants in animal models. Contemporary ICH research predominantly uses young, healthy male rodents. The collagenase model is the most commonly used. Reporting of group sizes, blinding, and randomization are almost unanimous, but group size calculations, mortality and exclusion criteria, and animal model characteristics are infrequently reported. Overall, current ICH neuroprotection research somewhat aligns with experimental design and reporting guidelines. However, there are areas for improvement. Because failure to consider translational design is associated with inflation of effect sizes (and possibly hindered reproducibility), we suggest that researchers, editors, and publishers collaboratively consider enhanced adherence to published guidelines.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Shivani Ralhan
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel L Ward
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
19
|
Nanegrungsunk D, Ragozzino ME, Xu HL, Haselton KJ, Paisansathan C. Subarachnoid hemorrhage in C57BL/6J mice increases motor stereotypies and compulsive-like behaviors. Neurol Res 2020; 43:239-251. [PMID: 33135605 DOI: 10.1080/01616412.2020.1841481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Long-term behavioral, mood, and cognitive deficits affect over 30% of patients with subarachnoid hemorrhage (SAH). The aim of the present study was to examine the neurobehavioral outcomes following endovascular perforation induced SAH in mice. METHODS C57BL/6 J (B6) mice were exposed to endovascular perforation induced SAH or control surgery. Three weeks later, mice received a series of behavioral tests, e.g. motor function, stereotypy, learning, memory, behavioral flexibility, depression and anxiety. The immunohistologic experiment examined neuronalloss in the cortex following SAH. RESULTS SAH mice exhibited increased marble burying and nestlet shredding compared to that of control mice. Although SAH did not affect memory, learning or reversal learning,mice displayed greater overall object exploration in the novel object recognition test, as well as elevated perseveration during probabilistic reversal learning.In the forced swim and open field tests, SAH mice performed comparably to that of control mice. However, SAH mice exhibited an increased frequency in 'jumping' behavior in the open field test. Histological analyses revealed reduced neuron density in the parietal-entorhinal cortices of SAH mice on the injured side compared to that of control mice. DISCUSSION The findings suggest that parietal-entorhinal damage from SAH increases stereotyped motor behaviors and 'compulsive-like' behaviors without affecting cognition (learning and memory) or mood (anxiety and depression). This model can be used to better understand the neuropathophysiology following SAH that contributes to behavioral impairments in survivors with no gross sensory-motor deficits.
Collapse
Affiliation(s)
- Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Michael E Ragozzino
- Department of Psychologyat the University of Illinois at Chicago , Chicago, IL, USA
| | - Hao-Liang Xu
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Kyle J Haselton
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Chanannait Paisansathan
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| |
Collapse
|
20
|
Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int J Mol Sci 2020; 21:ijms21144875. [PMID: 32664226 PMCID: PMC7402299 DOI: 10.3390/ijms21144875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus and induces the transcription of enzymes involved in counteracting oxidative stress, endobiotic and xenobiotic metabolism, regulators of inflammation, and others. Different natural compounds, including food and plant-derived components, were shown to be able to activate Nrf2, mediating an antioxidant response. Some of these compounds were tested in stroke experimental models showing several beneficial actions. In this review, we focused on the studies that evidenced the positive effects of natural bioactive compounds in stroke experimental models through the activation of Nrf2 pathway. Interestingly, different natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response associated with the beneficial effects against stroke. According to several studies, the combination of different bioactive compounds can lead to a better neuroprotection. In conclusion, natural bioactive compounds may represent new therapeutic strategies against stroke.
Collapse
|
21
|
Abdallah A. Correlation of hydromyelia with subarachnoid hemorrhage-related hydrocephalus: an experimental study. Neurosurg Rev 2020; 44:1437-1445. [PMID: 32514658 DOI: 10.1007/s10143-020-01330-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/27/2022]
Abstract
Although the central canal is an integral component of the cerebral ventricular system, central canal dilation has not been examined adequately during the progression of subarachnoid hemorrhage-related hydrocephalus (SAH-H). Central canal dilation-associated ependymal cell desquamation or subependymal membrane rupture has been rarely reported. Herein, we try to describe possible mechanisms of central canal dilation "Hydromyelia," developing after SAH. A total of 25 New Zealand hybrid female rabbits were recruited. Five served as controls, and five received sham operations. In the remaining animals (n = 15), 0.5 mL/kg of autologous blood was injected into the cisterna magna twice on 0 and 2nd days. Five of these animals died within a few days. A total of 10 survivor animals decapitated 3 weeks later, and the brains and cervical spinal cords were histologically examined. Central canal volumes, ependymal cell numbers on the canal surfaces, and the Evans' indices of the ventricles were compared. On histological examination, central canal occlusion with desquamated ependymal cells and basement membrane rupture were evident. The mean Evans' index of the brain ventricles was 0.31, the mean central canal volume was 1.054 mm3, and the normal ependymal cell density was 4.210/mm2 in control animals; the respective values were 0.34, 1.287 mm3, and 3.602/mm2 for sham-operated animals, and 0.41, 1.776 mm3, and 2.923/mm2 in the study group. The differences were statistically significant (p < 0.05). Hydromyelia, an ignored complication of SAH-H, features ependymal cell desquamation, subependymal basement membrane destruction, blood cell accumulation on the subependymal cell basement membrane, and increased CSF pressure. Hydromyelia may be a significant complication following SAH.
Collapse
Affiliation(s)
- Anas Abdallah
- Department of Neurosurgery, Bezmialem Vakif University, Adnan Menderes Bulvari, Vatan Street, 34093 Fatih, Istanbul, Turkey.
| |
Collapse
|
22
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Teng F, Yin Y, Guo J, Jiang M. Calpastatin peptide attenuates early brain injury following experimental subarachnoid hemorrhage. Exp Ther Med 2020; 19:2433-2440. [PMID: 32226486 PMCID: PMC7092924 DOI: 10.3892/etm.2020.8510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022] Open
Abstract
Calpain activation may have an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The present study investigated the effects of the calpastatin peptide, a cell-permeable peptide that functions as a potent inhibitor of calpain, on EBI in a rat SAH model. It was revealed that calpastatin peptide treatment significantly reduced SAH-induced body weight loss and neurological deficit at 72 h when compared with untreated SAH controls. Furthermore, the quantification of brain water content and the extravasation of Evans blue dye revealed a significant reduction in SAH-induced brain edema and blood-brain barrier permeability at 72 h due to treatment with the calpastatin peptide when compared with untreated SAH controls. Finally, calpastatin peptide treatment significantly attenuated the protein levels of Bax, cytochrome c, cleaved caspase-9 and cleaved caspase-3, and reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labelling-positive cells in the basal cortex at 72 h after SAH when compared with untreated SAH controls. These results indicated that the calpastatin peptide may ameliorate EBI following SAH in rat models.
Collapse
Affiliation(s)
- Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Yanxin Yin
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Jia Guo
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Ming Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| |
Collapse
|
24
|
Grüter BE, Croci D, Schöpf S, Nevzati E, d’Allonzo D, Lattmann J, Roth T, Bircher B, Muroi C, Dutilh G, Widmer HR, Plesnila N, Fandino J, Marbacher S. Systematic Review and Meta-analysis of Methodological Quality in In Vivo Animal Studies of Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1175-1184. [DOI: 10.1007/s12975-020-00801-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
|
25
|
van Lieshout JH, Marbacher S, Muhammad S, Boogaarts HD, Bartels RHMA, Dibué M, Steiger HJ, Hänggi D, Kamp MA. Proposed Definition of Experimental Secondary Ischemia for Mouse Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1165-1170. [PMID: 32152960 PMCID: PMC7496000 DOI: 10.1007/s12975-020-00796-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Inconsistency in outcome parameters for delayed cerebral ischemia (DCI) makes it difficult to compare results between mouse studies, in the same way inconsistency in outcome parameters in human studies has for long obstructed adequate comparison. The absence of an established definition may in part be responsible for the failed translational results. The present article proposes a standardized definition for DCI in experimental mouse models, which can be used as outcome measure in future animal studies. We used a consensus-building approach to propose a definition for "experimental secondary ischemia" (ESI) in experimental mouse subarachnoid hemorrhage that can be used as an outcome measure in preclinical studies. We propose that the outcome measure should be as follows: occurrence of focal neurological impairment or a general neurological impairment compared with a control group and that neurological impairment should occur secondarily following subarachnoid hemorrhage (SAH) induction compared with an initial assessment following SAH induction. ESI should not be used if the condition can be explained by general anesthesia or if other means of assessments sufficiently explain function impairment. If neurological impairment cannot reliably be evaluated, due to scientific setup. Verification of a significant secondary impairment of the cerebral perfusion compared with a control group is mandatory. This requires longitudinal examination in the same animal. The primary aim is that ESI should be distinguished from intervention-related ischemia or neurological deficits, in order establish a uniform definition for experimental SAH in mice that is in alignment with outcome measures in human studies.
Collapse
Affiliation(s)
- Jasper Hans van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany. .,Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Serge Marbacher
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Ronald H M A Bartels
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Maxine Dibué
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int J Nanomedicine 2020; 15:445-464. [PMID: 32021190 PMCID: PMC6982459 DOI: 10.2147/ijn.s231853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The technology of drug delivery systems (DDS) has expanded into many applications, such as for treating neurological disorders. Nanoparticle DDS offer a unique strategy for targeted transport and improved outcomes of therapeutics. Stroke is likely to benefit from the emergence of this technology though clinical breakthroughs are yet to manifest. This review explores the recent advances in this field and provides insight on the trends, prospects and challenges of translating this technology to clinical application. Carriers of diverse material compositions are presented, with special focus on the surface properties and emphasis on the similarities and inconsistencies among in vivo experimental paradigms. Research attention is scattered among various nanoparticle DDS and various routes of drug administration, which expresses the lack of consistency among studies. Analysis of current literature reveals lipid- and polymer-based DDS as forerunners of DDS for stroke; however, cell membrane-derived vesicles (CMVs) possess the competitive edge due to their innate biocompatibility and superior efficacy. Conversely, inorganic and carbon-based DDS offer different functionalities as well as varied capacity for loading but suffer mainly from poor safety and general lack of investigation in this area. This review supports the existing literature by systematizing presently available data and accounting for the differences in drugs of choice, carrier types, animal models, intervention strategies and outcome parameters.
Collapse
Affiliation(s)
- Syed Abdullah Alkaff
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Krishna Radhakrishnan
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute 308433, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University 639798, Singapore
| |
Collapse
|
27
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
28
|
Daou BJ, Koduri S, Thompson BG, Chaudhary N, Pandey AS. Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS Neurosci Ther 2019; 25:1096-1112. [PMID: 31583833 PMCID: PMC6776745 DOI: 10.1111/cns.13222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) continues to be associated with significant morbidity and mortality despite advances in care and aneurysm treatment strategies. Cerebral vasospasm continues to be a major source of clinical worsening in patients. We intended to review the clinical and experimental aspects of aSAH and identify strategies that are being evaluated for the treatment of vasospasm. A literature review on aSAH and cerebral vasospasm was performed. Available treatments for aSAH continue to expand as research continues to identify new therapeutic targets. Oral nimodipine is the primary medication used in practice given its neuroprotective properties. Transluminal balloon angioplasty is widely utilized in patients with symptomatic vasospasm and ischemia. Prophylactic "triple-H" therapy, clazosentan, and intraarterial papaverine have fallen out of practice. Trials have not shown strong evidence supporting magnesium or statins. Other calcium channel blockers, milrinone, tirilazad, fasudil, cilostazol, albumin, eicosapentaenoic acid, erythropoietin, corticosteroids, minocycline, deferoxamine, intrathecal thrombolytics, need to be further investigated. Many of the current experimental drugs may have significant roles in the treatment algorithm, and further clinical trials are needed. There is growing evidence supporting that early brain injury in aSAH may lead to significant morbidity and mortality, and this needs to be explored further.
Collapse
Affiliation(s)
- Badih J. Daou
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Sravanthi Koduri
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | | | - Neeraj Chaudhary
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Aditya S. Pandey
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
29
|
Kamp MA, Steiger HJ, van Lieshout JH. Experimental Aneurysmal Subarachnoid Hemorrhage: Tiding Over. Transl Stroke Res 2019; 11:1-3. [PMID: 31478128 DOI: 10.1007/s12975-019-00726-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Jasper Hans van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany. .,Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Poli D, Magliaro C, Ahluwalia A. Experimental and Computational Methods for the Study of Cerebral Organoids: A Review. Front Neurosci 2019; 13:162. [PMID: 30890910 PMCID: PMC6411764 DOI: 10.3389/fnins.2019.00162] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
Cerebral (or brain) organoids derived from human cells have enormous potential as physiologically relevant downscaled in vitro models of the human brain. In fact, these stem cell-derived neural aggregates resemble the three-dimensional (3D) cytoarchitectural arrangement of the brain overcoming not only the unrealistic somatic flatness but also the planar neuritic outgrowth of the two-dimensional (2D) in vitro cultures. Despite the growing use of cerebral organoids in scientific research, a more critical evaluation of their reliability and reproducibility in terms of cellular diversity, mature traits, and neuronal dynamics is still required. Specifically, a quantitative framework for generating and investigating these in vitro models of the human brain is lacking. To this end, the aim of this review is to inspire new computational and technology driven ideas for methodological improvements and novel applications of brain organoids. After an overview of the organoid generation protocols described in the literature, we review the computational models employed to assess their formation, organization and resource uptake. The experimental approaches currently provided to structurally and functionally characterize brain organoid networks for studying single neuron morphology and their connections at cellular and sub-cellular resolution are also discussed. Well-established techniques based on current/voltage clamp, optogenetics, calcium imaging, and Micro-Electrode Arrays (MEAs) are proposed for monitoring intra- and extra-cellular responses underlying neuronal dynamics and functional connections. Finally, we consider critical aspects of the established procedures and the physiological limitations of these models, suggesting how a complement of engineering tools could improve the current approaches and their applications.
Collapse
Affiliation(s)
- Daniele Poli
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1138-1143. [PMID: 30804237 PMCID: PMC6425837 DOI: 10.4103/1673-5374.251190] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains serious hemorrhagic stroke with high morbidities and mortalities. Aneurysm rupture causes arterial bleeding-induced mechanical brain tissue injuries and elevated intracranial pressure, followed by global cerebral ischemia. Post-subarachnoid hemorrhage ischemia, tissue injuries as well as extravasated blood components and the breakdown products activate microglia, astrocytes and Toll-like receptor 4, and disrupt blood-brain barrier associated with the induction of many inflammatory and other cascades. Once blood-brain barrier is disrupted, brain tissues are directly exposed to harmful blood contents and immune cells, which aggravate brain injuries furthermore. Blood-brain barrier disruption after subarachnoid hemorrhage may be developed by a variety of mechanisms including endothelial cell apoptosis and disruption of tight junction proteins. Many molecules and pathways have been reported to disrupt the blood-brain barrier after subarachnoid hemorrhage, but the exact mechanisms remain unclear. Multiple independent and/or interconnected signaling pathways may be involved in blood-brain barrier disruption after subarachnoid hemorrhage. This review provides recent understandings of the mechanisms and the potential therapeutic targets of blood-brain barrier disruption after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|