1
|
Scavuzzi BM, Shanmugam S, Yang M, Yao J, Hager H, Kaur B, Jia L, Abcouwer SF, Zacks DN. Remote Preconditioning Provides Protection Against Retinal Cell Death From Retinal Detachment. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 39937497 PMCID: PMC11827864 DOI: 10.1167/iovs.66.2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Remote preconditioning involves injury to a tissue that results in protection to a subsequent injury in a distal tissue. Here, we investigated the impact of remote preconditioning on retinal detachment (RD) injury, hypothesizing that a previous contralateral RD would protect the fellow retina against inflammation and cell death following its detachment. Methods RD was created in adult C57BL/6J mice with subretinal sodium hyaluronate injection. Preconditioning involved RD in the right eye at 1, 3, 7, or 28 days before left eye detachment, whereas the control group only received RD to the left eye. Retinas were harvested 24 hours post-left eye detachment in both groups. Cell death was assessed using Cell Death Detection ELISA and mRNA expression was evaluated via qRT-PCR. Results Contralateral RD promoted a transient protection against retinal cell death from 1 to 3 days and waned by 7 days compared with control RD retinas with intact fellow retinas. Contralateral RD significantly protected against post-RD cell death (P = 0.0002) and caspase 3 cleavage (P = 0.0449), compared with control RD retinas with intact fellow retinas 1-day post-RD. Detached fellow retinas from the preconditioning group expressed significantly less Tnfa (P = 0.0066), Cxcl10 (P = 0.0099), and Fas (P = 0.0223) mRNAs, compared with the detached retinas of the control group. In contrast, upregulation of type-I-IFN pathway genes, including Irf7 (P = 0.0106) and Ifit1 (P = 0.0740), following RD was higher in the preconditioning group. Conclusions RD in one eye produces a transient remote preconditioning effect that protects the fellow retina against retinal cell death following subsequent RD.
Collapse
Affiliation(s)
- Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Mengling Yang
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Bhavneet Kaur
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Alhashimi A, Kamarova M, Baig SS, Nair KPS, Wang T, Redgrave J, Majid A, Ali AN. Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis. Syst Rev 2024; 13:308. [PMID: 39702489 DOI: 10.1186/s13643-024-02725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) refers to the use of controlled transient ischemic and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic injury. Preclinical studies demonstrate that RIC may have a neuroprotective effect and therefore could represent a novel therapeutic option in the management of neurological disorders. The aim of this review is to comprehensively describe the current clinical evidence of RIC in neurological disorders. METHODS A computerised search of EMBASE and OVID MEDLINE was conducted from 2002 to October 2023 for randomised controlled trials (RCTs) investigating RIC in neurological diseases. RESULTS A total of 46 different RCTs in 12 different neurological disorders (n = 7544) were included in the analysis. Conditions included acute ischaemic stroke, symptomatic intracranial stenosis and vascular cognitive impairment. The most commonly used RIC protocol parameters in the selected studies were as follows: cuff pressure at 200 mmHg (27 trials), 5-min cycle length (42 trials), 5 cycles of ischaemia and reperfusion (24 trials) and the application to the upper limb unilaterally (23 trials). CONCLUSIONS The comprehensive analysis of the included studies reveals promising results regarding the safety and therapeutic effect of RIC as an option for managing neurological diseases. Particularly, the strongest evidence supports its potential use in chronic stroke patients and vascular cognitive impairment. The neuroprotective effects of RIC, as demonstrated in preclinical studies, suggest that this therapeutic approach could extend its benefits to various other diseases affecting the nervous system. However, to establish the efficacy of RIC across different neurological disorders, further trials with larger sample sizes and more diverse patient populations are warranted. Upcoming trials are expected to provide valuable evidence that will not only confirm the efficacy of RIC in neurological disease management but also help identify the most optimal RIC regimen for specific conditions.
Collapse
Affiliation(s)
| | - Marharyta Kamarova
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | | | - Tao Wang
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Jessica Redgrave
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Zhao M, Wang J, Liu G, Li S, Ding Y, Ji X, Zhao W. Multi-Target and Multi-Phase Adjunctive Cerebral Protection for Acute Ischemic Stroke in the Reperfusion Era. Biomolecules 2024; 14:1181. [PMID: 39334947 PMCID: PMC11429592 DOI: 10.3390/biom14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke remains the leading cause of death and disability in some countries, predominantly attributed to acute ischemic stroke (AIS). While intravenous thrombolysis and endovascular thrombectomy are widely acknowledged as effective treatments for AIS, boasting a high recanalization rate, there is a significant discrepancy between the success of revascularization and the mediocre clinical outcomes observed among patients with AIS. It is now increasingly understood that the implementation of effective cerebral protection strategies, serving as adjunctive treatments to reperfusion, can potentially improve the outcomes of AIS patients following recanalization therapy. Herein, we reviewed several promising cerebral protective methods that have the potential to slow down infarct growth and protect ischemic penumbra. We dissect the underlying reasons for the mismatch between high recanalization rates and moderate prognosis and introduce a novel concept of "multi-target and multi-phase adjunctive cerebral protection" to guide our search for neuroprotective agents that can be administered alongside recanalization therapy.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Fan YY, Li Y, Tian XY, Wang YJ, Huo J, Guo BL, Chen R, Yang CH, Li Y, Zhang HF, Niu BL, Zhang MS. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl Stroke Res 2024; 15:620-635. [PMID: 36853417 DOI: 10.1007/s12975-023-01143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Ying Tian
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying-Jing Wang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Lu Guo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Cai-Hong Yang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Long Niu
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Guo ZN, Qu Y, Abuduxukuer R, Zhang P, Wang L, Liu Y, Teng RH, Gao JH, Jin F, Wang HF, Cao Y, Xue YQ, Zhao JF, Selim MH, Nguyen TN, Yang Y. Safety and efficacy of remote ischemic conditioning for spontaneous intracerebral hemorrhage (SERIC-ICH): A multicenter, randomized, parallel-controlled clinical trial study design and protocol. Eur Stroke J 2024; 9:259-264. [PMID: 37752799 PMCID: PMC10916805 DOI: 10.1177/23969873231201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Previous studies have revealed that remote ischemic conditioning (RIC) may have a neuroprotective function. However, the potential benefit of RIC for patients with ICH remain unclear. OBJECTIVE The primary aim of this study is to assess the safety and efficacy of RIC for patients with ICH. METHODS The Safety and Efficacy of RIC for Spontaneous ICH (SERIC-ICH) is an ongoing prospective, randomized, multicenter, parallel-controlled, and blinded-endpoint clinical trial. The study will enroll an estimated 2000 patients aged ⩾18 years within 24 h after ICH onset, with National Institutes of Health Stroke Scale ⩾6 and Glasgow Coma Scale ⩾8 upon presentation. The patients will be randomly assigned to the RIC or control groups (1:1) and will be treated with cuffs inflated to a pressure of 200 or 60 mmHg, respectively, twice daily for 7 days. Each RIC treatment will consist of four cycles of arm ischemia for 5 min, followed by reperfusion for another 5 min, for a total procedure time of 35 min. The primary efficacy outcome measure is the proportion of patients with good functional outcomes (modified Rankin scale 0-2) at 180 days. The safety outcome measures will include all adverse events and severe adverse events occurring in the course of the study. DISCUSSION RIC is an inexpensive intervention and might be a strategy to improve outcomes in patients with ICH. The SERIC-ICH trial will investigate whether RIC treatment can be applied as an adjuvant treatment in the acute phase of ICH and identify safety issues.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Lijuan Wang
- Department of Neurology, Songyuan Central Hospital, Songyuan, China
| | - Ying Liu
- Department of Neurology, Tonghua Liuhe Hospital, Tonghua, China
| | - Rui-Hong Teng
- Department of Neurology, Dongliao First People’s Hospital, Liaoyuan, China
| | - Jian-Hua Gao
- Department of Neurology, Jilin Neuropsychiatric Hospital, Siping, China
| | - Feng Jin
- Department of Neurology, Dongfeng County Hospital, Liaoyuan, China
| | - Hai-Feng Wang
- Department of Neurosurgery, Liaoyuan City Central Hospital, Liaoyuan, China
| | - Yu Cao
- Department of Neurology, Nongan People Hospital, Changchun, China
| | - Yong-Quan Xue
- Department of Neurology, Dunhua City Hospital, Yanbian, China
| | - Jun-Feng Zhao
- Stroke Center, Department of Neurology, Siping Central People’s Hospital, Siping, China
| | - Magdy H Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Thanh N Nguyen
- Neurology, Radiology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
6
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2024:10.1007/s12975-024-01235-y. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
7
|
Saito M, Hoshino T, Ishizuka K, Iwasaki S, Toi S, Shibata N, Kitagawa K. Remote Ischemic Conditioning Enhances Collateral Circulation Through Leptomeningeal Anastomosis and Diminishes Early Ischemic Lesions and Infarct Volume in Middle Cerebral Artery Occlusion. Transl Stroke Res 2024; 15:41-52. [PMID: 36441491 DOI: 10.1007/s12975-022-01108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Remote ischemic conditioning (RIC) has attracted much attention as a protective strategy for the heart and brain, although the underlying mechanisms remain unclear. We hypothesized that RIC enhances collateral circulation during cerebral ischemia through endothelial function and mitigates both early ischemic change and final infarct volume. We tested the RIC and sham procedure 30 min after permanent middle cerebral artery occlusion (MCAO) in male mice. Collateral circulation was examined during the procedure with 2D color-coded ultrasound imaging. Immediately after four cycles of RIC, early ischemic lesions on magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and development of pial collateral vessels were examined. The neurological signs and infarct volume with TTC were examined until 48 h after daily RIC. As compared with sham procedure, RIC enhanced collateral circulation, diminished early ischemic lesions, enlarged pial collaterals, and mitigated infarct volume. Next, we examined the effect of inhibitor of nitric oxide synthase (NOS) and Akt on the beneficial effect of RIC in MCAO. Both allosteric Akt inhibitor, 8-[4-(1-Aminocyclobutyl)phenyl]-9-phenyl[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3(2H)-one (MK2206), and two NOS inhibitors, N5-(1-Iminoethyl)-L-ornithine dihydrochloride (L-NIO) and NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), counteracted the beneficial effect of RIC on collateral circulation, early lesions, pial anastomosis, and infarct volume. In permanent MCAO, RIC could enhance collateral circulation through leptomeningeal anastomosis with Akt-eNOS pathway and diminish early lesion and final infarct volume.
Collapse
Affiliation(s)
- Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Shuichi Iwasaki
- Department of Pathology (SI, NS), Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Noriyuki Shibata
- Department of Pathology (SI, NS), Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
8
|
Li D, Lian L, Huang L, Gamdzyk M, Huang Y, Doycheva D, Li G, Yu S, Guo Y, Kang R, Tang H, Tang J, Kong L, Zhang JH. Delayed recanalization reduced neuronal apoptosis and neurological deficits by enhancing liver-derived trefoil factor 3-mediated neuroprotection via LINGO2/EGFR/Src signaling pathway after middle cerebral artery occlusion in rats. Exp Neurol 2024; 371:114607. [PMID: 37935323 PMCID: PMC11585322 DOI: 10.1016/j.expneurol.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Delayed recanalization at days or weeks beyond the therapeutic window was shown to improve functional outcomes in acute ischemic stroke (AIS) patients. However, the underlying mechanisms remain unclear. Previous preclinical study reported that trefoil factor 3 (TFF3) was secreted by liver after cerebral ischemia and acted a distant neuroprotective factor. Here, we investigated the liver-derived TFF3-mediated neuroprotective mechanism enhanced by delayed recanalization after AIS. A total of 327 male Sprague-Dawley rats and the model of middle cerebral artery occlusion (MCAO) with permanent occlusion (pMCAO) or with delayed recanalization at 3 d post-occlusion (rMCAO) were used. Partial hepatectomy was performed within 5 min after MCAO. Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) siRNA was administered intracerebroventricularly at 48 h after MCAO. Recombinant rat TFF3 (rr-TFF3, 30 μg/Kg) or recombinant rat epidermal growth factor (rr-EGF, 100 μg/Kg) was administered intranasally at 1 h after recanalization, and EGFR inhibitor Gefitinib (75 mg/Kg) was administered intranasally at 30 min before recanalization. The evaluation of outcomes included neurobehavior, ELISA, western blot and immunofluorescence staining. TFF3 in hepatocytes and serum were upregulated in a similar time-dependent manner after MCAO. Compared to pMCAO, delayed recanalization increased brain TFF3 levels and attenuated brain damage with the reduction in neuronal apoptosis, infarct volume and neurological deficits. Partial hepatectomy reduced TFF3 levels in serum and ipsilateral brain hemisphere, and abolished the benefits of delayed recanalization on neuronal apoptosis and neurobehavioral deficits in rMCAO rats. Intranasal rrTFF3 treatment reversed the changes associated with partial hepatectomy. Delayed recanalization after MCAO increased the co-immunoprecipitation of TFF3 and LINGO2, as well as expressions of p-EGFR, p-Src and Bcl-2 in the brain. LINGO2 siRNA knockdown or EGFR inhibitor reversed the effects of delayed recanalization on apoptosis and brain expressions of LINGO2, p-EGFR, p-Src and Bcl-2 in rMCAO rats. EGFR activator abolished the deleterious effects of LINGO2 siRNA. In conclusion, our investigation demonstrated for the first time that delayed recanalization may enhance the entry of liver-derived TFF3 into ischemic brain upon restoring blood flow after MCAO, which attenuated neuronal apoptosis and neurological deficits at least in part via activating LINGO2/EGFR/Src pathway.
Collapse
Affiliation(s)
- Dujuan Li
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gaigai Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shufeng Yu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
9
|
Cui Y, Chen YN, Nguyen TN, Chen HS. Time from Onset to Remote Ischemic Conditioning and Clinical Outcome After Acute Moderate Ischemic Stroke. Ann Neurol 2023; 94:561-571. [PMID: 37253659 DOI: 10.1002/ana.26715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVE We conducted a post hoc exploratory analysis of Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke (RICAMIS) to determine whether early remote ischemic conditioning (RIC) initiation after stroke onset was associated with clinical outcome in patients with acute moderate ischemic stroke. METHODS In RICAMIS, patients receiving RIC treatment in the intention-to-treat analysis were divided into 2 groups based on onset-to-treatment time (OTT): early RIC group (OTT ≤ 24 hours) and late RIC group (OTT 24-48 hours). Patients receiving usual care without RIC treatment from intention-to-treat analysis were assigned as the control group. The primary outcome was excellent functional outcome at 90 days. RESULTS Among 1,776 patients from intention-to-treat analysis, 387 were in the early RIC group, 476 in the late RIC group, and 913 in the control group. In the post hoc exploratory analysis, a higher proportion of excellent functional outcome was found in the early RIC versus control group (adjusted absolute difference = 8.1%, 95% confidence interval [CI] = 2.5%-13.8%, p = 0.005), but no difference in outcomes was detected in the late RIC versus control group (adjusted absolute difference = 3.3%, 95% CI = -2.1% to 8.6%, p = 0.23), or in the early RIC versus late RIC group (adjusted absolute difference = 5.0%, 95% CI = -1.3% to 11.2%, p = 0.12). Similar results were found in the per-protocol analysis. INTERPRETATION Among patients with acute moderate ischemic stroke who are not candidates for intravenous thrombolysis or endovascular therapy, early RIC initiation within 24 hours of onset may be associated with higher likelihood of excellent clinical outcome. ANN NEUROL 2023;94:561-571.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yi-Ning Chen
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Thanh N Nguyen
- Departments of Neurology and Radiology, Boston Medical Center, Boston, Massachusetts, USA
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
10
|
Kan X, Yan Z, Wang F, Tao X, Xue T, Chen Z, Wang Z, Chen G. Efficacy and safety of remote ischemic conditioning for acute ischemic stroke: A comprehensive meta-analysis from randomized controlled trials. CNS Neurosci Ther 2023. [PMID: 37183341 PMCID: PMC10401132 DOI: 10.1111/cns.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Remote ischemic conditioning (RIC) is a remote, transient, and noninvasive procedure providing temporary ischemia and reperfusion. However, there is no comprehensive literature investigating the efficacy and safety of RIC for the treatment of acute ischemic stroke. In the present study, we performed a comprehensive meta-analysis of the available studies. METHODS MEDLINE, Embase, the Cochrane Library database (CENTRAL), and ClinicalTrials.gov were searched before Sep 7, 2022. The data were analyzed using Review Manager 5.4.1 software, Stata version 16.0 software, and R 4.2.0 software. Odds ratio (OR), mean difference (MD), and corresponding 95% CIs were pooled using fixed-effects meta-analysis. RESULTS We pooled 6392 patients from 17 randomized controlled trials. Chronic RIC could reduce the recurrence of ischemic stroke at the endpoints (OR 0.67, 95% CI [0.51, 0.87]). RIC could also improve the prognosis of patients at 90 days as assessed by mRS score (mRS 0-1: OR 1.29, 95% CI [1.09, 1.52]; mRS 0-2: OR 1.22, 95% CI [1.01, 1.48]) and at the endpoints assessed by NIHSS score (MD -0.99, 95% CI [-1.45, -0.53]). RIC would not cause additional adverse events such as death (p = 0.72), intracerebral hemorrhage events (p = 0.69), pneumonia (p = 0.75), and TIA (p = 0.24) but would inevitably cause RIC-related adverse events (OR 26.79, 95% CI [12.08, 59.38]). CONCLUSIONS RIC could reduce the stroke recurrence and improve patients' prognosis. Intervention on bilateral upper limbs, 5 cycles, and a length of 50 min in each intervention might be an optimal protocol for RIC at present. RIC could be an effective therapy for patients not eligible for reperfusion therapy. RIC would not cause other adverse events except for relatively benign RIC-related adverse events.
Collapse
Affiliation(s)
- Xiuji Kan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zeya Yan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Tao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Wu Y, Zhou S, Li Y, Huang P, Zhong Z, Dong H, Tian H, Jiang S, Xie J, Li P. Remote ischemic preconditioning improves spatial memory and sleep of young males during acute high-altitude exposure. Travel Med Infect Dis 2023; 53:102576. [PMID: 37068619 DOI: 10.1016/j.tmaid.2023.102576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE The high-altitude hypoxia environment will cause poor acclimatization in a portion of the population. Remote ischemic preconditioning(RIPC)has been demonstrated to prevent cardiovascular and cerebrovascular diseases under ischemic or hypoxic conditions. However, its role in improving acclimatization and preventing acute mountain sickness (AMS) at high altitude has been undetermined. This study aims to estimate the effect of RIPC on acclimatization of individuals exposed to high altitude. METHODS The project was designed as a randomized controlled trial with 82 healthy young males, who received RIPC training once a day for 7 consecutive days. Then they were transported by aircraft to a high altitude (3680 m) and examined for 6 days. Lake Louise Score(LLS) of AMS, physiological index, self-reported sleep pattern, and Pittsburgh Sleep Quality Index(PSQI)score were applied to assess the acclimatization to the high altitude. Five neurobehavioral tests were conducted to assess cognitive function. RESULTS The result showed that the RIPC group had a significantly lower AMSscore than the control group (2.43 ± 1.58 vs 3.29 ± 2.03, respectively; adjusted mean difference-0.84, 95% confidence interval-1.61 to -0.06, P = 0.036). and there was no significant difference in AMS incidence between the two groups (25.0% vs 28.57%, P = 0.555). The RIPC group performed better than the control group in spatial memory span score (11[9-12] vs 10[7.5-11], P=0.025) and the passing digit (7[6-7.5] vs 6[5-7], P= 0.001). Spatial memory was significantly higher in the high-altitude RIPC group than in the low-altitude RIPC group (P<0.01). And the RIPC group obtained significantly lower self-reported sleep quality score (P = 0.024) and PSQI score (P = 0.031). CONCLUSIONS The RIPC treatment improved spatial memory and sleep quality in subjects exposed to acute hypoxic exposure and this may lead to improved performance at high altitude.
Collapse
Affiliation(s)
- Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Shuai Jiang
- Department of Health, The 12th Integrated Training Base of Army, Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Guo ZN, Abuduxukuer R, Zhang P, Wang C, Yang Y. Safety and efficacy of remote ischemic conditioning combined with endovascular thrombectomy for acute ischemic stroke due to large vessel occlusion of anterior circulation: A multicenter, randomized, parallel-controlled clinical trial (SERIC-EVT): Study protocol. Int J Stroke 2023; 18:484-489. [PMID: 35971654 DOI: 10.1177/17474930221121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RATIONALE/AIM Many patients undergoing successful recanalization after endovascular thrombectomy (EVT) do not have a good outcome; additional neuroprotection might benefit this group. Remote ischemic conditioning (RIC) stimulates endogenous protective mechanisms and may have a neuroprotective in acute brain ischemia. The safety and efficacy of RIC combined with endovascular thrombectomy (SERIC-EVT) trial is investigating the safety and efficacy of RIC for patients with acute ischemic stroke (AIS) who underwent EVT due to large vessel occlusion of the anterior circulation. METHODS SERIC-EVT is a multicenter, randomized, parallel-controlled, and blinded endpoint clinical trial. Patients are recruited from 10 hospitals in Jilin Province, Northeast China. Patients with anterior circulation AIS undergoing EVT due to large vessel occlusion are randomized in a 1:1 ratio to RIC or sham-RIC. Participants will receive standard medical treatment and an inflation pressure of 200 mmHg (RIC group) or 60 mmHg (sham-RIC group) twice daily for seven consecutive days. STUDY OUTCOMES The primary outcome is the proportion of patients with modified Rankin Scale (mRS) score of 0-2 on day 90. Secondary outcome measures include the National Institute of Health Stroke Scale, Barthel Index, and mRS scores obtained at 24 h, 7 days, 30 ± 3 days, and 90 ± 3 days post-EVT, recanalization rate, expanded Thrombolysis in Cerebral Infarction score, and symptomatic intracranial hemorrhage post-EVT. Mortality and all adverse events, including skin changes and pain scores, within the first 90 days will be used as safety outcome measures. SAMPLE SIZE ESTIMATES Based on previous studies, we estimate a 14% difference in functional independence (the mRS ⩽2) between RIC and sham-RIC groups. Considering a significance level of 5% and power of 80%, and one-fifth of patients lost to follow up, the planned sample size is 498 patients (249 per group). DISCUSSION RIC might be a strategy that improves 3-month clinical outcomes in AIS patients who have undergone EVT due to large vessel occlusion of anterior circulation. SERIC-EVT will determine whether this is the case.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
13
|
Abuduxukuer R, Guo ZN, Zhang P, Qu Y, Yang Y. Safety and efficacy of remote ischemic conditioning combined with intravenous thrombolysis for acute ischemic stroke: A multicenter, randomized, parallel-controlled clinical trial (SERIC-IVT) Study design and protocol. Int J Stroke 2023; 18:370-374. [PMID: 35619218 DOI: 10.1177/17474930221104991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Remote ischemic conditioning (RIC) combined with intravenous thrombolysis (IVT) may improve functional outcomes in patients with acute ischemic stroke (AIS). AIM To assess the efficacy and safety of RIC combined with IVT for AIS. METHODS AND DESIGN SERIC-IVT is a multicenter, randomized, parallel-controlled, blinded endpoint clinical trial. A total of 558 patients with AIS who underwent IVT therapy will be randomly assigned 1:1 to receive RIC or sham-RIC plus standard medical therapy. The cuff pressures of the RIC group and the sham-RIC group will be 200 mm Hg and 60 mm Hg, respectively, performed twice a day for seven consecutive days. STUDY OUTCOMES The primary efficacy outcome is the proportion of patients with a favorable functional outcome as defined as a modified Rankin Scale ⩽ 1 at 90 days. Safety outcomes include mortality and adverse events within 90 days. SAMPLE SIZE ESTIMATES A sample size of 558 patients with AIS (279 in each group) will allow detection of a shift of 13.14% toward favorable functional outcome at 90 days (modified Rankin Scale ⩽ 1) with 5% significance and 80% power. DISCUSSION RIC is a promising adjuvant treatment for AIS. SERIC-IVT will inform on whether RIC treatment combined with IVT improves functional outcomes in AIS patients and identify any safety issues.
Collapse
Affiliation(s)
- Reziya Abuduxukuer
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.,Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.,Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
14
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
15
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
16
|
Skukan L, Brezak M, Ister R, Klimaschewski L, Vojta A, Zoldoš V, Gajović S. Lentivirus- or AAV-mediated gene therapy interventions in ischemic stroke: A systematic review of preclinical in vivo studies. J Cereb Blood Flow Metab 2022; 42:219-236. [PMID: 34427147 PMCID: PMC8795232 DOI: 10.1177/0271678x211039997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the limited therapeutic options after ischemic stroke, gene therapy has emerged as a promising choice, especially with recent advances in viral vector delivery systems. Therefore, we aimed to provide the current state of the art of lentivirus (LV) and adeno-associated virus (AAV) mediated gene interventions in preclinical ischemic stroke models. A systematic analysis including qualitative and quantitative syntheses of studies published until December 2020 was performed. Most of the 87 selected publications used adult male rodents and the preferred stroke model was transient middle cerebral artery occlusion. LV and AAV vectors were equally used for transgene delivery, however loads of AAVs were higher than LVs. Serotypes having broad cell tropism, the use of constitutive promoters, and virus delivery before the stroke induction via stereotaxic injection in the cortex and striatum were preferred in the analyzed studies. The meta-analysis based on infarct volume as the primary outcome confirmed the efficacy of the preclinical interventions. The quality assessment exposed publication bias and setbacks in regard to risks of bias and study relevance. The translational potential could increase by using specific cell targeting, post-stroke interventions, non-invasive systematic delivery, and use of large animals.
Collapse
Affiliation(s)
- Laura Skukan
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Matea Brezak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Aleksandar Vojta
- Department for Molecular Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Vlatka Zoldoš
- Department for Molecular Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
17
|
Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol 2021; 12:746486. [PMID: 34956045 PMCID: PMC8695500 DOI: 10.3389/fneur.2021.746486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Torres-Querol C, Quintana-Luque M, Arque G, Purroy F. Preclinical evidence of remote ischemic conditioning in ischemic stroke, a metanalysis update. Sci Rep 2021; 11:23706. [PMID: 34887465 PMCID: PMC8660795 DOI: 10.1038/s41598-021-03003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023] Open
Abstract
Remote ischemic conditioning (RIC) is a promising therapeutic approach for ischemic stroke patients. It has been proven that RIC reduces infarct size and improves functional outcomes. RIC can be applied either before ischemia (pre-conditioning; RIPreC), during ischemia (per-conditioning; RIPerC) or after ischemia (post-conditioning; RIPostC). Our aim was to systematically determine the efficacy of RIC in reducing infarct volumes and define the cellular pathways involved in preclinical animal models of ischemic stroke. A systematic search in three databases yielded 50 peer-review articles. Data were analyzed using random effects models and results expressed as percentage of reduction in infarct size (95% CI). A meta-regression was also performed to evaluate the effects of covariates on the pooled effect-size. 95.3% of analyzed experiments were carried out in rodents. Thirty-nine out of the 64 experiments studied RIPostC (61%), sixteen examined RIPreC (25%) and nine tested RIPerC (14%). In all studies, RIC was shown to reduce infarct volume (- 38.36%; CI - 42.09 to - 34.62%) when compared to controls. There was a significant interaction caused by species. Short cycles in mice significantly reduces infarct volume while in rats the opposite occurs. RIPreC was shown to be the most effective strategy in mice. The present meta-analysis suggests that RIC is more efficient in transient ischemia, using a smaller number of RIC cycles, applying larger length of limb occlusion, and employing barbiturates anesthetics. There is a preclinical evidence for RIC, it is safe and effective. However, the exact cellular pathways and underlying mechanisms are still not fully determined, and its definition will be crucial for the understanding of RIC mechanism of action.
Collapse
Affiliation(s)
- Coral Torres-Querol
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Manuel Quintana-Luque
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Arque
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Experimental Medicine Department, Universitat de Lleida, Lleida, Spain
| | - Francisco Purroy
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Medicine Department, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Clinical Neurosciences Group IRBLleida, Avda Rovira Roure 80, 25198, Lleida, Spain.
| |
Collapse
|
19
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
20
|
McDonald MW, Dykes A, Jeffers MS, Carter A, Nevins R, Ripley A, Silasi G, Corbett D. Remote Ischemic Conditioning and Stroke Recovery. Neurorehabil Neural Repair 2021; 35:545-549. [PMID: 33955298 PMCID: PMC8135236 DOI: 10.1177/15459683211011224] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remote ischemic conditioning (RIC) is a noninvasive procedure whereby several periods of ischemia are induced in a limb. Although there is growing interest in using RIC to improve stroke recovery, preclinical RIC research has focused exclusively on neuroprotection, using male animals and the intraluminal suture stroke model, and delivered RIC at times not relevant to either brain repair or behavioral recovery. In alignment with the Stroke Recovery and Rehabilitation Roundtable, we address these shortcomings. First, a standardized session (5-minute inflation/deflation, 4 repetitions) of RIC was delivered using a cuff on the contralesional hindlimb in both male and female Sprague-Dawley rats. Using the endothelin-1 stroke model, RIC was delivered once either prestroke (18 hours before, pre-RIC) or poststroke (4 hours after, post-RIC), and infarct volume was assessed at 24 hours poststroke using magnetic resonance imaging. RIC was delivered at these times to mimic the day before a surgery where clots are possible or as a treatment similar to tissue plasminogen activator, respectively. Pre-RIC reduced infarct volume by 41% compared with 29% with post-RIC. RIC was neuroprotective in both sexes, but males had a 46% reduction of infarct volume compared with 23% in females. After confirming the acute efficacy of RIC, we applied it chronically for 4 weeks, beginning 5 days poststroke. This delayed RIC failed to enhance poststroke behavioral recovery. Based on these findings, the most promising application of RIC is during the hyperacute and early acute phases of stroke, a time when other interventions such as exercise may be contraindicated.
Collapse
Affiliation(s)
- Matthew W McDonald
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Angela Dykes
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Matthew S Jeffers
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Anthony Carter
- Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | | | | | - Gergely Silasi
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Dale Corbett
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
21
|
Nizari S, Basalay M, Chapman P, Korte N, Korsak A, Christie IN, Theparambil SM, Davidson SM, Reimann F, Trapp S, Yellon DM, Gourine AV. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol 2021; 116:32. [PMID: 33942194 PMCID: PMC8093159 DOI: 10.1007/s00395-021-00873-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.
Collapse
Affiliation(s)
- Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marina Basalay
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Philippa Chapman
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nils Korte
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Frank Reimann
- Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Ten Years and Counting: a Celebration of the 10th Anniversary of Translational Stroke Research. Transl Stroke Res 2021; 12:367-368. [PMID: 33638053 DOI: 10.1007/s12975-021-00902-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
|