1
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
2
|
Furukawa M, Kitanobo S, Ohki S, Teramoto MM, Hanahara N, Morita M. Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Mol Phylogenet Evol 2024; 195:108063. [PMID: 38493988 DOI: 10.1016/j.ympev.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.
Collapse
Affiliation(s)
- Mao Furukawa
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Seiya Kitanobo
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mariko M Teramoto
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Nozomi Hanahara
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan; Okinawa Churashima Foundation Research Center, 888 Ishikawa, Motobu, Okinawa 905-0206, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan.
| |
Collapse
|
3
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
5
|
Fernández-Garnacho EM, Nadeu F, Martín S, Mozas P, Rivero A, Delgado J, Giné E, López-Guillermo A, Duran-Ferrer M, Salaverria I, López C, Beà S, Demajo S, Jares P, Puente XS, Martín-Subero JI, Campo E, Hernández L. MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms. Sci Rep 2023; 13:16839. [PMID: 37803049 PMCID: PMC10558466 DOI: 10.1038/s41598-023-44174-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
MALAT1 long non-coding RNA has oncogenic roles but has been poorly studied in indolent B-cell neoplasms. Here, MALAT1 expression was analyzed using RNA-seq, microarrays or qRT-PCR in primary samples from clinico-biological subtypes of chronic lymphocytic leukemia (CLL, n = 266), paired Richter transformation (RT, n = 6) and follicular lymphoma (FL, n = 61). In peripheral blood (PB) CLL samples, high MALAT1 expression was associated with a significantly shorter time to treatment independently from other known prognostic factors. Coding genes expressed in association with MALAT1 in CLL were predominantly related to oncogenic pathways stimulated in the lymph node (LN) microenvironment. In RT paired samples, MALAT1 levels were lower, concordant with their acquired increased independency of external signals. Moreover, MALAT1 levels in paired PB/LN CLLs were similar, suggesting that the prognostic value of MALAT1 expression in PB is mirroring expression differences already present in LN. Similarly, high MALAT1 expression in FL predicted for a shorter progression-free survival, in association with expression pathways promoting FL pathogenesis. In summary, MALAT1 expression is related to pathophysiology and more aggressive clinical behavior of indolent B-cell neoplasms. Particularly in CLL, its levels could be a surrogate marker of the microenvironment stimulation and may contribute to refine the clinical management of these patients.
Collapse
Affiliation(s)
- Elena María Fernández-Garnacho
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Ferran Nadeu
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Martín
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pablo Mozas
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Rivero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Eva Giné
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Itziar Salaverria
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristina López
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sílvia Beà
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Santiago Demajo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pedro Jares
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- University of Oviedo, Oviedo, Spain
| | - José Ignacio Martín-Subero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Hernández
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Jiao X, Wang R, Ding X, Yan B, Lin Y, Liu Q, Wu Y, Zhou C. LncRNA-84277 is involved in chronic pain-related depressive behaviors through miR-128-3p/SIRT1 axis in central amygdala. Front Mol Neurosci 2022; 15:920216. [PMID: 35959106 PMCID: PMC9362774 DOI: 10.3389/fnmol.2022.920216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term chronic pain can lead to depression. However, the mechanism underlying chronic pain-related depression remains unclear. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase (HDAC). Our previous studies have demonstrated that SIRT1 in the central nucleus of the amygdala (CeA) is involved in the development of chronic pain-related depression. In addition, increasing studies have indicated that long non-coding RNAs (lncRNAs) play a vital role in the pathogenesis of pain or depression. However, whether lncRNAs are involved in SIRT1-mediated chronic pain-related depression remains largely unknown. In this study, we identified that a novel lncRNA-84277 in CeA was the upstream molecule to regulate SIRT1 expression. Functionally, lncRNA-84277 overexpression in CeA significantly alleviated the depression-like behaviors in spared nerve injury (SNI)-induced chronic pain rats, whereas lncRNA-84277 knockdown in CeA induced the depression-like behaviors in naïve rats. Mechanically, lncRNA-84277 acted as a competing endogenous RNA (ceRNA) to upregulate SIRT1 expression by competitively sponging miR-128-3p, and therefore improved chronic pain-related depression-like behaviors. Our findings reveal the critical role of lncRNA-84277 in CeA specifically in guarding against chronic pain-related depression via a ceRNA mechanism and provide a potential therapeutic target for chronic pain-related depression.
Collapse
Affiliation(s)
- Xiaowei Jiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Binbin Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuwen Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Yuqing Wu,
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Chenghua Zhou,
| |
Collapse
|
7
|
Xiao Y, Gu S, Yao W, Qin L, Luo J. Circ_0047921 acts as the sponge of miR-1287-5p to stimulate lung cancer progression by regulating proliferation, migration, invasion, and glycolysis of lung cancer cells. World J Surg Oncol 2022; 20:108. [PMID: 35365169 PMCID: PMC8976346 DOI: 10.1186/s12957-021-02466-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a common respiratory system disease caused by multiple factors. Circular RNAs (circRNAs) play vital roles in tumorigenesis, including lung cancer. This study aimed to clarify the role and underlying molecular mechanisms of circ_0047921 in lung cancer. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression levels of circ_0047921, La-related protein 1 (LARP1), and miR-1287-5p. Cell proliferation was analyzed by CCK-8 and EdU assays. Transwell assay was used to assess migration and invasion. Western blot assay was employed to quantify protein expression. Glycolysis ability of cell was determined by measuring glucose consumption and lactate production with matched kits. The relationship between miR-1287-5p and circ_0047921 or LARP1 was confirmed by dual-luciferase reporter assay. In addition, a xenograft model was established to clarify the functional role of circ_0047921 in vivo. Results Circ_0047921 was highly expressed in lung cancer tissues and cells. Circ_0047921 downregulation repressed proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and glycolysis in lung cancer cells. Circ_0047921 targeted miR-1287-5p to deplete miR-1287-5p expression. The effects caused by circ_0047921 downregulation were reversed by miR-1287-5p inhibition. In addition, LARP1 was a target of miR-1287-5p, and circ_0047921 could directly interact with miR-1287-5p to increase the expression of LARP1. The effects caused by circ_0047921 downregulation were also reversed by LARP1 overexpression. Circ_0047921 silencing impeded the growth of tumor in vivo. Conclusion Circ_0047921 was overexpressed in lung cancer, and circ_0047921 targeted miR-1287-5p to modulate LARP1 expression, thereby facilitating the development of lung cancer. Trial registration The present study was approved by the ethical review committee of The First People’s Hospital of Chenzhou, Southern Medical University with reference no. 20210106. 1. Circ_0047921 was upregulated in lung cancer tissues and cells. 2. Circ_0047921/miR-1287-5p/LARP1 axis played a key role in proliferation, migration, invasion, EMT and glycolysis of lung cancer cells. 3. Circ_0047921 regulated LARP1 by sponging miR-1287-5p in lung cancer.
Collapse
Affiliation(s)
- Yuehua Xiao
- The First General Surgery Department of Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| | - Shequn Gu
- The First Department of Medical Oncology, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China.
| | - Wenxiu Yao
- Department of Thoracic Oncology, The Cancer Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Ling Qin
- The First Department of Medical Oncology, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| | - Jihui Luo
- The Second General Surgery Department of Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, 423000, Hunan, China
| |
Collapse
|
8
|
Zhang Y, Yu Y, Cao X, Chen P. Role of lncRNA FAM83H antisense RNA1 (FAM83H-AS1) in the progression of non-small cell lung cancer by regulating the miR-545-3p/heparan sulfate 6-O-sulfotransferase (HS6ST2) axis. Bioengineered 2022; 13:6476-6489. [PMID: 35260044 PMCID: PMC8973780 DOI: 10.1080/21655979.2022.2031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulators of cancer pathogenesis and are potentially useful diagnostic and prognostic biomarker tools. FAM83H antisense RNA1 (FAM83H-AS1) has been reported to be a vital regulator of different cancers; however, little attention has been paid to its significance in lung cancer. Non-tumorigenic lung cell line BEAS-2B and adenocarcinoma lung cancer cell lines NCI-H1299 and HCC827 were used in the present study. In addition, RNA immunoprecipitation, Western blotting, quantitative reverse transcription-PCR (qRT-PCR), and luciferase reporter assays were used to dissect the role of FAM83H-AS1 in lung cancer progression. The results revealed that FAM83H-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibits lung cancer cell invasion and proliferation reducing tumor growth in vivo. Besides, we found that FAM83H-AS1 targets miR-545-3p, and a negative correlation exists between their expression in lung cancer tissues. Simultaneously, miR-545-3p negatively regulates heparan sulfate 6-O-sulfotransferase (HS6ST2). Moreover, inhibition of miR-545-3p promoted HS6ST2 protein expression and lung cancer cell invasion. FAM83H-AS1 favors non-small cell lung cancer by targeting the miR-545-3p/HS6ST2 axis, supporting the possibility of developing FAM83H-AS1 as a target for NSCLC intervention.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Mammography Surgery, The First Affiliated Hospital of HeBei North University, Zhangjiakou, Hebei, China
| | - Yue Yu
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuchen Cao
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
EGFR-AS1 Promotes Nonsmall Cell Lung Cancer (NSCLC) Progression via Downregulating the miR-524-5p/DRAM1 Axis and Inhibiting Autophagic Lysosomal Degradation. JOURNAL OF ONCOLOGY 2022; 2022:4402536. [PMID: 35222643 PMCID: PMC8866007 DOI: 10.1155/2022/4402536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) accounts for the majority of lung cancers. Studies have revealed the regulatory role of lncRNAs in cancer pathogenesis and their potential use as diagnostic and prognostic biomarkers. The epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) has been reported to be upregulated in NSCLC tissues, while its detailed mechanism in lung cancer needs to be explored. DNA damage-regulated autophagy modulator 1 (DRAM1) has been known to act as a tumor suppressor in NSCLC, and miR-524-5p has been reported to be a biomarker in idiopathic pulmonary fibrosis and different lung disorders. Our investigation revealed that EGFR-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibited lung cancer cell invasion and viability and reduced tumor growth in vivo. We also found that EGFR-AS1 targets miR-524-5p, and there was a negative correlation between their expressions in lung cancer tissues. Simultaneously, miR-524-5p has been found to promote DRAM1 expression. In addition, the inhibition of miR-524-5p diminished DRAM1 protein expression and promoted lung cancer cell invasion. Our study has revealed that EGFR-AS1 contributes to the pathogenesis of NSCLC by inhibiting autophagic-lysosomal degradation via targeting the miR-524-5p/DRAM1 axis. This finding elucidated for the first time the role of EGFR-AS1 in lung cancer progression and the positive regulatory function of miR-524-5p in regulating DRAM1 protein and suppressing lung cancer progression. This novel mechanism provided a better insight into the pathogenesis of lung cancer and presented a better strategy for the treatment of lung cancer.
Collapse
|
10
|
Hundreds of LncRNAs Display Circadian Rhythmicity in Zebrafish Larvae. Cells 2021; 10:cells10113173. [PMID: 34831396 PMCID: PMC8620895 DOI: 10.3390/cells10113173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play crucial roles in various life processes, including circadian rhythms. Although next generation sequencing technologies have facilitated faster profiling of lncRNAs, the resulting datasets require sophisticated computational analyses. In particular, the regulatory roles of lncRNAs in circadian clocks are far from being completely understood. In this study, we conducted RNA-seq-based transcriptome analysis of zebrafish larvae under both constant darkness (DD) and constant light (LL) conditions in a circadian manner, employing state-of-the-art computational approaches to identify approximately 3220 lncRNAs from zebrafish larvae, and then uncovered 269 and 309 lncRNAs displaying circadian rhythmicity under DD and LL conditions, respectively, with 30 of them are coexpressed under both DD and LL conditions. Subsequently, GO, COG, and KEGG pathway enrichment analyses of all these circadianly expressed lncRNAs suggested their potential involvement in numerous biological processes. Comparison of these circadianly expressed zebrafish larval lncRNAs, with rhythmically expressed lncRNAs in the zebrafish pineal gland and zebrafish testis, revealed that nine (DD) and twelve (LL) larval lncRNAs are coexpressed in the zebrafish pineal gland and testis, respectively. Intriguingly, among peptides encoded by these coexpressing circadianly expressed lncRNAs, three peptides (DD) and one peptide (LL) were found to have the known domains from the Protein Data Bank. Further, the conservation analysis of these circadianly expressed zebrafish larval lncRNAs with human and mouse genomes uncovered one lncRNA and four lncRNAs shared by all three species under DD and LL conditions, respectively. We also investigated the conserved lncRNA-encoded peptides and found one peptide under DD condition conserved in these three species and computationally predicted its 3D structure and functions. Our study reveals that hundreds of lncRNAs from zebrafish larvae exhibit circadian rhythmicity and should help set the stage for their further functional studies.
Collapse
|
11
|
Wang X, Jiang Q, Zhang C, Yang Q, Wang L, Zhang J, Wang L, Chen X, Hou X, Han D, Wu J, Zhao S. Long noncoding RNA SNHG12 is a potential diagnostic and prognostic biomarker in various tumors. Chin Neurosurg J 2021; 7:37. [PMID: 34372942 PMCID: PMC8351140 DOI: 10.1186/s41016-021-00250-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumors are the second most common cause of death in humans worldwide, second only to cardiovascular and cerebrovascular diseases. Although methods and techniques for the treatment of tumors continue to improve, the effect is not satisfactory. These may lack effective therapeutic targets. This study aimed to evaluate the value of SNHG12 as a biomarker in the prognosis and clinical characteristics of various cancer patients. METHODS We analyzed SNHG12 expression and plotted the survival curves of all cancer samples in the TCGA database using the GEPIA tool. Then, we searched for eligible papers up to April 1, 2019, in databases. Next, the data were extracted from studies examining SNHG12 expression, overall survival and clinicopathological features in patients with malignant tumors. We used Review Manager 5.3 and Stata 15 software to analyze the statistical data. RESULTS In the TCGA database, abnormally high expression of SNHG12 in tumor samples indicates that the patient has a poor prognosis. Results of meta-analysis is that SNHG12 high expression is related to low overall survival (HR = 2.72, 95% CI = 1.95-3.8, P < 0.00001), high tumor stage (OR = 3.94, 95% CI = 2.80-5.53, P < 0.00001), high grade (OR = 2.04, 95% CI = 1.18-3.51, P = 0.01), distant metastasis (OR = 2.20, 95% CI = 1.40-3.46, P = 0.0006), tumor size (OR = 2.79, 95% CI = 1.89-4.14, P < 0.00001), and lymph node metastasis (OR = 2.66, 95% CI = 1.65-4.29, P < 0.0001). CONCLUSIONS Our study confirmed that the high expression level of SNHG12 is closely related to the clinicopathological characteristics and prognosis of patients and is a new predictive biomarker for various cancer patients.
Collapse
Affiliation(s)
- Xinzhuang Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Qiuyi Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Cheng Zhang
- North Broward Preparatory School, 7600 Lyons Road, Coconut Creek, FL, 33073, USA
| | - Quan Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Lixiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ligang Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xu Hou
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Dayong Han
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jianing Wu
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China. .,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China. .,Department of Neurosurgery, The Pinghu Hospital of Shenzhen University, Shenzhen, 518100, Guangdong Province, China.
| | - Shiguang Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China. .,Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China. .,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China. .,Department of Neurosurgery, The Pinghu Hospital of Shenzhen University, Shenzhen, 518100, Guangdong Province, China.
| |
Collapse
|
12
|
Mishra SK, Liu T, Wang H. Identification of Rhythmically Expressed LncRNAs in the Zebrafish Pineal Gland and Testis. Int J Mol Sci 2021; 22:7810. [PMID: 34360576 PMCID: PMC8346003 DOI: 10.3390/ijms22157810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Noncoding RNAs have been known to contribute to a variety of fundamental life processes, such as development, metabolism, and circadian rhythms. However, much remains unrevealed in the huge noncoding RNA datasets, which require further bioinformatic analysis and experimental investigation-and in particular, the coding potential of lncRNAs and the functions of lncRNA-encoded peptides have not been comprehensively studied to date. Through integrating the time-course experimentation with state-of-the-art computational techniques, we studied tens of thousands of zebrafish lncRNAs from our own experiments and from a published study including time-series transcriptome analyses of the testis and the pineal gland. Rhythmicity analysis of these data revealed approximately 700 rhythmically expressed lncRNAs from the pineal gland and the testis, and their GO, COG, and KEGG pathway functions were analyzed. Comparative and conservative analyses determined 14 rhythmically expressed lncRNAs shared between both the pineal gland and the testis, and 15 pineal gland lncRNAs as well as 3 testis lncRNAs conserved among zebrafish, mice, and humans. Further, we computationally analyzed the conserved lncRNA-encoded peptides, and revealed three pineal gland and one testis lncRNA-encoded peptides conserved among these three species, which were further investigated for their three-dimensional (3D) structures and potential functions. Our computational findings provided novel annotations and regulatory mechanisms for hundreds of rhythmically expressed pineal gland and testis lncRNAs in zebrafish, and set the stage for their experimental studies in the near future.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
14
|
Deng L, Li W, Zhang J. LDAH2V: Exploring Meta-Paths Across Multiple Networks for lncRNA-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1572-1581. [PMID: 31725386 DOI: 10.1109/tcbb.2019.2946257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accumulating evidence has demonstrated dysfunctions of long non-coding RNAs (lncRNAs) are involved in various complex human diseases. However, even today, the relationships between lncRNAs and diseases remain unknown in most cases. Developing effective computational approaches to identify potential lncRNA-disease associations has become a hot topic. Existing network-based approaches are usually focused on the intrinsic features of lncRNAs and diseases but ignore the heterogeneous information of biological networks. Considering the limitations in previous methods, we propose LDAH2V, an efficient computational framework for predicting potential lncRNA-disease associations. LDAH2V uses the HIN2Vec to calculate the meta-path and feature vector for each lncRNA-disease pair in the heterogeneous information network (HIN), which consists of lncRNA similarity network, disease similarity network, miRNA similarity network, and the associations between them. Then, a Gradient Boosting Tree (GBT) classifier to predict lncRNA-disease associations is built with the feature vectors. The results show that LDAH2V performs significantly better than the four existing state-of-the-art methods and gains an AUC of 0.97 in the 10-fold cross-validation test. Furthermore, case studies of colon cancer and ovarian cancer-related lncRNAs have been confirmed in related databases and medical literature.
Collapse
|
15
|
Song HK, Kim SY. The Role of Sex-specific Long Non-coding RNAs in Cancer Prevention and Therapy. J Cancer Prev 2021; 26:98-109. [PMID: 34258248 PMCID: PMC8249206 DOI: 10.15430/jcp.2021.26.2.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
The functions of a large number of non-coding genes in human DNA have yet to be accurately identified. Long non-coding RNA (lncRNA) measuring 10 kb or less in length regulates transcription or post-transcriptional events. The lncRNAs have attracted increased attention of researchers in recent years. In this review, we summarize the recently published lncRNAs which are known to influence cancer development and progression. We also discuss recent studies investigating tumor-specific lncRNA expression. These lncRNAs provide very useful information that allows prediction of the degree of malignancy and a survival rate in cancer patients as clinically relevant biomarkers. Because symptoms and progression of cancer differ from onset to death between males and females, it is important to consider the gender of the patient when diagnosing cancer and predicting the progression. Considering the importance of gender difference, we also examine the influence of sex hormones involved in the expression and regulation of lncRNAs as biomarkers. Many of the lncRNAs examined in this review have been studied in cancers occurring in the female or male reproductive organs, but the association between lncRNAs and sex hormones has also been reported in common organs such as the lung, renal and colon. Although lncRNAs have not yet been widely used as definitive cancer indicators, recent studies have demonstrated the potential role of lncRNAs as biomarkers and therapeutic targets reflecting sex-specificity in a number of different cancers.
Collapse
Affiliation(s)
- Hye Kyung Song
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Korea
| |
Collapse
|
16
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
17
|
Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, Xie A, Zhang C, Fu B, Zhou X, Wang G. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol 2021; 11:661431. [PMID: 34094954 PMCID: PMC8170392 DOI: 10.3389/fonc.2021.661431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background The long non-coding RNA LINC00467 plays a vital role in many malignancies. Nevertheless, the role of LINC00467 in prostate carcinoma (PC) is unknown. Herein, we aimed to explore the mechanism by which LINC00467 regulates PC progression. Methods We used bioinformatics analyses and RT-qPCR to investigate the expression of LINC00467 in PC tissues and cells. The function of LINC00467 in the progression of PC was confirmed by loss-of-function experiments. PC cell proliferation was assessed by CCK-8 and EdU assays. The cell cycle progression of PC cells was examined by flow cytometry. Moreover, Transwell assays were used to investigate the migration and invasion of PC cells. Western blot assays were used to detect the expression of factors associated with epithelial–mesenchymal transition. The interactions of LINC00467 with prostate cancer progression and M2 macrophage polarization were confirmed by RT-qPCR. The subcellular localization of LINC00467 was investigated via the fractionation of nuclear and cytoplasmic RNA. Bioinformatics data analysis was used to predict the correlation of LINC00467 expression with miR-494-3p expression. LINC00467/miR-494-3p/STAT3 interactions were identified by using a dual-luciferase reporter system. Finally, the influence of LINC00467 expression on PC progression was investigated with an in vivo nude mouse model of tumorigenesis. Results We established that LINC00467 expression was upregulated in PC tissues and cells. Downregulated LINC00467 expression inhibited PC cell growth, cell cycle progression, migration, and invasion. Downregulated LINC00467 expression similarly inhibited PC cell migration via M2 macrophage polarization. Western blot analysis showed that LINC00467 could regulate the STAT3 pathway. We established that LINC00467 is mainly localized to the cytoplasm. Bioinformatics analysis and rescue experiments indicated that LINC00467 promotes PC progression via the miR-494-3p/STAT3 axis. Downregulated LINC00467 expression was also able to suppress PC tumor growth in vivo. Conclusions Our study reveals that LINC00467 promotes prostate cancer progression via M2 macrophage polarization and the miR-494-3p/STAT3 axis.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhenhao Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | | | - An Xie
- Jiangxi Institute of Urology, Nanchang, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
18
|
Mishra SK, Wang H. Computational Analysis Predicts Hundreds of Coding lncRNAs in Zebrafish. BIOLOGY 2021; 10:biology10050371. [PMID: 33925925 PMCID: PMC8145020 DOI: 10.3390/biology10050371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Noncoding RNAs (ncRNAs) regulate a variety of fundamental life processes such as development, physiology, metabolism and circadian rhythmicity. RNA-sequencing (RNA-seq) technology has facilitated the sequencing of the whole transcriptome, thereby capturing and quantifying the dynamism of transcriptome-wide RNA expression profiles. However, much remains unrevealed in the huge noncoding RNA datasets that require further bioinformatic analysis. In this study, we applied six bioinformatic tools to investigate coding potentials of approximately 21,000 lncRNAs. A total of 313 lncRNAs are predicted to be coded by all the six tools. Our findings provide insights into the regulatory roles of lncRNAs and set the stage for the functional investigation of these lncRNAs and their encoded micropeptides. Abstract Recent studies have demonstrated that numerous long noncoding RNAs (ncRNAs having more than 200 nucleotide base pairs (lncRNAs)) actually encode functional micropeptides, which likely represents the next regulatory biology frontier. Thus, identification of coding lncRNAs from ever-increasing lncRNA databases would be a bioinformatic challenge. Here we employed the Coding Potential Alignment Tool (CPAT), Coding Potential Calculator 2 (CPC2), LGC web server, Coding-Non-Coding Identifying Tool (CNIT), RNAsamba, and MicroPeptide identification tool (MiPepid) to analyze approximately 21,000 zebrafish lncRNAs and computationally to identify 2730–6676 zebrafish lncRNAs with high coding potentials, including 313 coding lncRNAs predicted by all the six bioinformatic tools. We also compared the sensitivity and specificity of these six bioinformatic tools for identifying lncRNAs with coding potentials and summarized their strengths and weaknesses. These predicted zebrafish coding lncRNAs set the stage for further experimental studies.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China;
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China;
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
- Correspondence: or ; Tel.: +86-512-6588-2115
| |
Collapse
|
19
|
Sabbir Ahmed CM, Paul BC, Cui Y, Frie AL, Burr A, Kamath R, Chen JY, Nordgren TM, Bahreini R, Lin YH. Integrative Analysis of lncRNA-mRNA Coexpression in Human Lung Epithelial Cells Exposed to Dimethyl Selenide-Derived Secondary Organic Aerosols. Chem Res Toxicol 2021; 34:892-900. [PMID: 33656867 DOI: 10.1021/acs.chemrestox.0c00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released into the atmosphere through plant metabolism and microbial methylation. DMSe has been recently revealed as a precursor of secondary organic aerosol (SOA), and its resultant SOA possesses strong oxidizing capability toward thiol groups that can perturb several major biological pathways in human airway epithelial cells and is linked to genotoxicity, DNA damage, and p53-mediated stress responses. Mounting evidence has suggested that long noncoding RNAs (lncRNAs) are involved in stress responses to internal and environmental stimuli. However, the underlying molecular interactions remain to be elucidated. In this study, we performed integrative analyses of lncRNA-mRNA coexpression in the transformed human bronchial epithelial BEAS-2B cell line exposed to DMSe-derived SOA. We identified a total of 971 differentially expressed lncRNAs in BEAS-2B cells exposed to SOA derived from O3 and OH oxidation of DMSe. Gene ontology (GO) network analysis of cis-targeted genes showed significant enrichment of DNA damage, apoptosis, and p53-mediated stress response pathways. trans-Acting lncRNAs, including PINCR, PICART1, DLGAP1-AS2, and LINC01629, known to be associated with human carcinogenesis, also showed altered expression in cell treated with DMSe-SOA. Overall, this study highlights the regulatory role of lncRNAs in altered gene expression induced by DMSe-SOA exposure.
Collapse
Affiliation(s)
- C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Biplab Chandra Paul
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yumeng Cui
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Alexander L Frie
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Abigail Burr
- Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Rohan Kamath
- Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Tara M Nordgren
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Roya Bahreini
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Chen YM, Zu XP, Li D. Identification of Proteins of Tobacco Mosaic Virus by Using a Method of Feature Extraction. Front Genet 2020; 11:569100. [PMID: 33193664 PMCID: PMC7581905 DOI: 10.3389/fgene.2020.569100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/03/2022] Open
Abstract
Tobacco mosaic virus, TMV for short, is widely distributed in the global tobacco industry and has a significant impact on tobacco production. It can reduce the amount of tobacco grown by 50-70%. In this research of study, we aimed to identify tobacco mosaic virus proteins and healthy tobacco leaf proteins by using machine learning approaches. The experiment's results showed that the support vector machine algorithm achieved high accuracy in different feature extraction methods. And 188-dimensions feature extraction method improved the classification accuracy. In that the support vector machine algorithm and 188-dimensions feature extraction method were finally selected as the final experimental methods. In the 10-fold cross-validation processes, the SVM combined with 188-dimensions achieved 93.5% accuracy on the training set and 92.7% accuracy on the independent validation set. Besides, the evaluation index of the results of experiments indicate that the method developed by us is valid and robust.
Collapse
Affiliation(s)
| | | | - Dan Li
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Zhu Y, Yan Z, Tang Z, Li W. Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency. Curr Genomics 2020; 21:37-45. [PMID: 32655297 PMCID: PMC7324891 DOI: 10.2174/1389202921666200210142840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
The pluripotent state of stem cells depends on the complicated network orchestrated by thousands of factors and genes. Long noncoding RNAs (lncRNAs) are a class of RNA longer than 200 nt without a protein-coding function. Single-cell sequencing studies have identified hundreds of lncRNAs with dynamic changes in somatic cell reprogramming. Accumulating evidence suggests that they participate in the initiation of reprogramming, maintenance of pluripotency, and developmental processes by cis and/or trans mechanisms. In particular, they may interact with proteins, RNAs, and chromatin modifier complexes to form an intricate pluripotency-associated network. In this review, we focus on recent progress in approaches to profiling functional lncRNAs in somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Yanbo Zhu
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Zi Yan
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Ze Tang
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Wei Li
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| |
Collapse
|
22
|
Geng G, Zhang Z, Cheng L. Identification of a Multi-Long Noncoding RNA Signature for the Diagnosis of Type 1 Diabetes Mellitus. Front Bioeng Biotechnol 2020; 8:553. [PMID: 32719778 PMCID: PMC7350420 DOI: 10.3389/fbioe.2020.00553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023] Open
Abstract
Due to the increasing prevalence of type 1 diabetes mellitus (T1DM) and its complications, there is an urgent need to identify novel methods for predicting the occurrence and understanding the pathogenetic mechanisms of the disease. Accumulated data have demonstrated the potential of long noncoding RNAs (lncRNAs), as biomarkers in establishing diagnosis and predicting prognosis of numerous diseases. Yet, little is known about the expression patterns and regulatory roles of lncRNAs in the pathogenesis of T1DM and whether they can be used as diagnostic biomarkers for the disease. To further explore these questions, in the present study, we conducted a comparative analysis of the expression patterns of lncRNAs between 20 T1DM patients and 42 health controls by retrospectively analyzing a published microarray data set. Our results indicate that, compared with healthy controls, diabetic patients had altered levels of lncRNAs. Then, we used three time cross-validation strategy and support vector machine to propose a specific 26-lncRNA signature (termed 26LncSigT1DM). This 26LncSigT1DM signature can be used to effectively distinguish between healthy and diabetic individuals (area under the curve = 0.825) of a validation cohort. After the 26LncSigT1DM was prospectively validated, we used Pearson correlation to identify 915 mRNAs, whose expression levels were positively correlated with those of the 26 lncRNAs. According to their Gene Ontology annotations, these mRNAs participate in processes including cellular response to stimulus, cell communication, multicellular organismal process, and cell motility. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the genes encoding the 915 mRNAs may be associated with the NOD-like receptor signaling pathway, transforming growth factor β signaling pathway, and mineral absorption, suggesting that the deregulation of these lncRNAs may mediate inflammatory abnormalities and immune dysfunctions, which jointly promote the pathogenesis of T1DM. Thus, our study identifies a novel diagnostic tool and may shed more light on the molecular mechanisms underlying the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Guannan Geng
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zicheng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
|
24
|
Genome‑wide integrated analysis demonstrates widespread functions of lncRNAs in mammary gland development and lactation in dairy goats. BMC Genomics 2020; 21:254. [PMID: 32293242 PMCID: PMC7092584 DOI: 10.1186/s12864-020-6656-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background The mammary gland is a unique organ for milk synthesis, secretion and storage, and it undergoes cyclical processes of development, differentiation, lactation and degeneration. At different developmental periods, the biological processes governing mammary gland physiology and internal environmental homeostasis depend on a complex network of genes and regulatory factors. Emerging evidence indicates that lncRNAs have arbitrarily critical functions in regulating gene expression in many organisms; however, the systematic characteristics, expression, and regulatory roles of lncRNAs in the mammary gland tissues of dairy goats have not been determined. Result In the present study, we profiled long noncoding RNA (lncRNA) expression in the mammary gland tissues of Laoshan dairy goats (Capra hircus) from different lactation periods at the whole-genome level, to identify, characterize and explore the regulatory functions of lncRNAs. A total of 37,249 transcripts were obtained, of which 2381 lncRNAs and 37,249 mRNAs were identified, 22,488 transcripts, including 800 noncoding transcripts and 21,688 coding transcripts, differed significantly (p ≤ 0.01) among the different lactation stages. The results of lncRNA-RNA interaction analysis showed that six known lncRNAs belonging to four families were identified as the precursors of 67 known microRNAs; 1478 and 573 mRNAs were predicted as hypothetical cis-regulation elements and antisense mRNAs, respectively. GO annotation and KEGG analysis indicated that the coexpressed mRNAs were largely enriched in biological processes related to such activities as metabolism, immune activation, and stress,., and most genes were involved in pathways related to such phenomena as inflammation, cancer, signal transduction, and metabolism. Conclusions Our results clearly indicated that lncRNAs involved in responses to stimuli, multiorganism processes, development, reproductive processes and growth, are closely related to mammary gland development and lactation.
Collapse
|
25
|
Wang L, Cao L, Wen C, Li J, Yu G, Liu C. LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum Cell 2019; 33:195-204. [PMID: 31667785 DOI: 10.1007/s13577-019-00296-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023]
Abstract
Long non-coding RNA (lncRNA), a member of non-coding RNA family with over 200 nucleotides in length, typically serves as an oncogene or tumor suppressor in tumor progression, such as cancer cell proliferation, apoptosis and glycolysis. Recent studies manifested lncRNA LINC00857 was involved in cell cycle regulation of lung cancer. Due to complicated networks in tumorigenesis, the potential roles of LINC00857 underlying lung cancer progression still need further investigation. In this study, we explored the expression of LINC00857 in lung adenocarcinoma (LUAD) tissues and LUAD cell lines and found a dramatical upregulation of LINC00857 compared with the adjacent normal lung tissues and BEAS-2B cell line, respectively. Then, LINC00857 knockdown led to the cell proliferation and glycolysis was repressed, while the apoptosis was elevated in LUAD cell lines. Furthermore, we identified a direct interaction between LINC00857 and miR-1179 in LUAD cells using bioinformatic method and report assay. Finally, we evidenced LINC00857 promoted cell growth and glycolysis and repressed apoptosis via sponging miR-1179 and further regulating sperm-associated antigen 5 (SPAG5) expression in LUAD cell lines. Hence, our results authenticated that lncRNA LINC00857 regulated the cell proliferation, glycolysis and apoptosis of LUAD cells mainly through targeting the miR-1179/SPAG5 axis, which might be a novel insight into lung cancer progression and provided a potential target for clinical treatment of LUAD patients.
Collapse
Affiliation(s)
- Lan Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, China
| | - Liqiang Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, China
| | - Chunxia Wen
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210092, China
| | - Jie Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, China
| | - Chengying Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, China.
| |
Collapse
|
26
|
Khan S, Khan M, Iqbal N, Hussain T, Khan SA, Chou KC. A Two-Level Computation Model Based on Deep Learning Algorithm for Identification of piRNA and Their Functions via Chou’s 5-Steps Rule. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09887-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Liang Z, Wang Y, Li H, Sun Y, Gong Y. lncRNAs combine and crosstalk with NSPc1 in ATRA-induced differentiation of U87 glioma cells. Oncol Lett 2019; 17:5821-5829. [PMID: 31186810 DOI: 10.3892/ol.2019.10254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Nervous system polycomb 1 (NSPc1) is a member of the polycomb group (PcG) family of proteins and has been demonstrated to maintain the differentiation and pluripotency of stem cells. Long non-coding RNAs (lncRNAs) have been demonstrated to be involved in the control of pluripotency and differentiation in embryonic and pluripotent cells. In the present study, the expression levels of NSPc1 were associated with the malignant potential of various glioma cell lines. Additionally, lncRNAs were differentially expressed in glioblastoma cell lines. Following induced differentiation of U87 glioblastoma cells with all-trans retinoic acid, the expression levels of NSPc1 decreased initially, reaching its lowest point on day 6, but then subsequently increased until day 10. The expression of lncRNA candidates decreased in the cell differentiation stage. Additionally, the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), sex-determining region of the Y chromosome-box 2 overlapping transcript (SOX2OT) and antisense non-coding RNA in the INK4 locus (ANRIL) was significantly altered relative to the expression levels of NSPc1. RNA immunoprecipitation (RIP) assays demonstrated that MALAT1, SOX2OT and ANRIL bind to NSPc1 in U87 glioblastoma cells and the enrichment of ANRIL in anti-NSPc1 antibody group was associated with the expression levels of NSPc1 during U87 cell differentiation. Small interfering RNA mediated downregulation of NSPc1 expression with MALAT1, SOX2OT and ANRIL, inhibited the proliferation, and promoted apoptosis in U87 cells. The results of the present study demonstrate that MALAT1, SOX2OT and ANRIL combine and crosstalk with NSPc1 in U87 cells to affect proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhikong Liang
- Department of Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Force, Yangzhou 225003, P.R. China
| | - Yuliang Wang
- Department of Biochemistry and Molecular Biology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Sixth Detachment of Second Mobile Corps of Chinese People's Armed Police Force, Guangzhou 510812, P.R. China
| | - Hui Li
- Department of Histology and Embryology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yi Sun
- Department of Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yanhua Gong
- Department of Biochemistry and Molecular Biology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
28
|
Liu J, Nie S, Liang J, Jiang Y, Wan Y, Zhou S, Cheng W. Competing endogenous RNA network of endometrial carcinoma: A comprehensive analysis. J Cell Biochem 2019; 120:15648-15660. [PMID: 31056798 DOI: 10.1002/jcb.28831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Competing endogenous RNA (ceRNA) network is dysregulated in the initiation and progression of tumors. In the present study, we explored the regulatory mechanism of ceRNA in endometrial carcinoma (EC) and the potential key molecules with potential value in the diagnosis, treatment, and prognosis of EC. The long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) expression profiles (552 EC tissues and 35 nontumor tissues) and microRNAs (miRNAs) expression profiles (546 EC tissues and 33 nontumor tissues) were downloaded from The Cancer Genome Atlas database to identify differentially expressed RNAs (DERNAs) in EC. An integrated bioinformatics analysis was used to construct an EC-specific ceRNA network and select key molecules. As a result, 96 differentially expressed lncRNAs (DElncRNAs), 29 differentially expressed miRNAs (DEmiRNAs), and 77 differentially expressed mRNAs (DEmRNAs) were identified. An EC-specific ceRNA network was built based on nine DElncRNAs significantly associated with overall survival. CCNB1 was found as a key gene in EC through the weighted gene coexpression network analysis and protein-protein interaction network analysis. Our ceRNA network showed C2orf48 and LINC00483 might upregulate CCNB1 via competing with miR-183. In addition, we found a subnetwork which contained survival-associated DERNAs (AC110491.1, LINC00483-miR-192-GRHL1). The results of reverse transcription quantitative polymerase chain reaction supported the relative expressions of C2orf48, LINC00483 were upregulated and that of AC110491.1 was downregulated in EC. We further found C2orf48 was upregulated in serous EC, endometrioid EC, and mixed serous and endometrioid EC. LINC00483 was upregulated in mixed serous and endometrioid EC compared with that in the normal tissues according to UALCAN database. In addition, candidate small molecular drugs were screened out by ConnectivityMap based on the 77 DEmRNAs in the ceRNA network. Eventually, C2orf48, LINC00483, and AC110491.1 were identified as three key lncRNAs in EC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junya Liang
- Hypertension Research Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Roisman A, Castellano G, Navarro A, Gonzalez-Farre B, Pérez-Galan P, Esteve-Codina A, Dabad M, Heath S, Gut M, Bosio M, Bellot P, Salembier P, Oliveras A, Slavutsky I, Magnano L, Horn H, Rosenwald A, Ott G, Aymerich M, López-Guillermo A, Jares P, Martín-Subero JI, Campo E, Hernández L. Differential expression of long non-coding RNAs are related to proliferation and histological diversity in follicular lymphomas. Br J Haematol 2018; 184:373-383. [DOI: 10.1111/bjh.15656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Alejandro Roisman
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Laboratorio de Genética de Neoplasias Linfoides; Instituto de Medicina Experimental; CONICET-Academia Nacional de Medicina; Buenos Aires Argentina
| | | | - Alba Navarro
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Barcelona Spain
| | - Blanca Gonzalez-Farre
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Department of Pathology; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - Patricia Pérez-Galan
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
| | - Anna Esteve-Codina
- CNAG-CRG; Centre for Genomic Regulation (CRG); Barcelona Institute of Science and Technology (BIST); Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - Marc Dabad
- CNAG-CRG; Centre for Genomic Regulation (CRG); Barcelona Institute of Science and Technology (BIST); Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - Simon Heath
- CNAG-CRG; Centre for Genomic Regulation (CRG); Barcelona Institute of Science and Technology (BIST); Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - Marta Gut
- CNAG-CRG; Centre for Genomic Regulation (CRG); Barcelona Institute of Science and Technology (BIST); Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - Mattia Bosio
- Barcelona Supercomputing Center; Barcelona Spain
| | - Pau Bellot
- Department of Signal Theory and Communications; Technical University of Catalonia UPC; Barcelona Spain
| | - Philippe Salembier
- Department of Signal Theory and Communications; Technical University of Catalonia UPC; Barcelona Spain
| | - Albert Oliveras
- Department of Signal Theory and Communications; Technical University of Catalonia UPC; Barcelona Spain
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides; Instituto de Medicina Experimental; CONICET-Academia Nacional de Medicina; Buenos Aires Argentina
| | - Laura Magnano
- Department of Haematology; Hospital Clínic of Barcelona; Barcelona Spain
| | - Heike Horn
- Dr. M. Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tübingen; Stuttgart Germany
| | | | - German Ott
- Department of Clinical Pathology; Robert-Bosch Krankenhaus; Stuttgart Germany
| | - Marta Aymerich
- Haematopathology Unit; Department of Pathology; Hospital Clínic; IDIBAPS; Barcelona Spain
| | | | - Pedro Jares
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Department of Pathology; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - José I. Martín-Subero
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Barcelona Spain
| | - Elías Campo
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Barcelona Spain
- Haematopathology Unit; Department of Pathology; Hospital Clínic; IDIBAPS; Barcelona Spain
| | - Luis Hernández
- Lymphoid Neoplasm Programme; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Barcelona Spain
| |
Collapse
|
30
|
Yang Z, Li H, Li J, Lv X, Gao M, Bi Y, Zhang Z, Wang S, Li S, Li N, Cui Z, Zhou B, Yin Z. Association Between Long Noncoding RNAMEG3Polymorphisms and Lung Cancer Susceptibility in Chinese Northeast Population. DNA Cell Biol 2018; 37:812-820. [DOI: 10.1089/dna.2018.4277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Zitai Yang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Juan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Xiaoting Lv
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Yanhong Bi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Ziwei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Shengli Wang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Na Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang, People's Republic of China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Long Noncoding RNAs in Colorectal Adenocarcinoma; an in silico Analysis. Pathol Oncol Res 2018; 25:1387-1394. [PMID: 29948619 DOI: 10.1007/s12253-018-0428-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are lengthy noncoding transcripts which are involved in critical signaling pathways including cell cycle and apoptosis so it is not surprising to see their altered expression in human tumors. Colorectal adenocarcinoma is one the most frequent malignancies worldwide. The role of lncRNAs in colorectal adenocarcinoma is not well understood. To study the significance of lncRNAs in colorectal adenocarcinoma, we retrieved 189 approved lncRNAs from HGNC. The genes were imported into the cBioPortal database for transcriptomic analyses. We queried all the samples from TCGA provisional colorectal adenocarcinoma with RNA-seq v2 data in our study and considered RNA dysregulation with Z-score: ±2. The lncRNA which was altered in most of the patients were considered as "significant lncRNA" for further analyses. We considered the association of candidate lncRNAs with clinicopathologic parameters of samples including tumor disease anatomic site, neoplasm histologic types, tumor stage and survival. We also compute the specificity of the significant lncRNAs expression in colorectal adenocarcinoma comparing with other human cancers in cancer portal. Our analysis showed that lncRNAs SNHG6, PVT1 and ZFAS1 allocated the maximum alteration among the colorectal cases. The expression of SNHG6 and ZFAS1 was more in rectal adenocarcinoma than the colon carcinoma while the PVT1 showed the same expression levels in both tissues. However, we found that upregulation of PVT1 has been reduced the overall survival in patients. Altogether these data showed SNHG6, PVT1 and ZFAS1, are promising candidates for experimental research on colorectal adenocarcinoma to discover novel biomarker for this prevalent cancer.
Collapse
|
32
|
Wang X, Peng F, Cheng L, Yang G, Zhang D, Liu J, Chen X, Zhao S. Prognostic and clinicopathological role of long non-coding RNA UCA1 in various carcinomas. Oncotarget 2018; 8:28373-28384. [PMID: 28423704 PMCID: PMC5438656 DOI: 10.18632/oncotarget.16059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Urothelial cancer associated 1 (UCA1) as an oncogenic long non-coding RNA (LncRNA) was aberrantly upregulated in various solid tumors. Numerous studies have demonstrated overexpression of UCA1 is an unfavorable prognostic indicator in cancer patients. This study aimed to further explore the prognosis role and clinical significance of UCA1 in cancer. Eligible studies were recruited by a systematic search in PubMed, Embase, Cochrane Library and Web of Science databases. A total of 19/16 studies with 1587/1291 cancer patients were included to evaluate the association between UCA1 expression and overall survival (OS) and clinicopathological factors of malignancies by computing hazard ratio (HR), odds ratios (OR) and confidence interval (CI). The meta-analysis indicated overexpression of UCA1 was significantly correlated with unexpected OS in patients with cancer (pooled HR = 1.85, 95% CI 1.62-2.10, p < 0.001). There was also a significantly negative association between high level of UCA1 and poor grade cancer (pooled OR = 2.74, 95% CI 2.04-3.70, p < 0.001) and positive lymphatic metastasis (pooled OR = 2.43, 95% CI 1.72-3.41, p < 0.001). In conclusion, our study suggested that UCA1 was correlated with more advanced clinicopathological features and poor prognosis as a novel predictive biomarker of patients with various tumors.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Fei Peng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jiaqi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China.,Institute of Brain Science, Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, 150001, People's Republic of China
| |
Collapse
|
33
|
Wang L, Liu Y, Sun S, Lu M, Xia Y. Regulation of neuronal-glial fate specification by long non-coding RNAs. Rev Neurosci 2018; 27:491-9. [PMID: 26943605 DOI: 10.1515/revneuro-2015-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
Neural stem cell transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system. One of the limitations of this approach is that the proportion of functional cells differentiated from stem cells still remains at a low level. In recent years, novel long non-coding RNAs (lncRNAs) are being discovered at a growing pace, suggesting that this class of molecules may act as novel regulators in neuronal-glial fate specification. In this review, we first describe the general features of lncRNAs that are more likely to be relevant to reveal their function. By this, we aim to point out the specific roles of a number of lncRNAs whose function has been described during neuronal and glial cell differentiation. There is no doubt that investigation of the lncRNAs will open a new window in studying neuronal-glial fate specification.
Collapse
|
34
|
Abstract
BACKGROUND Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. RESULTS HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. CONCLUSIONS In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
Collapse
Affiliation(s)
- Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, People's Republic of China
- Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shixiang Wan
- School of Computer Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Xiangxiang Zeng
- Department of Computer Science, Xiamen University, Xiamen, China.
| | - Zhanshan Sam Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
35
|
Herrera-Solorio AM, Armas-López L, Arrieta O, Zúñiga J, Piña-Sánchez P, Ávila-Moreno F. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenetics 2017; 9:98. [PMID: 28904641 PMCID: PMC5591558 DOI: 10.1186/s13148-017-0398-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 01/14/2023] Open
Abstract
Respiratory diseases hold several genome, epigenome, and transcriptional aberrations as a cause of the accumulated damage promoted by, among others, environmental risk factors. Such aberrations can also come about as an adaptive response when faced with therapeutic oncological drugs. In epigenetic terms, aberrations in DNA methylation patterns, histone code marks balance, and/or chromatin-remodeling complexes recruitment, among Polycomb Repressive Complex-2 (PRC2) versus Trithorax (TRX) Activator Complex, have been proposed to be affected by several previously characterized functional long non-coding RNAs (lncRNAs). Such molecules are involved in modulating and/or controlling lung cancer epigenome and genome expression, as well as in malignancy and clinical progression in lung cancer. Several recent reports have described diverse epigenetic modifications in lung cancer cells and solid tumors, among others genomic DNA methylation and post-translational modifications (PTMs) on histone tails, as well as lncRNAs patterns and levels of expression. However, few systematic approaches have attempted to demonstrate a biological function and clinical association, aiming to improve therapeutic decisions in basic research and lung clinical oncology. A widely used example is the lncRNA HOTAIR and its functional histone mark H3K27me3, which is directly associated to the PRC2; however, few systematic pieces of solid evidence have been experimentally performed, conducted and/or validated to predict lung oncological therapeutic efficacy. Recent evidence suggests that chromatin-remodeling complexes accompanied by lncRNAs profiles are involved in several comprehensive lung carcinoma clinical parameters, including histopathology progression, prognosis, and/or responsiveness to unique or combined oncological therapies. The present manuscript offers a systematic revision of the current knowledge about the major epigenetic aberrations represented by changes in histone PTMs and lncRNAs expression levels and patterns in human lung carcinomas in cancer drug-based treatments, as an important comprehensive knowledge focusing on better oncological therapies. In addition, a new future direction must be refocusing on several gene target therapies, mainly on pharmaceutical EGFR-TKIs compounds, widely applied in lung cancer, currently the leading cause of death by malignant diseases.
Collapse
Affiliation(s)
- Abril Marcela Herrera-Solorio
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Leonel Armas-López
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Joaquín Zúñiga
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), CMN., SXXI., IMSS, Mexico City, Mexico
| | - Federico Ávila-Moreno
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
36
|
Camarena V, Sant D, Mohseni M, Salerno T, Zaleski ML, Wang G, Iacobellis G. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr Metab Cardiovasc Dis 2017; 27:739-750. [PMID: 28739185 PMCID: PMC7540222 DOI: 10.1016/j.numecd.2017.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/25/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM To evaluate the epicardial adipose tissue (EAT) transcriptome in comparison to subcutaneous fat (SAT) in coronary artery disease (CAD) and type 2 diabetes (T2DM). METHODS AND RESULTS SAT and EAT samples were obtained from subjects with T2DM and CAD (n = 5) and those without CAD with or without T2DM (=3) undergoing elective cardiac surgery. RNA-sequencing analysis was performed in both EAT and SAT. Gene enrichment analysis was conducted to identify pathways affected by the differentially expressed genes. Changes of top genes were verified by quantitative RT-PCR (qRT-PCR), western blot, and immunofluorescence. A total of 592 genes were differentially expressed in diabetic EAT, whereas there was no obvious changes in SAT transcriptome between diabetics and non-diabetics. Diabetic EAT was mainly enriched in inflammatory genes, such as Colony Stimulating Factor 3 (CSF3), Interleukin-1b (IL-1b), IL-6. KEGG pathway analysis confirmed that upregulated genes were involved in inflammatory pathways, such as Tumor Necrosis Factor (TNF), Nuclear Factor-κB (NF-κB) and advanced glycation end-products-receptor advanced glycation end products (AGE-RAGE). The overexpression of inflammatory genes in diabetic EAT was largely correlated with upregulated transcription factors such as NF-κB and FOS. CONCLUSIONS Diabetic EAT transcriptome is significantly different when compared to diabetic SAT and highly enriched with genes involved in innate immune response and endothelium, like Pentraxin3 (PTX3) and Endothelial lipase G (LIPG). EAT inflammatory genes expression could be induced by upregulated transcription factors, mainly NF-kB and FOSL, primarily activated by the overexpressed AGE-RAGE signaling. This suggests a unique and novel atherogenic pathway in diabetes.
Collapse
Affiliation(s)
- V Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA
| | - D Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA
| | - M Mohseni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miami, FL, USA
| | - T Salerno
- Department of Surgery, Division of Thoracic and Cardiac Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M L Zaleski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miami, FL, USA
| | - G Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA.
| | - G Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
The Critical Role of Long Noncoding RNA in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5045827. [PMID: 28536698 PMCID: PMC5425846 DOI: 10.1155/2017/5045827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Objective. Long noncoding RNAs (lncRNAs) have been demonstrated to regulate many biological processes including differentiation. However, their role in osteogenic differentiation was poorly known. Materials and Methods. In this study, we first globally profiled the differentially expressed lncRNAs and mRNAs during osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs). Bioinformatics analysis was performed to further analyze these significantly changed molecules. Then the role of lncRNA ENST00000502125.2 in the osteogenic differentiation was determined. Results. A number of lncRNAs and mRNAs were significantly differentially expressed during hBMMSC osteogenic differentiation. Among them, 433 lncRNAs and 956 mRNAs were continuously upregulated, while 232 lncRNAs and 229 mRNAs were continuously downregulated. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that carbohydrate derivative binding and complement and coagulation cascades were most correlated molecular function and pathway, respectively. Downregulation of lncRNA ENST00000502125.2 promoted the osteogenic differentiation of hBMMSCs, and opposite results were found when lncRNA ENST00000502125.2 was upregulated. Conclusions. lncRNAs play a critical role in the osteogenic differentiation of hBMMSCs and targeting lncRNA ENST00000502125.2 might be a promising strategy to promote osteogenic differentiation.
Collapse
|
38
|
Zhang J, Feng S, Su W, Bai S, Xiao L, Wang L, Thomas DG, Lin J, Reddy RM, Carrott PW, Lynch WR, Chang AC, Beer DG, Guo YM, Chen G. Overexpression of FAM83H-AS1 indicates poor patient survival and knockdown impairs cell proliferation and invasion via MET/EGFR signaling in lung cancer. Sci Rep 2017; 7:42819. [PMID: 28198463 PMCID: PMC5309882 DOI: 10.1038/srep42819] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
Whole transcriptome analyses of next generation RNA sequencing (RNA-Seq) data from human cancer samples reveled thousands of uncharacterized non-coding RNAs including long non-coding RNA (lncRNA). Recent studies indicated that lncRNAs are emerging as crucial regulators in cancer processes and potentially useful as biomarkers for cancer diagnosis and prognosis. To delineate dysregulated lncRNAs in lung cancer, we analyzed RNA-Seq data from 461 lung adenocarcinomas (LUAD) and 156 normal lung tissues. FAM83H-AS1, one of the top dysregulated lncRNAs, was found to be overexpressed in tumors relative to normal lung and significantly associated with worse patient survival in LUAD. We verified this diagnostic/prognostic potential in an independent cohort of LUAD by qRT-PCR. Cell proliferation, migration and invasion were decreased after FAM83H-AS1 knockdown using siRNAs in lung cancer cells. Flow cytometry analysis indicated the cell cycle was arrested at the G2 phase after FAM83H-AS1 knockdown. Mechanistically, we found that MET/EGFR signaling was regulated by FAM83H-AS1. Our study indicated that FAM83H-AS1 plays an important role in lung tumor progression and may be potentially used as diagnostic/prognostic marker. Further characterization of this lncRNA may provide a novel therapeutic target impacting MET/EGFR signaling.
Collapse
Affiliation(s)
- Jie Zhang
- Xian Jiaotong University, Xi’an, China
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Wenmei Su
- Guangdong Medical University, Zhanjiang, China
| | | | - Lei Xiao
- Xinjiang Medical University, Urumqi, China
| | - Lihui Wang
- Guangxi Medical University, Nanning, China
| | | | - Jules Lin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Philip W. Carrott
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - William R. Lynch
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew C. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Guoan Chen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Gallo A, Vella S, Miele M, Timoneri F, Di Bella M, Bosi S, Sciveres M, Conaldi PG. Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett 2016; 388:334-343. [PMID: 27956246 DOI: 10.1016/j.canlet.2016.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
The human EBV-transformed lymphoblastoid cell line (LCL), obtained by infecting peripheral blood monocular cells with Epstein-Barr Virus, has been extensively used for human genetic, pharmacogenomic, and immunologic studies. Recently, the role of exosomes has also been indicated as crucial in the crosstalk between EBV and the host microenvironment. Because the role that the LCL and LCL exosomal cargo might play in maintaining persistent infection, and since little is known regarding the non-coding RNAs of LCL, the aim of our work was the comprehensive characterization of this class of RNA, cellular and viral miRNAs, and cellular lncRNAs, in LCL compared with PBMC derived from the same donors. In this study, we have demonstrated, for the first time, that all the viral miRNAs expressed by LCL are also packaged in the exosomes, and we found that two miRNAs, ebv-miR-BART3 and ebv-miR-BHRF1-1, are more abundant in the exosomes, suggesting a microvescicular viral microRNA transfer. In addition, lncRNA profiling revealed that LCLs were enriched in lncRNA H19 and H19 antisense, and released these through exosomes, suggesting a leading role in the regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Italy.
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Italy
| | | | | | | | | | - Marco Sciveres
- Pediatric Hepatology and Liver Transplantation, IRCCS ISMETT, University of Pittsburgh Medical Center, Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Italy; Fondazione Ri.MED, Italy
| |
Collapse
|
40
|
Xu LM, Chen L, Li F, Zhang R, Li ZY, Chen FF, Jiang XD. Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:162. [PMID: 27733185 PMCID: PMC5062847 DOI: 10.1186/s13046-016-0431-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Background Gliomas are the most common type of primary brain tumour in the central nervous system of adults. The long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) is transcribed from the 5′ tip of the HOXA locus. HOTTIP has recently been shown to be dysregulated and play an important role in the progression of several cancers. However, little is known about whether and how HOTTIP regulates glioma development. Methods In this study, we assayed the expression of HOTTIP in glioma tissue samples and glioma cell lines using real-time polymerase chain reaction and defined the biological functions of HOTTIP using the CCK-8 assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay) and tumour formation assay in a nude mouse model. Finally, we discovered the underlying mechanism using the Apoptosis PCR 384HT Array, Western blot, RNA immunoprecipitation (RIP) and luciferase reporter assay. Results HOTTIP was aberrantly down-regulated in glioma tissues and glioma cell lines (U87-MG, U118-MG, U251 and A172), and over-expression of HOTTIP inhibited the growth of glioma cell lines in vitro and in vivo. Furthermore, HOTTIP could directly bind to the brain and reproductive expression (BRE) gene and down-regulate BRE gene expression. In addition, we further verified that over-expression of the BRE gene promoted the growth of glioma cell lines in vitro. Finally, over-expression of HOTTIP significantly suppressed the expression of the cyclin A and CDK2 proteins and increased the expression of the P53 protein. However, we found that the over-expression of BRE significantly increased the expression of the cyclin A and CDK2 proteins and suppressed the expression of the P53 protein. Taken together, these findings suggested that high levels of HOTTIP reduced glioma cell growth. Additionally, the mechanism of HOTTIP-mediated reduction of glioma cell growth may involve the suppression of cyclin A and CDK2 protein expression, which increases P53 protein expression via the down-regulation of BRE. Conclusions Our studies demonstrated that over-expression of HOTTIP promotes cell apoptosis and inhibits cell growth in U118-MG and U87-MG human glioma cell lines by down-regulating BRE expression to regulate the expression of P53, CDK2 and Cyclin A proteins. The data described in this study indicate that HOTTIP is an interesting candidate for further functional studies in glioma and demonstrate the potential application of HOTTIP in glioma therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0431-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Min Xu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Second People' s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518029, China
| | - Feng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zong-Yang Li
- Department of Neurosurgery, Shenzhen Second People' s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518029, China
| | - Fan-Fan Chen
- Department of Neurosurgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Xiao-Dan Jiang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
41
|
Li D, Luo L, Zhang W, Liu F, Luo F. A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Bioinformatics 2016; 17:329. [PMID: 27578422 PMCID: PMC5006569 DOI: 10.1186/s12859-016-1206-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. RESULTS In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. CONCLUSIONS Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor .
Collapse
Affiliation(s)
- Dingfang Li
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China
| | - Longqiang Luo
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China
| | - Wen Zhang
- State Key Lab of Software Engineering, Wuhan University, Wuhan, 430072 China
- School of Computer, Wuhan University, Wuhan, 430072 China
| | - Feng Liu
- International School of Software, Wuhan University, Wuhan, 430072 China
| | - Fei Luo
- State Key Lab of Software Engineering, Wuhan University, Wuhan, 430072 China
- School of Computer, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
42
|
Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130861. [PMID: 27635398 PMCID: PMC5011202 DOI: 10.1155/2016/4130861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.
Collapse
|
43
|
BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9565689. [PMID: 27635401 PMCID: PMC5011242 DOI: 10.1155/2016/9565689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a set of short (21–24 nt) noncoding RNAs that play significant regulatory roles in cells. In the past few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs' essential biological function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this study, we employed backpropagation (BP) neural network together with 98-dimensional novel features for microRNA precursor identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further demonstrate that the total prediction accuracy of our method is nearly 13.17% greater than the state-of-the-art microRNA precursor prediction software tools.
Collapse
|
44
|
Wan SM, Yi SK, Zhong J, Nie CH, Guan NN, Zhang WZ, Gao ZX. Dynamic mRNA and miRNA expression analysis in response to intermuscular bone development of blunt snout bream (Megalobrama amblycephala). Sci Rep 2016; 6:31050. [PMID: 27486015 PMCID: PMC4971466 DOI: 10.1038/srep31050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
Intermuscular bone (IB), which occurs only in the myosepta of lower teleosts, is attracting more attention because they are difficult to remove and make the fish unpleasant to eat. By gaining a better understanding of the genetic regulation of IB development, an integrated analysis of miRNAs and mRNAs expression profiling was performed on Megalobrama amblycephala. Four key development stages were selected for transcriptome and small RNA sequencing. A number of significantly differentially expressed miRNAs/genes associated with bone formation and differentiation were identified and the functional characteristics of these miRNAs/genes were revealed by GO function and KEGG pathway analysis. These were involved in TGF-β, ERK and osteoclast differentiation pathways known in the literature to affect bone formation and differentiation. MiRNA-mRNA interaction pairs were detected from comparison of expression between different stages. The function annotation results also showed that many miRNA-mRNA interaction pairs were likely to be involved in regulating bone development and differentiation. A negative regulation effect of two miRNAs was verified through dual luciferase reporter assay. As a unique public resource for gene expression and regulation during the IB development, this study is expected to provide forwards ideas and resources for further biological researches to understand the IBs’ development.
Collapse
Affiliation(s)
- Shi-Ming Wan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Shao-Kui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jia Zhong
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| |
Collapse
|
45
|
Le TD, Zhang J, Liu L, Li J. Computational methods for identifying miRNA sponge interactions. Brief Bioinform 2016; 18:577-590. [DOI: 10.1093/bib/bbw042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 12/14/2022] Open
|
46
|
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, Li G, Liang S. Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal 2016; 12:521-35. [PMID: 27215605 DOI: 10.1007/s11302-016-9518-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies showed that the upregulation of the P2X7 receptor in cervical sympathetic ganglia was involved in myocardial ischemic (MI) injury. The dysregulated expression of long noncoding RNAs (lncRNAs) participates in the onset and progression of many pathological conditions. The aim of this study was to investigate the effects of a small interfering RNA (siRNA) against the NONRATT021972 lncRNA on the abnormal changes of cardiac function mediated by the up-regulation of the P2X7 receptor in the superior cervical ganglia (SCG) after myocardial ischemia. When the MI rats were treated with NONRATT021972 siRNA, their increased systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), low-frequency (LF) power, and LF/HF ratio were reduced to normal levels. However, the decreased high-frequency (HF) power was increased. GAP43 and tyrosine hydroxylase (TH) are markers of nerve sprouting and sympathetic nerve fibers, respectively. We found that the TH/GAP43 value was significantly increased in the MI group. However, it was reduced after the MI rats were treated with NONRATT021972 siRNA. The serum norepinephrine (NE) and epinephrine (EPI) concentrations were decreased in the MI rats that were treated with NONRATT021972 siRNA. Meanwhile, the increased P2X7 mRNA and protein levels and the increased p-ERK1/2 expression in the SCG were also reduced. NONRATT021972 siRNA treatment inhibited the P2X7 agonist BzATP-activated currents in HEK293 cells transfected with pEGFP-P2X7. Our findings suggest that NONRATT021972 siRNA could decrease the upregulation of the P2X7 receptor and improve the abnormal changes in cardiac function after myocardial ischemia.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
- Institute of Life Science of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
47
|
Luo L, Li D, Zhang W, Tu S, Zhu X, Tian G. Accurate Prediction of Transposon-Derived piRNAs by Integrating Various Sequential and Physicochemical Features. PLoS One 2016; 11:e0153268. [PMID: 27074043 PMCID: PMC4830532 DOI: 10.1371/journal.pone.0153268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as well as help to further understand generation mechanism of gamete. METHODS In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their sequential and physicochemical features by using machine learning methods. We explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-sequence triplet elements, and systematically evaluate their performances for transposon-derived piRNA prediction. Finally, we consider two approaches: direct combination and ensemble learning to integrate useful features and achieve high-accuracy prediction models. RESULTS We construct three datasets, covering three species: Human, Mouse and Drosophila, and evaluate the performances of prediction models by 10-fold cross validation. In the computational experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on Human, Mouse and Drosophila, respectively; ensemble learning models achieve AUC of 0.922, 0.926 and 0.994 on the three datasets. CONCLUSIONS Compared with other state-of-the-art methods, our methods can lead to better performances. In conclusion, the proposed methods are promising for the transposon-derived piRNA prediction. The source codes and datasets are available in S1 File.
Collapse
Affiliation(s)
- Longqiang Luo
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Dingfang Li
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Wen Zhang
- School of Computer, Wuhan University, Wuhan, 430072, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, China
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts, 01605, United States of America
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts, 01605, United States of America
| | - Gang Tian
- School of Computer, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
48
|
Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics. DISEASE MARKERS 2016; 2016:9085195. [PMID: 27143813 PMCID: PMC4842029 DOI: 10.1155/2016/9085195] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
Cancers have a high mortality rate due to lack of suitable specific early diagnosis tumor biomarkers. Emerging evidence is accumulating that lncRNAs (long noncoding RNAs) are involved in tumorigenesis, tumor cells proliferation, invasion, migration, apoptosis, and angiogenesis. Furthermore, extracellular lncRNAs can circulate in body fluids; they can be detected and strongly resist RNases. Many researchers have found that lncRNAs could be good candidates for tumor biomarkers and possessed high specificity, high sensitivity, and noninvasive characteristics. In this review, we summarize the detection methods and possible sources of circulating lncRNAs and outline the biological functions and expression level of the most significant lncRNAs in tissues, cell lines, and body fluids (whole blood, plasma, urine, gastric juice, and saliva) of different kinds of tumors. We evaluate the diagnostic performance of lncRNAs as tumor biomarkers. However, the biological functions and the mechanisms of circulating lncRNAs secretion have not been fully understood. The uniform normalization protocol of sample collection, lncRNAs extraction, endogenous control selection, quality assessment, and quantitative data analysis has not been established. Therefore, we put forward some recommendations that might be investigated in the future if we want to adopt lncRNAs in clinical practice.
Collapse
|
49
|
Shi Y, Tu H, Chen X, Zhang Y, Chen L, Liu Z, Sheng J, Han S, Yin J, Peng B, He X, Liu W. The long non-coding RNA expression profile of Coxsackievirus A16 infected RD cells identified by RNA-seq. Virol Sin 2016; 31:131-41. [PMID: 27060091 PMCID: PMC7090472 DOI: 10.1007/s12250-015-3693-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
Coxsackievirus A16 (CVA16) is one of major pathogens of hand, foot and mouth disease (HFMD) in children. Long non-coding RNAs (IncRNAs) have been implicated in various biological processes, but they have not been associated with CVA16 infection. In this study, we comprehensively characterized the landscape of IncRNAs of normal and CVA16 infected rhabdomyosarcoma (RD) cells using RNA-Seq to investigate the functional relevance of IncRNAs. We showed that a total of 760 IncRNAs were upregulated and 1210 IncRNAs were downregulated. Out of these dysregulated IncRNAs, 43.64% were intergenic, 22.31% were sense, 15.89% were intronic, 8.67% were bidirectional, 5.59% were antisense, 3.85% were sRNA host IncRNAs and 0.05% were enhancer. Six dysregulated IncRNAs were validated by quantitative PCR assays and the secondary structures of these IncRNAs were projected. Moreover, we conducted a bioinformatics analysis of an IncRNAs (ENST00000602478) to elucidate the diversity of modification and functions of IncRNAs. In summary, the current study compared the dysregulated IncRNAs profile upon CVA16 challenge and illustrated the intricate relationship between coding and IncRNAs transcripts. These results may not only provide a complete picture of transcription in CVA16 infected cells but also provide novel molecular targets for treatments of HFMD.
Collapse
Affiliation(s)
- Yingying Shi
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China
| | - Huilin Tu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiong Chen
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingying Zhang
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liujun Chen
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhongchun Liu
- Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Jiqun Sheng
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Song Han
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Biwen Peng
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohua He
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanhong Liu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
50
|
Wang L, He Y, Liu W, Bai S, Xiao L, Zhang J, Dhanasekaran SM, Wang Z, Kalyana-Sundaram S, Balbin OA, Shukla S, Lu Y, Lin J, Reddy RM, Carrott PW, Lynch WR, Chang AC, Chinnaiyan AM, Beer DG, Zhang J, Chen G. Non-coding RNA LINC00857 is predictive of poor patient survival and promotes tumor progression via cell cycle regulation in lung cancer. Oncotarget 2016; 7:11487-11499. [PMID: 26862852 PMCID: PMC4905488 DOI: 10.18632/oncotarget.7203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/24/2016] [Indexed: 01/01/2023] Open
Abstract
We employed next generation RNA sequencing analysis to reveal dysregulated long non-coding RNAs (lncRNAs) in lung cancer utilizing 461 lung adenocarcinomas (LUAD) and 156 normal lung tissues from 3 separate institutions. We identified 281 lncRNAs with significant differential-expression between LUAD and normal lung tissue. LINC00857, a top deregulated lncRNAs, was overexpressed in tumors and significantly associated with poor survival in LUAD. knockdown of LINC00857 with siRNAs decreased tumor cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth in vivo. Overexpression of LINC00857 increased cancer cell proliferation, colony formation and invasion. Mechanistic analyses indicated that LINC00857 mediates tumor progression via cell cycle regulation. Our study highlights the diagnostic/prognostic potential of LINC00857 in LUAD besides delineating the functional and mechanistic aspects of its aberrant disease specific expression and potentially using as a new therapeutic target.
Collapse
Affiliation(s)
- Lihui Wang
- Guangxi Medical University, Nanning, China
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yanli He
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijun Liu
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Shengbin Bai
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Xinjiang Medical University, Xinjiang, China
| | - Lei Xiao
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Xinjiang Medical University, Xinjiang, China
| | - Jie Zhang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | | | - Zhuwen Wang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - O. Alejandro Balbin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sudhanshu Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yi Lu
- Guangxi Medical University, Nanning, China
| | - Jules Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rishindra M. Reddy
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip W. Carrott
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William R. Lynch
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew C. Chang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David G. Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jian Zhang
- Guangxi Medical University, Nanning, China
| | - Guoan Chen
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|