1
|
Kulkarni AD, Mukarrama T, Barlow BR, Kim J. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomater Sci 2025; 13:1939-1959. [PMID: 40099377 PMCID: PMC11980607 DOI: 10.1039/d4bm01677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Immunotherapy has been at the forefront of cancer treatment research in recent years due to an increased understanding of the immune system's role in cancer and the substantial benefits it has demonstrated compared to conventional treatment methods. In particular, immune cell-based approaches utilizing T cells, natural killer (NK) cells, macrophages, and more have shown great potential as cancer treatments. While these treatments hold promise, there are still numerous issues that limit their clinical translation, including a lack of understanding of their mechanisms and inconsistent responses to treatment. Traditionally, tissue or blood samples are collected as a means of monitoring treatment progression. However, these in vitro diagnostics are invasive and provide limited information about the real-time status of the treatment or its long-term effectiveness. To address these limitations, novel non-invasive imaging modalities have been developed. These include optical imaging, X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT), and photoacoustic (PA) imaging. This review focuses on methods for tracking cell-based cancer immunotherapies using these in vivo imaging modalities, thereby enhancing real-time monitoring of their therapeutic effect and predictions of their long-term efficacy.
Collapse
Affiliation(s)
- Anika D Kulkarni
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
| | - Tasneem Mukarrama
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Jinhwan Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| |
Collapse
|
2
|
Wang J, Jin C, Cen P, Zhou R, Zhong Y, Tian M, Zhang H. Future direction: molecular imaging-based stem cell research. Eur J Nucl Med Mol Imaging 2025; 52:1614-1617. [PMID: 39800805 DOI: 10.1007/s00259-025-07067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Khazaal AQ, Ismaeel HM, Cheah PS, Nordin N. Cellular Stem Cell Therapy for Treating Traumatic Brain Injury: Strategies for Enhancement of Therapeutic Efficacy. Mol Neurobiol 2025:10.1007/s12035-025-04778-9. [PMID: 40000574 DOI: 10.1007/s12035-025-04778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Traumatic brain injury (TBI) influences a considerable population globally. TBI notably impacts both fatalities and disabilities worldwide. The mortality related to TBI is a significant concern in public health, affecting persons across various age groups and demographic profiles. More research and preventative interventions are required to alleviate TBIs' effects and optimize patient outcomes. Stem cell (SC) treatment exhibits promise as a viable strategy for addressing TBI due to its capacity to possibly restore or regenerate the compromised cells within the central nervous system. Additionally, it can influence the inflammatory response and increase neurogenesis and neuroplasticity. Increasing evidence has shown that SC transplantation has the potential to enhance functional recovery and decrease the extent of lesions in animal models of TBI. Nevertheless, several hurdles and ambiguities persist in determining the most effective source, dosage, administration method, timing, and mechanism of action for SC treatment for TBI. Further investigation is required to prove the safety and effectiveness of SC treatment for TBI in human subjects. This review brings insight into the strategies for utilizing SCs as cellular therapy for TBI, mainly based on preclinical investigations and TBI-induced animal models. In addition, this study also addresses many elements related to cell transfusion in the context of TBI, including considerations of cell amount, method, and timing. Integrating biomaterials and genetically altering SCs as potential strategies to enhance therapeutic efficacy are also presented. We also describe the potential of SCs in treating TBI and evaluate the effectiveness of cellular therapy and its corresponding outcomes.
Collapse
Affiliation(s)
- Ali Q Khazaal
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Haneen M Ismaeel
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Pike See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Zhang W, Yelick PC. In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds. Stem Cells Transl Med 2025; 14:szae076. [PMID: 39729491 PMCID: PMC11878782 DOI: 10.1093/stcltm/szae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 12/29/2024] Open
Abstract
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants. To address this possibility, our research has focused on creating biological tooth substitutes. The study presented here validates a potentially clinically relevant bioengineered tooth replacement therapy for eventual use in humans. We created bioengineered tooth buds by seeding decellularized tooth bud (dTB) extracellular matrix (ECM) scaffolds with human dental pulp cells, porcine tooth bud-derived dental epithelial cells, and human umbilical vein endothelial cells. The resulting bioengineered tooth bud constructs were implanted in the mandibles of adult Yucatan minipigs and grown for 2 or 4 months. We observed the formation of tooth-like tissues, including tooth-supporting periodontal ligament tissues, in cell-seeded dTB ECM constructs. This preclinical translational study validates this approach as a potential clinically relevant alternative to currently used dental implants.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| |
Collapse
|
5
|
Xu L, Shi J, Wu S. Positron emission tomography probes for stem cell monitoring: a review. Am J Transl Res 2024; 16:3534-3544. [PMID: 39262689 PMCID: PMC11384350 DOI: 10.62347/ciut6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Stem cells possess unique self-renewal and differentiation capacities, that are central to cell replacement and tissue regeneration. The therapeutic potential of stem cell applications has garnered increasing attention in recent years for a spectrum of human diseases, from ischemic disorders to oncological challenges. Despite their potential, a comprehensive understanding of the biological behavior, efficacy, and safety of these cells remains elusive, hindering their clinical adoption. This review focuses on the use of positron emission tomography (PET) imaging as a cutting-edge tool for bridging this knowledge gap. PET imaging, a noninvasive diagnostic method, has been highlighted for its ability to monitor cellular dynamics after stem cell transplantation. A variety of molecular probes within the PET framework enable the longitudinal and quantitative evaluation of post-transplant cellular behavior. This discourse systematically delineates various PET probes specifically designed for the in vivo tracking of the stem cell life cycle. These probes offer a pathway to a deeper understanding and more precise evaluation of stem cell behavior post-transplantation. Implementing PET imaging probes can revolutionize the clinical understanding of stem cell behavior, advancing and widening clinical therapeutic applications.
Collapse
Affiliation(s)
- Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
8
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Li Z, Li T, Zhang C, Ni JS, Ji Y, Sun A, Peng D, Wu W, Xi L, Li K. A Multispectral Photoacoustic Tracking Strategy for Wide-Field and Real-Time Monitoring of Macrophages in Inflammation. Anal Chem 2021; 93:8467-8475. [PMID: 34109798 DOI: 10.1021/acs.analchem.1c00690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is a common defensive response of the vascular system that involves the activation and mediation of immune cell and stem cell homing. However, it is usually hard to track and analyze the real-time status of these cell types toward the inflammation microenvironment in a large field of view with desired resolution. Here, we designed and synthesized near-infrared absorbing semiconducting polymer nanoparticles, BBT-TQP-NP (BTNPs), as the cell tracker and utilized their photoacoustic activity to unveil the targeting behaviors of macrophages, neutrophils, and mesenchymal stem cells to the inflamed sites in mice. Facilitated by multispectral optical-resolution photoacoustic microscopy (ORPAM), we can continuously monitor the in vivo photoacoustic signals of the labeled cells with cellular resolution in a wide-field (a circle field-of-view with a diameter of 9 mm). In addition, the highly sensitive observation of vascular microstructures and labeled cells can reveal the time-dependent accumulating behaviors of various cell types toward inflammation sites. As a result, our study offers an effective and promising tracking strategy to analyze the in vivo status and fate of functional cells in targeting the diseased/damaged regions.
Collapse
Affiliation(s)
- Zeshun Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaoyao Ji
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dinglu Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Metabolic Labeling of Live Stem Cell for In Vitro Imaging and In Vivo Tracking. Methods Mol Biol 2021. [PMID: 30997638 DOI: 10.1007/7651_2019_224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Stem cell therapy offers promising solutions to diseases and injuries that traditional medicines and therapies can't effectively cure. To get and explain their full therapeutic potentials, the survival, viability, integration, homing, and differentiation of stem cells after transplant must be clearly understood. To meet these urgent needs, noninvasive stem cell imaging and tracking technologies have been developed. Metabolic labeling technique is one of the most powerful tools for live cell imaging and tracking. In addition, it has many advantages for in vivo live cell imaging and tracking such as low background, correlation of survival, and very toxic and nontoxic by-products. Herein, we described the fundamental information and process of metabolic labeling techniques and suggested optimal condition for in vitro and in vivo imaging and tracking of human umbilical cord blood-derived endothelial progenitor cells (hUCB-EPCs). Based on this study, metabolic labeling techniques can be helpful for understanding the safety and effectiveness of stem cell-based therapy and determining the utility of stem cells in downstream experiments.
Collapse
|
13
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
14
|
Belderbos S, González-Gómez MA, Cleeren F, Wouters J, Piñeiro Y, Deroose CM, Coosemans A, Gsell W, Bormans G, Rivas J, Himmelreich U. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe 3O 4@Al(OH) 3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res 2020; 10:73. [PMID: 32607918 PMCID: PMC7326875 DOI: 10.1186/s13550-020-00655-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential for treatment of different diseases. However, their working mechanism is still unknown. To elucidate this, the non-invasive and longitudinal tracking of MSCs would be beneficial. Both iron oxide-based nanoparticles (Fe3O4 NPs) for magnetic resonance imaging (MRI) and radiotracers for positron emission tomography (PET) have shown potential as in vivo cell imaging agents. However, they are limited by their negative contrast and lack of spatial information as well as short half-life, respectively. In this proof-of-principle study, we evaluated the potential of Fe3O4@Al(OH)3 NPs as dual PET/MRI contrast agents, as they allow stable binding of [18F]F- ions to the NPs and thus, NP visualization and quantification with both imaging modalities. RESULTS 18F-labeled Fe3O4@Al(OH)3 NPs (radiolabeled NPs) or mouse MSCs (mMSCs) labeled with these radiolabeled NPs were intravenously injected in healthy C57Bl/6 mice, and their biodistribution was studied using simultaneous PET/MRI acquisition. While liver uptake of radiolabeled NPs was seen with both PET and MRI, mMSCs uptake in the lungs could only be observed with PET. Even some initial loss of fluoride label did not impair NPs/mMSCs visualization. Furthermore, no negative effects on blood cell populations were seen after injection of either the NPs or mMSCs, indicating good biocompatibility. CONCLUSION We present the application of novel 18F-labeled Fe3O4@Al(OH)3 NPs as safe cell tracking agents for simultaneous PET/MRI. Combining both modalities allows fast and easy NP and mMSC localization and quantification using PET at early time points, while MRI provides high-resolution, anatomic background information and long-term NP follow-up, hereby overcoming limitations of the individual imaging modalities.
Collapse
Affiliation(s)
- Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Manuel Antonio González-Gómez
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jens Wouters
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, 3000, Leuven, Belgium
| | - Yolanda Piñeiro
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, 3000, Leuven, Belgium
| | - An Coosemans
- Laboratory for Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jose Rivas
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
In vivo stem cell tracking using scintigraphy in a canine model of DMD. Sci Rep 2020; 10:10681. [PMID: 32606364 PMCID: PMC7327062 DOI: 10.1038/s41598-020-66388-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
One of the main challenges in cell therapy for muscle diseases is to efficiently target the muscle. To address this issue and achieve better understanding of in vivo cell fate, we evaluated the relevance of a non-invasive cell tracking method in the Golden Retriever Muscular Dystrophy (GRMD) model, a well-recognised model of Duchenne Muscular Dystrophy (DMD). Mesoangioblasts were directly labelled with 111In-oxine, and injected through one of the femoral arteries. The scintigraphy images obtained provided the first quantitative mapping of the immediate biodistribution of mesoangioblasts in a large animal model of DMD. The results revealed that cells were trapped by the first capillary filters: the injected limb and the lung. During the days following injection, radioactivity was redistributed to the liver. In vitro studies, performed with the same cells prepared for injecting the animal, revealed prominent cell death and 111In release. In vivo, cell death resulted in 111In release into the vasculature that was taken up by the liver, resulting in a non-specific and non-cell-bound radioactive signal. Indirect labelling methods would be an attractive alternative to track cells on the mid- and long-term.
Collapse
|
16
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
17
|
Hwang JW, Lee NK, Yang JH, Son HJ, Bang SI, Chang JW, Na DL. A Comparison of Immune Responses Exerted Following Syngeneic, Allogeneic, and Xenogeneic Transplantation of Mesenchymal Stem Cells into the Mouse Brain. Int J Mol Sci 2020; 21:ijms21093052. [PMID: 32357509 PMCID: PMC7246520 DOI: 10.3390/ijms21093052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/22/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Due to their multifactorial aspects, mesenchymal stem cells (MSCs) have been widely established as an attractive and potential candidate for the treatment of a multitude of diseases. A substantial number of studies advocate that MSCs are poorly immunogenic. In several studies, however, immune responses were observed following injections of xenogeneic donor MSCs. In this study, the aim was to examine differences in immune responses exerted based on transplantations of xenogeneic, syngeneic, and allogeneic MSCs in the wild-type mouse brain. Xenogeneic, allogeneic, and syngeneic MSCs were intracerebrally injected into C57BL/6 mice. Mice were sacrificed one week following transplantation. Based on immunohistochemical (IHC) analysis, leukocytes and neutrophils were expressed at the injection sites in the following order (highest to lowest) xenogeneic, allogeneic, and syngeneic. In contrast, microglia and macrophages were expressed in the following order (highest to lowest): syngeneic, allogeneic, and xenogeneic. Residual human MSCs in the mouse brain were barely detected after seven days. Although the discrepancy between leukocytes versus macrophages/microglia infiltration should be resolved, our results overall argue against the previous notions that MSCs are poorly immunogenic and that modulation of immune responses is a prerequisite for preclinical and clinical studies in MSC therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Je Hoon Yang
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hyo Jin Son
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
- Correspondence: (J.W.C.); (D.L.N.); Tel.: +82-2-3410-3687 (J.W.C.); +82-2-3410-3591 (D.L.N.); Fax: +82-2-3410-0052 (D.L.N.)
| | - Duk L. Na
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06072, Korea
- Correspondence: (J.W.C.); (D.L.N.); Tel.: +82-2-3410-3687 (J.W.C.); +82-2-3410-3591 (D.L.N.); Fax: +82-2-3410-0052 (D.L.N.)
| |
Collapse
|
18
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
19
|
Lupan AM, Preda MB, Burlacu A. A standard procedure for lentiviral-mediated labeling of murine mesenchymal stromal cells in vitro. Biotechnol Appl Biochem 2019; 66:643-653. [PMID: 31087689 DOI: 10.1002/bab.1765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
Tracking of stem cells after transplantation is effectively performed in vivo with imaging systems, assuming the cells are adequately labeled to facilitate their recognition. This study aimed to optimize a protocol for fluorescent labeling of mesenchymal stromal cells (MSCs) in vitro, by using a third-generation lentiviral system. Basically, 293T cells are seeded in high-glucose Dulbecco's modified Eagle medium with 10% FBS one day before transfection. Transfection is done for 24 h using a mix of transfer, packaging, regulatory, and envelope plasmids, in molar ratio of 4:2:1:1, respectively. After transfection, the cells are further cultured for two days. During this period, the viral medium is harvested two times, at 24-h intervals, with the first round being stored at 4°C until the second round is completed. The pooled viral medium is frozen in single-use aliquots. MSCs are transduced with 25 multiplicity of infection (MOI) and one day later the cells are passaged at standard seeding density and further grown for three days, when the fluorescence reach the maximum level. Our protocol provides particular experimental details for permanent MSC labeling that makes the procedure highly effective for therapeutic purposes, without affecting the functional properties of stem cells.
Collapse
Affiliation(s)
- Ana-Mihaela Lupan
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
20
|
Breuls N, Giacomazzi G, Sampaolesi M. (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells 2019; 8:cells8050429. [PMID: 31075875 PMCID: PMC6562881 DOI: 10.3390/cells8050429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.
Collapse
Affiliation(s)
- Natacha Breuls
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Giorgia Giacomazzi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Kalimuthu S, Zhu L, Oh JM, Lee HW, Gangadaran P, Rajendran RL, Baek SH, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. Regulated Mesenchymal Stem Cells Mediated Colon Cancer Therapy Assessed by Reporter Gene Based Optical Imaging. Int J Mol Sci 2018; 19:1002. [PMID: 29584688 PMCID: PMC5979455 DOI: 10.3390/ijms19041002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the most common cancer in both men and women and the second most common cause of cancer-related deaths. Suicide gene-based therapy with suicide gene-transduced mesenchymal stem cells (MSCs) is a promising therapeutic strategy. A tetracycline-controlled Tet-On inducible system used to regulate gene expression may be a useful tool for gene-based therapies. The aim of this study was to develop therapeutic MSCs with a suicide gene that is induced by an artificial stimulus, to validate therapeutic gene expression, and to monitor the MSC therapy for colon cancer using optical molecular imaging. For our study, we designed the Tet-On system using a retroviral vector and developed a response plasmid RetroX-TRE (tetracycline response element) expressing a mutant form of herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Bone marrow-derived MSCs were transduced using a RetroX-Tet3G (Clontech, CA, USA) regulatory plasmid and RetroX-TRE-HSV1-sr39TK-eGFP-IRES-Fluc2, for a system with a Tet-On (MSC-Tet-TK/Fluc2 or MSC-Tet-TK) or without a Tet-On (MSC-TK/Fluc2 or MSC-TK) function. Suicide gene engineered MSCs were co-cultured with colon cancer cells (CT26/Rluc) in the presence of the prodrug ganciclovir (GCV) after stimulation with or without doxycycline (DOX). Treatment efficiency was monitored by assessing Rluc (CT26/Rluc) and Fluc (MSC-Tet-TK and MSC-TK) activity using optical imaging. The bystander effect of therapeutic MSCs was confirmed in CT26/Rluc cells after GCV treatment. Rluc activity in CT26/Rluc cells decreased significantly with GCV treatment of DOX(+) cells (p < 0.05 and 0.01) whereas no significant changes were observed in DOX(-) cells. In addition, Fluc activity in also decreased significantly with DOX(+) MSC-Tet-TK cells, but no signal was observed in DOX(-) cells. In addition, an MSC-TK bystander effect was also confirmed. We assessed therapy with this system in a colon cancer xenograft model (CT26/Rluc). We successfully transduced cells and developed a Tet-On system with the suicide gene HSV1-sr39TK. Our results confirmed the therapeutic efficiency of a suicide gene with the Tet-On system for colon cancer. In addition, our results provide an innovative therapeutic approach using the Tet-On system to eradicate tumors by administration of MSC-Tet-TK cells with DOX and GCV.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Yong Hyun Jeon
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea.
| |
Collapse
|
22
|
Helfen A, Roth J, Ng T, Eisenblaetter M. In Vivo Imaging of Pro- and Antitumoral Cellular Components of the Tumor Microenvironment. J Nucl Med 2018; 59:183-188. [PMID: 29217734 DOI: 10.2967/jnumed.117.198952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Tumor development and growth, as well as metastatic spread, are strongly influenced by various, mostly innate, immune cells, which are recruited to the tumor site and driven to establish a specific tumor-supportive microenvironment. The contents of this microenvironment, such as myeloid cells, are a major factor in the overall prognosis of malignant disease, addressed by a constantly growing armament of therapeutic interventions targeting tumor-supportive immune cells. Current clinical imaging has long ignored the growing need for diagnostic approaches addressing these microenvironmental contents-approaches enabling a sensitive and specific classification of tumor immune crosstalk and the resulting tumor-associated immune cell activity. In this focus article we review the present status of, and promising developments in, the in vivo molecular imaging of tumor immune components designed to allow for inferences to be made on the cross-talk between tumor cells and the immune system. Current imaging modalities based on the infiltrating cell types are briefly discussed.
Collapse
Affiliation(s)
- Anne Helfen
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Michel Eisenblaetter
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 2017; 264:112-126. [PMID: 28837823 DOI: 10.1016/j.jconrel.2017.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are potential therapies for various diseases, but their angiogenic mechanisms of therapeutic efficacy remain unclear. Here, we describe how MSC-EVs, activates VEGF receptors and downstream angiogenesis pathways. Mouse MSC-EVs were isolated from cell culture medium and characterized using transmission electron microscopy, nanoparticle analysis, and western blotting. In vitro migration, proliferation, and tube formation assays using endothelial cells were used to assess the angiogenic potential of MSC-EVs, and revealed higher levels of cellular migration, proliferation, and tube formation after treatment. qRT-PCR and western blotting (WB) revealed higher protein and mRNA expression of the angiogenic genes VEGFR1 and VEGFR2 in mouse SVEC-4 endothelial cells after MSC-EVs treatment. Additionally, other vital pro-angiogenic pathways (SRC, AKT, and ERK) were activated by in vitro MSC-EV treatment. WB and qRT-PCR revealed enriched presence of VEGF protein and miR-210-3p in MSC-EV. The hindlimb ischemia mouse model was established and MSC-EVs with or without Matrigel (EV-MSC+Gel) were injected into the ischemic area and blood reperfusion was monitored using molecular imaging techniques. The in vivo administration of MSC-EVs increased both blood reperfusion and the formation of new blood vessels in the ischemic limb, with the addition of matrigel enhancing this effect further by releasing EVs slowly. MSC-EVs enhance angiogenesis in ischemic limbs, most likely via the overexpression of VEGFR1 and VEGFR2 in endothelial cells. These findings reveal a novel mechanism of activating receptors by MSC-EVs influence the angiogenesis.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 700-721, Republic of Korea.
| |
Collapse
|
24
|
Zhu L, Li XJ, Kalimuthu S, Gangadaran P, Lee HW, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Front Immunol 2017; 8:816. [PMID: 28785259 PMCID: PMC5519537 DOI: 10.3389/fimmu.2017.00816] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Natural killer (NK) cells represent the third largest population of lymphocytes, and they play an important role in immune surveillance against tumors. The lungs are a common metastatic site for anaplastic thyroid cancer (ATC), and metastasis is one of the most frequent causes of mortality in this type of cancer. In the current study, we evaluated the effects of NK cell-based immunotherapy for pulmonary metastasis of ATC and determined how it affects the effector molecules of NK cells. METHODS Human NK cells (NK-92MI) were retrovirally transduced to express the effluc gene. Human ATC cells (CAL-62) were transduced with the effluc and Rluc genes. The cytotoxicity of NK cells against CAL-62 cells was assessed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay system. Pulmonary metastases of ATC were developed by i.v. injection of CAL-62, and metastasis growth was monitored using bioluminescence imaging (BLI). To treat the metastases, five million NK-92MI cells were injected twice into the caudal vein of nude mice. To assess the targetability of NK cells to ATC tumors, NK-92MI cells expressing the effluc gene (NK/F) were administered through the tail vein of nude mice with a pulmonary metastasis or tumor xenograft. BLI was subsequently performed at 1, 3, 24, and 48 h. RESULTS NK/F and CAL-62 cells expressing the effluc or Rluc gene (CAL-62/F, CAL-62/R) were successfully established. Expression of the effluc and Rluc genes in NK/F, CAL-62/F, and CAL-62/R cells was verified by RT-polymerase chain reaction, western blotting, and luciferase assay. After coculture of NK-92MI and CAL-62/F cells for 24 h, the BLI signal intensity of CAL-62/F cells proportionally decreased with the number of cocultured NK cells. An ATC pulmonary metastasis mouse model was successfully generated, and NK cells significantly inhibited the growth of the metastasis (p < 0.01). The NK/F cells exhibited targetability to the pulmonary metastasis and tumor xenograft in the mouse model. CONCLUSION The results of present study suggest that NK cells are able to target ATC tumors and that NK cell-based immunotherapy may serve as an effective therapeutic approach for pulmonary metastases of ATC.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Xiu Juan Li
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
25
|
Ko GB, Yoon HS, Kim KY, Lee MS, Yang BY, Jeong JM, Lee DS, Song IC, Kim SK, Kim D, Lee JS. Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging. J Nucl Med 2016; 57:1309-15. [PMID: 27081173 DOI: 10.2967/jnumed.115.170019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Visualization of biologic processes at molecular and cellular levels has revolutionized the understanding and treatment of human diseases. However, no single biomedical imaging modality provides complete information, resulting in the emergence of multimodal approaches. Combining state-of-the-art PET and MRI technologies without loss of system performance and overall image quality can provide opportunities for new scientific and clinical innovations. Here, we present a multiparametric PET/MR imager based on a small-animal dedicated, high-performance, silicon photomultiplier (SiPM) PET system and a 7-T MR scanner. METHODS A SiPM-based PET insert that has the peak sensitivity of 3.4% and center volumetric resolution of 1.92/0.53 mm(3) (filtered backprojection/ordered-subset expectation maximization) was developed. The SiPM PET insert was placed between the mouse body transceiver coil and gradient coil of a 7-T small-animal MRI scanner for simultaneous PET/MRI. Mutual interference between the MRI and SiPM PET systems was evaluated using various MR pulse sequences. A cylindric corn oil phantom was scanned to assess the effects of the SiPM PET on the MR image acquisition. To assess the influence of MRI on the PET imaging functions, several PET performance indicators including scintillation pulse shape, flood image quality, energy spectrum, counting rate, and phantom image quality were evaluated with and without the application of MR pulse sequences. Simultaneous mouse PET/MRI studies were also performed to demonstrate the potential and usefulness of the multiparametric PET/MRI in preclinical applications. RESULTS Excellent performance and stability of the PET system were demonstrated, and the PET/MRI combination did not result in significant image quality degradation of either modality. Finally, simultaneous PET/MRI studies in mice demonstrated the feasibility of the developed system for evaluating the biochemical and cellular changes in a brain tumor model and facilitating the development of new multimodal imaging probes. CONCLUSION We developed a multiparametric imager with high physical performance and good system stability and demonstrated its feasibility for small-animal experiments, suggesting its usefulness for investigating in vivo molecular interactions of metabolites, and cross-validation studies of both PET and MRI.
Collapse
Affiliation(s)
- Guen Bae Ko
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Hyun Suk Yoon
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Kyeong Yun Kim
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea
| | - Bo Yeun Yang
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
| | - In Chan Song
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea Department of Radiology, Seoul National University, Seoul, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang, Korea; and Molecular Imaging and Therapy Branch, National Cancer Center, Goyang, Korea
| | - Daehong Kim
- Molecular Imaging and Therapy Branch, National Cancer Center, Goyang, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, Korea Department of Biomedical Sciences, Seoul National University, Seoul, Korea Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|