1
|
Zhao X, Shi W, Li Z, Zhang W. Linking reproductive tract microbiota to premature ovarian insufficiency: Pathophysiological mechanisms and therapies. J Reprod Immunol 2024; 166:104325. [PMID: 39265315 DOI: 10.1016/j.jri.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Over the past decade, research on the human microbiota has become a hot topic. Among them, the female reproductive tract (FRT) also has a specific microbiota that maintains the body's health and dynamic balance, especially in the reproductive aspect. When the FRT ecosystem is dysregulated, changes in immune and metabolic signals can lead to pathological and physiological changes such as chronic inflammation, epithelial barrier disruption, changes in cell proliferation and apoptosis, and dysregulation of angiogenesis and metabolism, thereby causing disruption of the female endocrine system. Premature ovarian insufficiency (POI), a clinical syndrome of ovarian dysfunction, is primarily influenced by immune, genetic, and environmental factors. New evidence suggests that dysbiosis of the FRT microbiota and/or the presence of specific bacteria may contribute to the occurrence and progression of POI. This influence occurs through both direct and indirect mechanisms, including the regulation of estrogen metabolism. The use of probiotics or microbiota transplantation to regulate the microbiome has also been proven to be beneficial in improving ovarian function and the quality of life in women with premature aging. This article provides an overview of the interrelationships and roles between the FRT microbiome and POI in recent years, to fully understand the risk factors affecting female reproductive health, and to offer insights for the future diagnosis, treatment, and application of the FRT microbiome in POI patients.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Zhengyu Li
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| |
Collapse
|
2
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Qin H, Liu J, Qu Y, Li YY, Xu YL, Yan YF. The intratumoral microbiota biomarkers for predicting survival and efficacy of immunotherapy in patients with ovarian serous cystadenocarcinoma. J Ovarian Res 2024; 17:140. [PMID: 38970121 PMCID: PMC11227176 DOI: 10.1186/s13048-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need. METHODS In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores. RESULTS Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups. CONCLUSION Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
4
|
Fo X, Pei ML, Liu PJ, Zhu F, Zhang Y, Mu X. Metagenomic analysis revealed the association between gut microbiota and different ovary responses to controlled ovarian stimulation. Sci Rep 2024; 14:14930. [PMID: 38942886 PMCID: PMC11213867 DOI: 10.1038/s41598-024-65869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
The aim of this study was to assess the correlation between gut microbial taxonomy and various ovarian responses to controlled ovarian stimulation. A total of 22 IVF cycles with a follicle-to-oocyte index (FOI) < 0.5 and 25 IVF cycles with FOI ≥ 0.5 were included in this study. Baseline demographic characteristics were compared between the two groups. Metagenomic sequencing was performed to analyze fecal microbial community profiles. Mice were used to evaluate the effect of Bifidobacterium_longum on ovarian response to stimulation. Compared with FOI < 0.5 group, women in group with FOI ≥ 0.5 had significant more oocytes retrieved (p < 0.01). Prevotella_copri, Bateroides_vulgatus, Escherichia_coli and Bateroides_stercoris were more abundant in FOI < 0.5 group while Bifidobacterium_longum, Faecalibacterium_prausnitzii, Ruminococcus_gnavus and Bifidobacterium_pseudocatenula were more abundant in FOI ≥ 0.5 group. After adjusting for women's age and BMI, Pearson correlation analysis indicated alteration of gut microbiome was related with serum E2, FSH, number of oocytes retrieved and clinical pregnancy rate. Animal study showed ovarian response will be improved after Bifidobacterium_longum applied. An increased abundance of Bacteroidetes and Prevotella copri, as well as a decreased abundance of Bifidobacterium longum, have been found to be associated with poor ovarian responsiveness. Changes in gut microbiomes have been observed to be correlated with certain clinical characteristics. The potential enhancement of ovarian response may be facilitated by the integration of Bifidobacterium longum.
Collapse
Affiliation(s)
- Xinyan Fo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Mei-Li Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yudan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xin Mu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- The Assisted Reproductive Medicine Center, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Mitra A, Gultekin M, Burney Ellis L, Bizzarri N, Bowden S, Taumberger N, Bracic T, Vieira-Baptista P, Sehouli J, Kyrgiou M. Genital tract microbiota composition profiles and use of prebiotics and probiotics in gynaecological cancer prevention: review of the current evidence, the European Society of Gynaecological Oncology prevention committee statement. THE LANCET. MICROBE 2024; 5:e291-e300. [PMID: 38141634 DOI: 10.1016/s2666-5247(23)00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 12/25/2023]
Abstract
Female genital tract (FGT) microbiota has been associated with the development of gynaecological cancers. Thus, the possibility of whether manipulation of the FGT microbiota can help in the prevention of disease should be investigated. Various prebiotics, probiotics, and other non-clinician prescribed agents have been reported to have therapeutic effects in cervical disease. Numerous studies have reported an association between human papillomavirus infection and subsequent cervical dysplasia and a decrease in the abundance of Lactobacillus species. A continuum of microbiota composition is observed from the vagina to the upper parts of the FGT, but no evidence suggests that manipulation of the vaginal microbiota can help to modify the composition of other FGT compartments. Although prebiotics and probiotics have been reported to be beneficial, the studies are small and of varying design, and high-quality evidence to support their use is lacking. Currently, no studies have examined these therapeutics in other gynaecological malignancies. Thus, recommendation of probiotics, prebiotics, or other over-the-counter supplements for the prevention of gynaecological cancers warrants larger, well designed studies.
Collapse
Affiliation(s)
- Anita Mitra
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Murat Gultekin
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Laura Burney Ellis
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Sarah Bowden
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Nadja Taumberger
- Department of Obstetrics & Gynecology, Medical University of Graz, Graz, Austria; Hospital Spittal a d Drau, Carinthia, Austria
| | - Taja Bracic
- Department of Obstetrics & Gynecology, Medical University of Graz, Graz, Austria
| | - Pedro Vieira-Baptista
- Department of Gynecology-Obstetrics and Pediatrics, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
6
|
Mahoney D. The Role of the Human Microbiome in Epithelial Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:97-105. [PMID: 38805126 DOI: 10.1007/978-3-031-58311-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer is the fifth-leading cause of cancer deaths among women due to the absence of available screening methods to identify early disease. Thus, prevention and early disease detection investigations are of high priority, surrounding a critical window of opportunity to better understand important pathogenic mechanisms of disease progression. Microorganisms modulate molecular interactions in humans that can influence states of health and disease, including ovarian cancer. While the mechanisms of infectious microbial invasion that trigger the immune-inflammatory axis are well studied in cancer research, the complex interactions that promote the transition of noninfectious healthy microbes to pathobiont expansion are less understood. As traditional research has focused on the influences of infectious pathogens on ovarian cancer development and progression, the impact of noninfectious microbes has gained scientific attention. The objective of this chapter is to summarize current evidence on the role of microbiota in epithelial ovarian cancer throughout disease.
Collapse
Affiliation(s)
- Diane Mahoney
- Franklin D. Gaines & Beverly J. Gaines Tipton Endowed Professor of Oncology Nursing, University of Kansas School of Nursing, Kansas City, KS, USA.
| |
Collapse
|
7
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Canha-Gouveia A, Di Nisio V, Salumets A, Damdimopoulou P, Coy P, Altmäe S, Sola-Leyva A. The Upper Reproductive System Microbiome: Evidence beyond the Uterus. Semin Reprod Med 2023; 41:190-199. [PMID: 38320577 DOI: 10.1055/s-0043-1778056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The microbiome of the female upper reproductive system has garnered increasing recognition and has become an area of interest in the study of women's health. This intricate ecosystem encompasses a diverse consortium of microorganisms (i.e., microbiota) and their genomes (i.e., microbiome) residing in the female upper reproductive system, including the uterus, the fallopian tubes, and ovaries. In recent years, remarkable advancements have been witnessed in sequencing technologies and microbiome research, indicating the potential importance of the microbial composition within these anatomical sites and its impact in women's reproductive health and overall well-being. Understanding the composition, dynamics, and functions of the microbiome of the female upper reproductive system opens up exciting avenues for improving fertility, treating gynecological conditions, and advancing our comprehension of the intricate interplay between the microbiome and the female reproductive system. The aim of this study is to compile currently available information on the microbial composition of the female upper reproductive system in humans, with a focus beyond the uterus, which has received more attention in recent microbiome studies compared with the fallopian tubes and ovaries. In conclusion, this review underscores the potential role of this microbiome in women's physiology, both in health and disease.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Alberto Sola-Leyva
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
9
|
Tian C, Balmer L, Tan X. COVID-19 lessons to protect populations against future pandemics by implementing PPPM principles in healthcare. EPMA J 2023; 14:329-340. [PMID: 37605649 PMCID: PMC10439863 DOI: 10.1007/s13167-023-00331-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has continued for more than 3 years, placing a huge burden on society worldwide. Although the World Health Organization (WHO) has declared an end to COVID-19 as a Public Health Emergency of International Concern (PHEIC), it is still considered a global threat. Previously, there has been a long debate as to whether the COVID-19 emergency will eventually end or transform into a more common infectious disease from a PHEIC, and how should countries respond to similar pandemics in the future more time-efficiently and cost-effectively. We reviewed the past, middle and current situation of COVID-19 based on bibliometric analysis and epidemiological data. Thereby, the necessity is indicated to change the paradigm from reactive healthcare services to predictive, preventive and personalised medicine (PPPM) approach, in order to effectively protect populations against COVID-19 and any future pandemics. Corresponding measures are detailed in the article including the involvement of multi-professional expertise, application of artificial intelligence, rapid diagnostics and patient stratification, and effective protection, amongst other to be considered by advanced health policy.
Collapse
Affiliation(s)
- Cuihong Tian
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
- Center for Precision Health, Edith Cowan University, Perth, WA 6027 Australia
| | - Lois Balmer
- Center for Precision Health, Edith Cowan University, Perth, WA 6027 Australia
| | - Xuerui Tan
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| |
Collapse
|