1
|
Wang J, Xie X, Li B, Yang L, Song F, Zhou Y, Jiang M. Complete genome analysis and antimicrobial mechanism of Bacillus velezensis GX0002980 reveals its biocontrol potential against mango anthracnose disease. Microbiol Spectr 2025:e0268524. [PMID: 40237490 DOI: 10.1128/spectrum.02685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Post-harvest anthracnose significantly affects the yield and quality of mangoes. In this study, an antagonist bacterium, GX0002980, with strong inhibitory effect against Colletotrichum gloesporioides, the pathogen of mango anthracnose, was isolated from the rhizosphere soil of plants. Based on morphological characteristics, physiological and biochemical tests, and 16S rRNA gene and gyrB gene sequencing analysis, the strain was identified as Bacillus velezensis. Strain GX0002980 exhibits broad-spectrum antibacterial capabilities, and its volatile substances and sterile fermentation filtrate also demonstrate antagonistic effects against C. gloesporioides. This strain can produce antimicrobial substances that inhibit pathogen growth, such as amylase, cellulase, protease, pectinase, and siderophores, and has plant-growth-promoting characteristics, such as nitrogen fixation, NH3 production, and phosphate solubilization. Whole-genome sequencing results show that the genome size of GX0002980 is 3,907,381 bp with a guanine and cytosine content of 47.44%. The antiSMASH analysis predicts 14 antimicrobial biosynthesis gene clusters within the GX0002980 genome, including surfactin, fengycin, bacilysin, macrolactin H, bacillaene, difficidin, and bacillibactin. Liquid chromatography-mass spectrometry analysis revealed that the antimicrobial active substances secreted by GX0002980 include surfactin, bacilysin, butirosin A, and more. Strain GX0002980 has an in vitro control efficiency of 52% against mango anthracnose, and it can effectively suppress the occurrence of post-harvest diseases in mangoes, extending their storage time. In conclusion, B. velezensis GX0002980 possesses multiple biocontrol mechanisms and has potential for application in the biological control of mango anthracnose.IMPORTANCEBacillus velezensis GX0002980 showed biocontrol potential against Colletotrichum gloesporioides, a causative agent of mango anthracnose. B. velezensis GX0002980 produces a variety of secondary metabolites with antibacterial properties. Whole-genome sequencing revealed potential active metabolite synthesis gene clusters of B. velezensis GX0002980. B. velezensis GX0002980 has a significant effect on the control of post-harvest disease in mango fruits.
Collapse
Affiliation(s)
- Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Xiaoying Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Bo Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Lifang Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Ye Q, Zhong Z, Chao S, Liu L, Chen M, Feng X, Wu H. Antifungal Effect of Bacillus velezensis ZN-S10 against Plant Pathogen Colletotrichum changpingense and Its Inhibition Mechanism. Int J Mol Sci 2023; 24:16694. [PMID: 38069016 PMCID: PMC10705930 DOI: 10.3390/ijms242316694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In order to optimize crop production and mitigate the adverse impacts associated with the utilization of chemical agents, it is necessary to explore new biocontrol agents. Bacillus velezensis has been widely studied as a biocontrol agent because of its efficient and ecofriendly plant disease control mechanisms. This study shows that the strain ZN-S10 effectively reduces the area of leaf spots caused by the pathogen Colletotrichum changpingense ZAFU0163-1, which affects conidia production and germination, inhibits mycelium growth, and induces mycelium deformation. In antifungal experiments with crude extracts, we observed a delay in the cell cycle of conidia, which may be responsible for the inhibition of conidial germination. Among the bioactive metabolites detected through integrated LC-MS- and GC-MS-based untargeted metabolomics, 7-O-Succinyl macrolactin A, telocinobufagin, and surfactin A may be the main antifungal metabolites of strain ZN-S10. The presence of 7-O-Succinyl macrolactin A could explain the cell damage in germ tubes. This is the first report of telocinobufagin detected in B. velezensis. These results are significant for understanding the inhibitory mechanisms employed by B. velezensis and should serve as a reference in the production of biocontrol agents.
Collapse
Affiliation(s)
- Qingling Ye
- Jixian Honors College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhupeiqi Zhong
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Shufeng Chao
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Lu Liu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Mengli Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Huiming Wu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| |
Collapse
|
3
|
Raio A, Brilli F, Neri L, Baraldi R, Orlando F, Pugliesi C, Chen X, Baccelli I. Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1235669. [PMID: 37849842 PMCID: PMC10577304 DOI: 10.3389/fpls.2023.1235669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of S. rhizophila that we named Ep2.2 and investigated its possible application in crop protection. Compared to S. maltophilia LMG 958, a well-known plant beneficial species which behaves as opportunistic human pathogen, S. rhizophila Ep2.2 showed distinctive features, such as different motility, a generally reduced capacity to use carbon sources, a greater sensitivity to fusidic acid and potassium tellurite, and the inability to grow at the human body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds (VOCs) with well-documented antifungal activity, such as furans, sulphur-containing compounds and terpenes. When sprayed on tomato leaves and plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime the expression of Pti5, GluA and PR1 plant defense genes.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Luisa Neri
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Rita Baraldi
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Orlando
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| |
Collapse
|
4
|
Dofuor AK, Quartey NKA, Osabutey AF, Antwi-Agyakwa AK, Asante K, Boateng BO, Ablormeti FK, Lutuf H, Osei-Owusu J, Osei JHN, Ekloh W, Loh SK, Honger JO, Aidoo OF, Ninsin KD. Mango anthracnose disease: the current situation and direction for future research. Front Microbiol 2023; 14:1168203. [PMID: 37692388 PMCID: PMC10484599 DOI: 10.3389/fmicb.2023.1168203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Mango anthracnose disease (MAD) is a destructive disease of mangoes, with estimated yield losses of up to 100% in unmanaged plantations. Several strains that constitute Colletotrichum complexes are implicated in MAD worldwide. All mangoes grown for commercial purposes are susceptible, and a resistant cultivar for all strains is not presently available on the market. The infection can widely spread before being detected since the disease is invincible until after a protracted latent period. The detection of multiple strains of the pathogen in Mexico, Brazil, and China has prompted a significant increase in research on the disease. Synthetic pesticide application is the primary management technique used to manage the disease. However, newly observed declines in anthracnose susceptibility to many fungicides highlight the need for more environmentally friendly approaches. Recent progress in understanding the host range, molecular and phenotypic characterization, and susceptibility of the disease in several mango cultivars is discussed in this review. It provides updates on the mode of transmission, infection biology and contemporary management strategies. We suggest an integrated and ecologically sound approach to managing MAD.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Kwasi Asante
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Fred Kormla Ablormeti
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Okani Honger
- Soil and Irrigation Research Centre, College of Basic and Applied Sciences, School of Agriculture, University of Ghana, Accra, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
5
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
6
|
Khanal M, Bhatta BP, Malla S. Isolation and Characterization of Bacteria Associated with Onion and First Report of Onion Diseases Caused by Five Bacterial Pathogens in Texas, U.S.A. PLANT DISEASE 2023:PDIS09222206SR. [PMID: 36451309 DOI: 10.1094/pdis-09-22-2206-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial diseases pose a severe challenge to growers and cause significant loss to the billion-dollar onion industry in the United States. Texas is the sixth largest onion producing state, yet the bacterial communities associated with short-day onion crops grown in Texas have not been studied. This study was conducted to identify, characterize, and understand the diversity of bacteria associated with onion production in Texas. In 2020, 190 foliar and 210 bulb samples were collected from onion crops in the Rio Grande Valley and Winter Garden regions of Texas. Sequencing of the 16s rRNA gene was used to identify each bacterial strains to a genus. The pathogenicity to onion of each bacterial strain was tested using three assays: a red onion scale assay, a yellow onion bulb assay, and a foliar assay. Whole genome sequencing was done to identify the onion-pathogenic strains to species. Collectively, isolates of 24 genera belonging to three phyla were detected, including 19 genera from foliar samples and nine genera from bulb samples. Isolates in the Phylum Proteobacteria, including 15 genera of Gram-negative bacteria, were the most abundant of the taxa, comprising 90.0% of the strains isolated. The diversity of foliar isolates was evenly distributed between Gram-positive and Gram-negative bacteria, while Gram-negative bacteria dominated the isolates from bulb samples. In total, 83.9% of the bacterial isolates were not pathogenic on onion, with only isolates of Pantoea, Pseudomonas, Burkholderia, Erwinia, Enterobacter, and Curtobacterium proving pathogenic. Strains of Burkholderia gladioli, Pseudomonas alliivorans, Pantoea agglomerans, P. ananatis, and P. allii are the first documented cases of these pathogens of onion in Texas. Identifying and characterizing the nature of onion microflora, including pathogens of onion, is vital to developing rapid disease detection techniques via pathogenomics and minimizing losses through the application of effective disease management measures.
Collapse
Affiliation(s)
- Manzeal Khanal
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801
| | - Bed Prakash Bhatta
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801
| | - Subas Malla
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801
| |
Collapse
|
7
|
Peralta-Ruiz Y, Rossi C, Grande-Tovar CD, Chaves-López C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J Fungi (Basel) 2023; 9:623. [PMID: 37367558 DOI: 10.3390/jof9060623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fruits and vegetables are constantly affected by postharvest diseases, of which anthracnose is one of the most severe and is caused by diverse Colletotrichum species, mainly C. gloeosporioides. In the last few decades, chemical fungicides have been the primary approach to anthracnose control. However, recent trends and regulations have sought to limit the use of these substances. Greener management includes a group of sustainable alternatives that use natural substances and microorganisms to control postharvest fungi. This comprehensive review of contemporary research presents various sustainable alternatives to C. gloeosporioides postharvest control in vitro and in situ, ranging from the use of biopolymers, essential oils, and antagonistic microorganisms to cultivar resistance. Strategies such as encapsulation, biofilms, coatings, compounds secreted, antibiotics, and lytic enzyme production by microorganisms are revised. Finally, the potential effects of climate change on C. gloeosporioides and anthracnose disease are explored. Greener management can provide a possible replacement for the conventional approach of using chemical fungicides for anthracnose postharvest control. It presents diverse methodologies that are not mutually exclusive and can be in tune with the needs and interests of new consumers and the environment. Overall, developing or using these alternatives has strong potential for improving sustainability and addressing the challenges generated by climate change.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Puerto Colombia 081008, Colombia
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
8
|
Zhao Q, Shi Y, Legrand Ngolong Ngea G, Zhang X, Yang Q, Zhang Q, Xu X, Zhang H. Changes of the microbial community in kiwifruit during storage after postharvest application of Wickerhamomyces anomalus. Food Chem 2023; 404:134593. [DOI: 10.1016/j.foodchem.2022.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
9
|
Influence of a biological coating and a wax on postharvest quality of mango (Mangifera indica L) variety “Keitt”. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Zhou D, Jing T, Chen Y, Yun T, Qi D, Zang X, Zhang M, Wei Y, Li K, Zhao Y, Wang W, Xie J. Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rivas-Garcia T, Murillo-Amador B, Reyes-Pérez JJ, Chiquito-Contreras RG, Preciado-Rangel P, Ávila-Quezada GD, Lara-Capistran L, Hernandez-Montiel LG. Debaryomyces hansenii, Stenotrophomonas rhizophila, and Ulvan as Biocontrol Agents of Fruit Rot Disease in Muskmelon (Cucumis melo L.). PLANTS 2022; 11:plants11020184. [PMID: 35050074 PMCID: PMC8780834 DOI: 10.3390/plants11020184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
The indiscriminate use of synthetic fungicides has led to negative impact to human health and to the environment. Thus, we investigated the effects of postharvest biocontrol treatment with Debaryomyces hansenii, Stenotrophomonas rhizophila, and a polysaccharide ulvan on fruit rot disease, storability, and antioxidant enzyme activity in muskmelon (Cucumis melo L. var. reticulatus). Each fruit was treated with (1) 1 × 106 cells mL−1 of D. hansenii, (2) 1 × 108 CFU mL−1 of S. rhizophila, (3) 5 g L−1 of ulvan, (4) 1 × 106 cells mL−1 of D. hansenii + 1 × 108 CFU mL−1 of S. rhizophila, (5) 1 × 108 CFU mL−1 of S. rhizophila + 5 g L−1 of ulvan, (6) 1 × 106 cells mL−1 of D. hansenii + 1 × 108 CFU mL−1 of S. rhizophila + 5 g L−1 of ulvan, (7) 1000 ppm of benomyl or sterile water (control). The fruits were air-dried for 2 h, and stored at 27 °C ± 1 °C and 85–90% relative humidity. The fruit rot disease was determined by estimating the disease incidence (%) and lesion diameter (mm), and the adhesion capacity of the biocontrol agents was observed via electron microscopy. Phytopathogen inoculation time before and after adding biocontrol agents were also recorded. Furthermore, the storability quality, weight loss (%), firmness (N), total soluble solids (%), and pH were quantified. The antioxidant enzymes including catalase, peroxidase, superoxide dismutase, and phenylalanine ammonium lyase were determined. In conclusion, the mixed treatment containing D. hansenii, S. rhizophila, and ulvan delayed fruit rot disease, preserved fruit quality, and increased antioxidant activity. The combined treatment is a promising and effective biological control method to promote the shelf life of harvested muskmelon.
Collapse
Affiliation(s)
- Tomas Rivas-Garcia
- CONACYT-Universidad Autónoma Chapingo, Carretera Federal México-Texcoco km 38.5, San Diego, Texcoco 56230, Mexico
- Correspondence: (T.R.-G.); (L.G.H.-M.)
| | - Bernardo Murillo-Amador
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico;
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Los Ríos, Ecuador;
| | - Roberto G. Chiquito-Contreras
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Circuito Universitario Gonzalo Aguirre-Beltrán S/N, Zona Universitaria, Xalapa 91090, Mexico; (R.G.C.-C.); (L.L.-C.)
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón 27179, Mexico;
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico;
| | - Liliana Lara-Capistran
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Circuito Universitario Gonzalo Aguirre-Beltrán S/N, Zona Universitaria, Xalapa 91090, Mexico; (R.G.C.-C.); (L.L.-C.)
| | - Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico;
- Correspondence: (T.R.-G.); (L.G.H.-M.)
| |
Collapse
|
12
|
Huang X, Ren J, Li P, Feng S, Dong P, Ren M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1744-1757. [PMID: 32974893 DOI: 10.1002/jsfa.10829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Food loss of fruit and vegetables caused by postharvest diseases is a major issue worldwide. The method used to prevent and control postharvest diseases is usually to use chemical fungicides, but long-term and large-scale use will make the pathogens resistant and potentially have a negative impact on human health and the ecological environment. Therefore, finding a safe and effective biological control method instead of chemical control is a hot research topic in recent years. Endophytes, colonizing plants asymptomatically, can promote the growth of the hosts and enhance their resistance. The use of endophytes as biological control agents for postharvest diseases of fruit and vegetables has attracted increasing attention in the last 20 years. Compared with chemical control, endophytes have the advantages of being more environmentally friendly, sustainable, and safer. However, there are relatively few relevant studies, so herein we summarize the available literature. This review focuses mainly on the recent progress of using endophytes to enhance the resistance of postharvest fruit and vegetables to diseases, with the emphasis on the possible mechanisms and the potential applications. Furthermore, this article suggests future areas for study using antagonistic endophytes to prevent and control fruit and vegetable postharvest diseases: (i) screening more potential broad-spectrum anti-pathogen endophytes and their metabolic active substances by the method of macrogenomics; (ii) elucidating the underlining molecular mechanism among endophytes, harvested vegetables and fruit, pathogens, and microbial communities; (iii) needing more application research to overcome the difficulties of commercialization practice. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
13
|
Ren Y, Xue Y, Tian D, Zhang L, Xiao G, He J. Improvement of Postharvest Anthracnose Resistance in Mango Fruit by Nitric Oxide and the Possible Mechanisms Involved. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15460-15467. [PMID: 33320657 DOI: 10.1021/acs.jafc.0c04270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The anthracnose rot of postharvest mango fruit is a devastating fungal disease often resulting in tremendous quality deterioration and postharvest losses. Nitric oxide (NO), as an important signaling molecule, is involved in the responses to postharvest fruit diseases. In the present study, the effectiveness of NO donor sodium nitroprusside (SNP) to prevent anthracnose of "Tainong" mango fruit caused by Colletotrichum gloeosporioides was evaluated through in vivo and in vitro tests. Results from in vivo test showed that SNP treatment effectively inhibited the lesion diameter and disease incidence on inoculated mango fruit during storage. SNP treatment could regulate hydrogen peroxide levels by reinforcing the activities of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase. Furthermore, SNP elevated the accumulation of lignin, total phenolics, anthocyanin, and flavonoids and the activities of chitinase and β-1,3-glucanase. In addition, in vitro tests indicated that SNP markedly suppressed mycelial growth and spore germination of C. gloeosporioides through damaging plasma membrane integrity and increasing the leakage of soluble sugar and protein. Our results suggested that SNP could suppress anthracnose decay in postharvest mango fruit, possibly by directly suppressing pathogen growth and indirectly triggering host defense responses.
Collapse
Affiliation(s)
- Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yuhao Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dan Tian
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
| | - Liming Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Guiyun Xiao
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
14
|
Effect of Marine Bacteria and Ulvan on the Activity of Antioxidant Defense Enzymes and the Bio-Protection of Papaya Fruit against Colletotrichum gloeosporioides. Antioxidants (Basel) 2019; 8:antiox8120580. [PMID: 31771146 PMCID: PMC6943524 DOI: 10.3390/antiox8120580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most important diseases in papaya fruit. Its control has been achieved with synthetic fungicides, but the application of marine bacteria and the sulphated polysaccharide ulvan (structural description: β[1,4]-D-GlcA-α[1,4]-L-Rha 3 sulfate, β[1,4]-L-IdoA-α[1,4]-L-Rha 3 sulfate, β[1,4]-D-Xyl-α[1,4]-L-Rha 3 sulfate, and β[1,4]-D-Xyl 2-sulfate-α[1,4]-L-Rha 3 sulfate) from Ulva sp. can be an alternative in the use of agrochemicals. Thus, the objective of this study was to assess the effect in vitro and in vivo of two marine bacteria, Stenotrophomonas rhizophila and Bacillus amyloliquefaciens, and ulvan in papaya fruit’s bio-protection against C. gloeosporioides. The capacity of marine bacteria to inhibit mycelial growth and phytopathogen spore germination in vitro through volatile organic compounds (VOCs) and carbohydrate competition was evaluated. Fruit was inoculated with bacteria, ulvan, and C. gloeosporioides and incubated at 25 °C and 90% of relative humidity (RH) for seven days. Disease incidence (%), lesion diameter (mm), and antioxidant defense enzyme activity (such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were quantified. In vitro, C. gloeosporioides was inhibited by S. rhizophila and B. amyloliquefaciens. In vivo, disease incidence and the lesion diameter of anthracnose on papaya fruit were significantly reduced by marine bacteria and ulvan. Antioxidant defense enzyme activity played an important role in fruit bio-protection against C. gloeosporioides. The application of marine bacteria and ulvan can be an alternative in the sustainable postharvest management of papaya.
Collapse
|