1
|
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:290. [PMID: 39997853 PMCID: PMC11858195 DOI: 10.3390/nano15040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Gum Arabic (GA), or acacia gum, refers to the dried exudate produced by certain Acacia trees. GA is composed mainly of a mixture of polysaccharides and glycoproteins, with proportions that can slightly differ from one species to another. It is commonly utilized in the food and pharmaceutical industries as a stabilizer or an emulsifier owing to its biocompatibility, hydrophilicity, and antibacterial properties. In addition, GA can be manipulated as it possesses many functional groups that can be used in grafting, cross-linking, or chemical modifications to add a new feature to the developed material. In this review, we highlight recent GA-based formulations, including nanoparticles, hydrogels, nanofibers, membranes, or scaffolds, and their possible applications in tissue regeneration, cancer therapy, wound healing, biosensing, bioimaging, food packaging, and antimicrobial and antifouling membranes.
Collapse
Affiliation(s)
- Shaymaa A. Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Asmaa M. Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Heba R. Alrefaey
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kareem Adelrahman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
| | - Alshaimaa Moustafa
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Nishal M. Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Sally A. Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| |
Collapse
|
2
|
Wang ZD, Zhang W, Liang TX. Advancements in Oral Delivery Systems for Probiotics Based on Polysaccharides. Polymers (Basel) 2025; 17:144. [PMID: 39861217 PMCID: PMC11768238 DOI: 10.3390/polym17020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments. Cellulose, chitosan, alginate and their derivates have been used to form a protective layer for probiotics. This review summarizes the superiority and application of polysaccharides in forming protective layers for probiotics. Meanwhile, ODS processes including extrusion, emulsion and spray drying are also summarized. The preparation technique mechanism, the microparticle formation process and especially the role polysaccharides serve in the preparation process are overviewed. Lastly, the need for cell viability retention during the dehydration and construction of core-shell ODS microparticles is emphasized in this review.
Collapse
Affiliation(s)
- Zi-Dan Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
| | - Wei Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
- Hangzhou VicrobX Biotech Co., Ltd., No. 700 Shixiang Road, Hangzhou 310015, China
| | - Tian-Xin Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
- Hangzhou VicrobX Biotech Co., Ltd., No. 700 Shixiang Road, Hangzhou 310015, China
| |
Collapse
|
3
|
Shoukat L, Javed S, Afzaal M, Akhter N, Shah YA. Starch-based encapsulation to enhance probiotic viability in simulated digestion conditions. Int J Biol Macromol 2024; 283:137606. [PMID: 39542318 DOI: 10.1016/j.ijbiomac.2024.137606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This research aims to meet the demand for efficient delivery systems in the food, nutraceutical, and pharmaceutical industries. The study involved the synthesis of starch-based nanoparticles for potential application in the encapsulation of Lactobacillus rhamnosus. Various techniques such as zeta sizer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the encapsulated probiotics in microbeads. The results showed 85.00 % encapsulation efficiency of beads. Microscopic analysis revealed that the probiotics accumulated within the wall material and formed small, smooth polygonal granules on the capsule surface. XRD analysis confirmed the presence of amorphous humps and some crystallinity of nanoparticles in the capsules. Moreover, encapsulation significantly improved probiotic viability under simulated gastrointestinal conditions. This study highlights the potential of starch-based nanoparticles to enhance the stability and viability of probiotics, demonstrating their potential applications across various industrial sectors. Further research should focus on investigating the long-term stability and functional efficacy of encapsulated probiotics in microbeads for real-world applications.
Collapse
Affiliation(s)
- Laraib Shoukat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan.
| | - Naheed Akhter
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Alizadeh AM, Mohseni M, Gerami K, Gharavi-Nakhjavani M, Aminzare M, Rastegar H, Assadpour E, Hashempour-Baltork F, Jafari SM. Electrospun Fibers Loaded with Probiotics: Fundamentals, Characterization, and Applications. Probiotics Antimicrob Proteins 2024; 16:1099-1116. [PMID: 37882998 DOI: 10.1007/s12602-023-10174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Increasing demand for safe, efficient, and eco-friendly solutions for pharmaceutical and food industries has led researchers to explore new approaches to bacterial storage. Several advantages make electrospinning (ES) a promising technique for food systems, including simple manufacturing equipment, a relatively low spinning cost, a wide variety of spinnable materials, and a mild process that is easily controlled, which allows continuous fabrication of ultrafine polymeric fibers at submicron or nanoscales without high temperatures or high pressures. This review briefly describes recent advances in the development of electrospun fibers for loading probiotics (PRB) by focusing on ES technology, its efficiency for loading PRB into fibers (viability, digestive stability, growth rate, release, thermal stability, and interactions of fibers with PRB), and the application of PRB-loaded fibers as active packaging (spoilage/microbial control, antioxidant effect, shelf life). Based on the literature reviewed, the incorporation of PRB into electrospun fibers is both feasible and functional. However, several studies have been limited to proof-of-principle experiments and the use of model biological products. It is necessary to conduct further research to establish the industrial applicability of PRB-loaded fibers, particularly in the fields of food and medicine.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Mohseni
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Gerami
- Student Research Committee, Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Gharavi-Nakhjavani
- Department of Food Science and Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
5
|
Victoria Schulte-Werning L, Singh B, Johannessen M, Einar Engstad R, Mari Holsæter A. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm 2024; 657:124136. [PMID: 38642621 DOI: 10.1016/j.ijpharm.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
6
|
Rovelli R, Cecchini B, Zavagna L, Azimi B, Ricci C, Esin S, Milazzo M, Batoni G, Danti S. Emerging Multiscale Biofabrication Approaches for Bacteriotherapy. Molecules 2024; 29:533. [PMID: 38276612 PMCID: PMC10821506 DOI: 10.3390/molecules29020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Bacteriotherapy is emerging as a strategic and effective approach to treat infections by providing putatively harmless bacteria (i.e., probiotics) as antagonists to pathogens. Proper delivery of probiotics or their metabolites (i.e., post-biotics) can facilitate their availing of biomaterial encapsulation via innovative manufacturing technologies. This review paper aims to provide the most recent biomaterial-assisted strategies proposed to treat infections or dysbiosis using bacteriotherapy. We revised the encapsulation processes across multiscale biomaterial approaches, which could be ideal for targeting different tissues and suit diverse therapeutic opportunities. Hydrogels, and specifically polysaccharides, are the focus of this review, as they have been reported to better sustain the vitality of the live cells incorporated. Specifically, the approaches used for fabricating hydrogel-based devices with increasing dimensionality (D)-namely, 0D (i.e., particles), 1D (i.e., fibers), 2D (i.e., fiber meshes), and 3D (i.e., scaffolds)-endowed with probiotics, were detailed by describing their advantages and challenges, along with a future overlook in the field. Electrospinning, electrospray, and 3D bioprinting were investigated as new biofabrication methods for probiotic encapsulation within multidimensional matrices. Finally, examples of biomaterial-based systems for cell and possibly post-biotic release were reported.
Collapse
Affiliation(s)
- Roberta Rovelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Beatrice Cecchini
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Lorenzo Zavagna
- PEGASO Doctoral School of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| |
Collapse
|
7
|
Akram N, Afzaal M, Saeed F, Ahmad A, Imran A, Ahmed A, Shah YA, Islam F, Alomar SY, Manoharadas S, Nawaz A. Fabrication and Characterization of PVA-WPI Based Nanofiber Mats for Improved Viability of Lactobacillus rhamnosus GG. Foods 2023; 12:3904. [PMID: 37959023 PMCID: PMC10648975 DOI: 10.3390/foods12213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
In the current study, whey protein-based nanofibers were fabricated to encapsulate Lactobacillus rhamnosus. Purposely, different ratios of PVA (polyvinyl alcohol) and WPI (whey protein isolate) were blended to fabricate nanofibers. Nanofiber mats were characterized in terms of particle size, diameter, tensile strength, elongation at break, and loading efficiency. Morphological and molecular characterizations were carried out using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). Moreover, in vitro viability under simulated gastrointestinal (GI) conditions and thermal stability were also assessed. The results reveal that by increasing the PVA concentration, the conductivity increased while the viscosity decreased. SEM micrographs showed that probiotics were successfully loaded within the nanofiber. The FTIR spectra show strong bonding between the encapsulating materials with the addition of probiotics. In vitro and thermal analyses revealed that the survival of encapsulated probiotics significantly (p < 0.05) improved. In a nutshell, PVA-WPI composite nanofibers have promising potential when used to enhance the viability and stability of probiotics under adverse conditions.
Collapse
Affiliation(s)
- Noor Akram
- Food Safety and Biotechnology Lab, Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.S.); (A.I.); (F.I.)
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.S.); (A.I.); (F.I.)
| | - Adnan Ahmad
- Research School of Chemistry, Australian National University, Canberra 2601, Australia;
| | - Ali Imran
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.S.); (A.I.); (F.I.)
| | - Aftab Ahmed
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Yasir Abbas Shah
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Fakhar Islam
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.S.); (A.I.); (F.I.)
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
8
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
9
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
10
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
11
|
Adak T, Mahanty A, Sarkar S, Basak N, Kumar G, Sanghamitra P, Bagchi TB, Chakraborti M. Development and validation of HS-SPME-GCMS/MS method for quantification of 2-acetyl-1-pyrroline in rice cultivars. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1185-1194. [PMID: 36908367 PMCID: PMC9998778 DOI: 10.1007/s13197-023-05674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The commercial significance of accurate and simple quantification of 2-Acetyl-1-pyrroline (2-AP) cannot be overstated. Present study was carried out to standardize a method for extraction and accurate quantitation of 2-AP from rice grain using GC-MS/MS equipped with HS-SPME auto sampler. The effect of sample quantity, addition of solvent, grinding process, sample particle size, head space parameters and SPME fiber incubation parameters, were optimized in the developed method. Dehusked rice powder (2 g) prepared under liquid nitrogen, and passed through the 80-mesh sieve, incubated for 40 min at 80 °C in headspace, followed by fiber (DVB/Carbon WR/PDMS) saturation time of 15 min, could produce the maximum response. The recovery of 2-AP from fortified sample ranged between 7.02 and 9.02% at 50-200 ng g-1 fortification irrespective of the grain matrices used. Standard addition method was appropriate to overcome the matrix effect and recovery of 2-AP was more than 90% using this method. The developed method was further utilized for quantification of 2-AP in four Basmati and two non-Basmati aromatic rice samples. The content of 2-AP ranged between 57.17 and 147.10 ng g-1 of rice and varied with geographical location. This fully automated method could improve the work efficiency and reduce error during the volatile extraction and adsorption phase. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05674-7.
Collapse
Affiliation(s)
- Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Sutapa Sarkar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Nabaneeta Basak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Gaurav Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | | | | |
Collapse
|