1
|
Zhang J, Wei Y, Qiu H, Han J. TMT-based quantitative proteomics reveals the nutritional and stress resistance functions of anaerobic fungi in yak rumen during passage at different time intervals. Anaerobe 2024; 85:102805. [PMID: 38049048 DOI: 10.1016/j.anaerobe.2023.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Anaerobic fungi are critical for nutrient digestion in the yak rumen. Although studies have reported the effects of passage at different time intervals on the community structure of yak rumen anaerobic fungi, it is unknown whether passage culture at different time intervals affects the microbial proteins of rumen anaerobic fungi and their functions. METHODS Mycelium was obtained using the anaerobic continuous batch culture (CBC) of yak rumen fluid at intervals of 3 d, 5 d and 7 d. Quantitative analysis of fungal proteins and functional analysis was performed using tandem mass tagging (TMT) and bioinformatics. RESULTS A total of 56 differential proteins (DPs) were found in 5 d vs. 3 d and 7 d vs. 3 d. Gene ontology (GO) enrichment indicated that the up-regulated proteins were mainly involved in biological regulation, cellular process, metabolic process, macromolecular complex, membrane, cell part, organelle, binding, catalytic activity and transporter activity. The downregulated proteins were mainly enriched in metabolic process, cell part, binding and catalytic activity. Furthermore, the downregulated proteins in 7 d vs. 3 d were related to membrane and organelle. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicated that DPs were enriched in 14 pathways in 5 d vs. 3 d and 7 d vs. 3 d, mainly including terpenoid backbone biosynthesis, alaine, aspartate and glutamate metabolism, arginine biosynthesis, hypotaurine, cyanoamino acid, glutathione, β-alanine, pyrimidine, purine, galactose and propanate metabolism, steroid biosynthesis, ribosome biogenesis in eukaryotes and aminoacyl tRNA biosynthesis. The DPs were enriched in only 2 pathways in 5 d vs 3 d, lysine biosynthesis and cysteine and methionine metabolism. N-glycan biosynthesis and retinol metabolism are only found in the metabolism of DPs in 7 d vs 3 d. CONCLUSIONS Yak rumen anaerobic fungal proteins are involved in nutrition and stress tolerance during passage at different time intervals.
Collapse
Affiliation(s)
- Jingrong Zhang
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaqin Wei
- Institute of Biology, Gansu Academy of Science, Lanzhou, 730030, China
| | - Huizhen Qiu
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiayi Han
- Gansu Academy of Science, Lanzhou, 730030, China
| |
Collapse
|
2
|
Seasonal diets supersede host species in shaping the distal gut microbiota of Yaks and Tibetan sheep. Sci Rep 2021; 11:22626. [PMID: 34799677 PMCID: PMC8604981 DOI: 10.1038/s41598-021-99351-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Yaks and Tibetan sheep are important and renowned livestock of the Qinghai-Tibetan Plateau (QTP). Both host genetics and environmental factors can shape the composition of gut microbiota, however, there is still no consensus on which is the more dominant factor. To investigate the influence of hosts and seasons on the gut microbiome diversity component, we collected fecal samples from yaks and Tibetan sheep across different seasons (summer and winter), during which they consumed different diets. Using 16S rRNA sequencing, principal component analysis (PCoA) data showed that PCo1 explained 57.4% of the observed variance (P = 0.001) and clearly divided winter samples from summer ones, while PCo2 explained 7.1% of observed variance (P = 0.001) and mainly highlighted differences in host species. Cluster analysis data revealed that the gut microbiota composition displayed a convergence caused by season and not by genetics. Further, we profiled the gut microbial community and found that the more dominant genera in yak and Tibetan sheep microbiota were influenced by seasonal diets factors rather than genetics. This study therefore indicated that seasonal diet can trump host genetics even at higher taxonomic levels, thus providing a cautionary note for the breeding and management of these two species.
Collapse
|
3
|
Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Yi X, Guo J, Wang M, Xue C, Ju M. Inter-trophic Interaction of Gut Microbiota in a Tripartite System. MICROBIAL ECOLOGY 2021; 81:1075-1087. [PMID: 33190166 DOI: 10.1007/s00248-020-01640-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota can be transmitted either environmentally or socially and vertically at intraspecific level; however, whether gut microbiota interact along trophic levels has been largely overlooked. Here, we characterized the gut bacterial communities of weevil larvae of Curculio arakawai that infest acorns of Mongolian oak (Quercus mongolica) as well as acorn-eating mammals, Siberian chipmunk (Tamias sibiricus), to test whether consumption of seed-borne larvae remodels the gut bacterial communities of T. sibiricus. Ingestion of weevil larvae of C. arakawai significantly altered the gut bacterial communities of T. sibiricus. Consequently, T. sibiricus fed larvae of C. arakawai showed higher capability to counter the negative effects of tannins, in terms of body weight maintenance, acorn consumption, N content in feces, urine pH, and blood ALT activity. Our results may first show that seed-borne insects as hidden players have a potential to alter the gut microbiota of seed predators in the tripartite system.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Jiawei Guo
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Minghui Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Chao Xue
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Mengyao Ju
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
5
|
Naumova EI, Chistova TY, Varshavskii AA, Zharova GK. Functional Diversity of Morphologically Similar Digestive Organs in Muroidea Species. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
We examine possible ways of functional adjustment of morphologically similar alimentary tracts in rodents with different dietary specializations. We study the structure of stomach and gut epithelial surface as well as the features of its colonization with microorganisms in five gerbil species: Psammomys obesus, Meriones crassus, Gerbillus henleyi, G. andersoni, and G. dasyurus. Data on the morphological diversity of mucosa-associated microbiota have been obtained and confirmed by the results of previous microbiology studies. Species differences in chymus acidity associated with dietary specialization have been determined. Variations in the activity of the endoglucanase microbial enzyme, which is crucial for rodents fed on cellulose-containing food, have also been detected. The importance of microbiota for functional adaptations to various food types in rodents with morphologically similar digestive tracts has been evaluated.
Collapse
|
6
|
Pardiñas UFJ, Cañón C, Galliari CA, Brito J, Bernal Hoverud N, Lessa G, de Oliveira JA. Gross stomach morphology in akodontine rodents (Cricetidae: Sigmodontinae: Akodontini): a reappraisal of its significance in a phylogenetic context. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Akodontini, the second largest tribe within sigmodontine rodents, encompasses several stomach morphologies. This is striking because most sigmodontine groups of comparable taxonomic rank are very conservative in this respect. Based on extensive sampling of newly dissected specimens (213 stomachs representing 36 species), as well as published examples, covering almost all akodontine living genera (15 of 16), we undertook a reappraisal of the gross morphology of this organ. We then mapped this information, together with gallbladder occurrence, in a refined multilocus molecular phylogeny of the tribe. We surveyed three different configurations of stomachs in akodontines, according to the degree of development and location of the glandular epithelium; in addition, two minor variations of one of these types were described. Of the five major clades that integrate Akodontini, four are characterized by a single stomach morphology, while one clade exhibits two morphologies. Mapping stomach type on the phylogeny recovered two configurations for the most recent ancestor of Akodontini. A revised survey of gallbladder evidence also revealed overlooked congruencies. The observed stomach diversity and its arrangement in the phylogeny, along with additional morphological characters and the genetic diversity among the main clades, supports the necessity of changes in the current classification of the tribe. Recognition of subtribes or partitioning of Akodontini into several additional tribes of equal rank could be suitable options.
Collapse
Affiliation(s)
- Ulyses F J Pardiñas
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Boulevard Brown 2915, 9120 Puerto Madryn, Chubut, Argentina
| | - Carola Cañón
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Boulevard Brown 2915, 9120 Puerto Madryn, Chubut, Argentina
| | - Carlos A Galliari
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-UNLP), calle 120 entre 61 y 62, 1900 La Plata, Buenos Aires, Argentina
| | - Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Rumipamba 341 y Av. de los Shyris, casilla: 17-07-8976, Quito, Ecuador
| | - Nuria Bernal Hoverud
- Wildlife Conservation Society, Programa Bolivia, Casilla 3-35181, San Miguel, La Paz, Bolivia
| | - Gisele Lessa
- Museu de Zoologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, 36571-000 Viçosa, Minas Gerais, Brasil
| | | |
Collapse
|
7
|
Heras J, Chakraborty M, Emerson JJ, German DP. Genomic and biochemical evidence of dietary adaptation in a marine herbivorous fish. Proc Biol Sci 2020; 287:20192327. [PMID: 32070255 PMCID: PMC7062031 DOI: 10.1098/rspb.2019.2327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/26/2020] [Indexed: 01/30/2023] Open
Abstract
Adopting a new diet is a significant evolutionary change, and can profoundly affect an animal's physiology, biochemistry, ecology and genome. To study this evolutionary transition, we investigated the physiology and genomics of digestion of a derived herbivorous fish, Cebidichthys violaceus. We sequenced and assembled its genome (N50 = 6.7 Mb) and digestive transcriptome, and revealed the molecular changes related to digestive enzymes (carbohydrases, proteases and lipases), finding abundant evidence of molecular adaptation. Specifically, two gene families experienced expansion in copy number and adaptive amino acid substitutions: amylase and carboxyl ester lipase (cel), which are involved in the digestion of carbohydrates and lipids, respectively. Both show elevated levels of gene expression and increased enzyme activity. Because carbohydrates are abundant in the prickleback's diet and lipids are rare, these findings suggest that such dietary specialization involves both exploiting abundant resources and scavenging rare ones, especially essential nutrients, like essential fatty acids.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | | | | | | |
Collapse
|
8
|
Prabhu VR, Wasimuddin, Kamalakkannan R, Arjun MS, Nagarajan M. Consequences of Domestication on Gut Microbiome: A Comparative Study Between Wild Gaur and Domestic Mithun. Front Microbiol 2020; 11:133. [PMID: 32158434 PMCID: PMC7051944 DOI: 10.3389/fmicb.2020.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Although the gut microbiome benefits the host in several ways, how anthropogenic forces impact the gut microbiome of mammals is not yet completely known. Recent studies have noted reduced gut microbiome diversity in captive mammals due to changes in diet and living environment. However, no studies have been carried out to understand how the gut microbiome of wild mammals responds to domestication. We analyzed the gut microbiome of wild and captive gaur and domestic mithun (domestic form of gaur) to understand whether the gut microbiome exhibits sequential changes from wild to captivity and after domestication. Both captive and domestic populations were characterized by reduced microbial diversity and abundance as compared to their wild counterparts. Notably, two beneficial bacterial families, Ruminococcaceae and Lachnospiraceae, which are known to play vital roles in herbivores' digestion, exhibited lower abundance in captive and domestic populations. Consequently, the predicted bacterial functional pathways especially related to metabolism and immune system showed lower abundance in captive and domestic populations compared to wild population. Therefore, we suggest that domestication can impact the gut microbiome more severely than captivity, which might lead to adverse effects on host health and fitness. However, further investigations are required across a wide range of domesticates in order to understand the general trend of microbiome shifts in domestic animals.
Collapse
Affiliation(s)
- Vandana R. Prabhu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Wasimuddin
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Ranganathan Kamalakkannan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Moolamkudy Suresh Arjun
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| |
Collapse
|
9
|
Sun Y, Sun Y, Shi Z, Liu Z, Zhao C, Lu T, Gao H, Zhu F, Chen R, Zhang J, Pan R, Li B, Teng L, Guo S. Gut Microbiota of Wild and Captive Alpine Musk Deer ( Moschus chrysogaster). Front Microbiol 2020; 10:3156. [PMID: 32038587 PMCID: PMC6985557 DOI: 10.3389/fmicb.2019.03156] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
As for the wild animals, their diet components are always changed, so that we have to monitor such changes by analyzing the modification of intestinal microbial community. Such effort allows us to amend their conservation strategies and tactics accordingly so that they are able to appropriately adapt to the new environment and dietary selection. In this study we focus on the gut flora of two groups of an endangered species, Alpine musk deer (Moschus chrysogaster), wild group (WG) which is compared with that of the individuals of the same species but kept in the captivities (CG), a control group. Such a project is aimed to work out whether the composition of the gut microbes has significantly been changed due to captive feedings. To do so, we used 16S rRNA amplicon sequencing to characterize gut bacteria of the musk deer from the two groups. The results show that there is a significant difference in community structure of the bacteria: WG shows significant enrichment of Firmicutes and depletion of Bacteroidetes, while CG has a significant abundance of Proteobacteria and Euryarchaeota. Metagenomics was used to analyze the differences in functional enzymes between the two groups. The related results indicate that genes in WG are mostly related to the enzymes digesting cellulose and generating short-chain fatty acids (SCFAs) for signaling pathways, but CG shows enrichment in methanogenesis, including the CO2/H2 pathway and the methylotrophic pathway. Thus, this study indicates that the Firmicutes-rich gut microbiota in the WG enables individuals to maximize their energy intake from the cellulose, and has significant abundance of Euryarchaeota and methanogenesis pathways that allow them to reduce redundant energy consumption in methane metabolism, ensuring them to adapt to the wild environments.
Collapse
Affiliation(s)
- Yewen Sun
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Yujiao Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhihui Shi
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin, China
| | - Chang Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Taofeng Lu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Gao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Feng Zhu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Rui Chen
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Jun Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Elghandour M, Tan Z, Abu Hafsa S, Adegbeye M, Greiner R, Ugbogu E, Cedillo Monroy J, Salem A. Saccharomyces cerevisiaeas a probiotic feed additive to non and pseudo‐ruminant feeding: a review. J Appl Microbiol 2019; 128:658-674. [DOI: 10.1111/jam.14416] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M.M.Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoEstado de México México
| | - Z.L. Tan
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region The Chinese Academy of Sciences Changsha China
| | - S.H. Abu Hafsa
- Department of Livestock Research Arid Lands Cultivation Research InstituteCity of Scientific Research and Technological Applications Alexandria Egypt
| | - M.J. Adegbeye
- Department of Animal Science, College of Agriculture Joseph Ayo Babalola University Ilesha Osun State Nigeria
| | - R. Greiner
- Department of Food Technology and Bioprocess Engineering Max Rubner‐InstitutFederal Research Institute of Nutrition and Food Karlsruhe Germany
| | - E.A. Ugbogu
- Department of Biochemistry Abia State University Uturu Abia State Nigeria
| | - J. Cedillo Monroy
- Centro Universitario UAEM‐Temascaltepec Universidad Autónoma del Estado de México Toluca México
| | - A.Z.M. Salem
- Facultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoEstado de México México
| |
Collapse
|
11
|
Kohl KD, Oakeson KF, Orr TJ, Miller AW, Forbey JS, Phillips CD, Dale C, Weiss RB, Dearing MD. Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiol Ecol 2019; 94:5092587. [PMID: 30202961 DOI: 10.1093/femsec/fiy184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial detoxification of plant toxins influences the use of plants as food sources by herbivores. Stephen's woodrats (Neotoma stephensi) specialize on juniper, which is defended by oxalate, phenolics and monoterpenes, while closely related N. albigula specialize on cactus, which only contains oxalate. Woodrats maintain two gut chambers harboring dense microbial communities: a foregut chamber proximal to the major site of toxin absorption, and a cecal chamber in their hindgut. We performed several experiments to investigate the location and nature of microbial detoxification in the woodrat gut. First, we measured toxin concentrations across gut chambers of N. stephensi. Compared to food material, oxalate concentrations were immediately lower in the foregut, while concentrations of terpenes remained high in the foregut, and were lowest in the cecal chamber. We conducted metagenomic sequencing of the foregut chambers of both woodrat species and cecal chambers of N. stephensi to compare microbial functions. We found that most genes associated with detoxification were more abundant in the cecal chambers of N. stephensi. However, some genes associated with degradation of oxalate and phenolic compounds were more abundant in the foregut chambers. Thus, microbial detoxification may take place in various chambers depending on the class of chemical compound.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA, 15260, USA.,Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Teri J Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Aaron W Miller
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.,Departments of Urology and Immunology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jennifer Sorensen Forbey
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725 USA
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
12
|
Analysis of the Gut Microbial Diversity of Dairy Cows During Peak Lactation by PacBio Single-Molecule Real-Time (SMRT) Sequencing. Curr Microbiol 2018; 75:1316-1323. [DOI: 10.1007/s00284-018-1526-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023]
|
13
|
Li Y, Hu X, Yang S, Zhou J, Zhang T, Qi L, Sun X, Fan M, Xu S, Cha M, Zhang M, Lin S, Liu S, Hu D. Comparative Analysis of the Gut Microbiota Composition between Captive and Wild Forest Musk Deer. Front Microbiol 2017; 8:1705. [PMID: 28928728 PMCID: PMC5591822 DOI: 10.3389/fmicb.2017.01705] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
The large and complex gut microbiota in animals has profound effects on feed utilization and metabolism. Currently, gastrointestinal diseases due to dysregulated gut microbiota are considered important factors that limit growth of the captive forest musk deer population. Compared with captive forest musk deer, wild forest musk deer have a wider feeding range with no dietary limitations, and their gut microbiota are in a relatively natural state. However, no reports have compared the gut microbiota between wild and captive forest musk deer. To gain insight into the composition of gut microbiota in forest musk deer under different food-source conditions, we employed high-throughput 16S rRNA sequencing technology to investigate differences in the gut microbiota occurring between captive and wild forest musk deer. Both captive and wild forest musk deer showed similar microbiota at the phylum level, which consisted mainly of Firmicutes and Bacteroidetes, although significant differences were found in their relative abundances between both groups. α-Diversity results showed that no significant differences occurred in the microbiota between both groups, while β-diversity results showed that significant differences did occur in their microbiota compositions. In summary, our results provide important information for improving feed preparation for captive forest musk deer and implementing projects where captive forest musk deer are released into the wild.
Collapse
Affiliation(s)
- Yimeng Li
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Xiaolong Hu
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China.,College of Animal Science and Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Shuang Yang
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Juntong Zhou
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Tianxiang Zhang
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Lei Qi
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Xiaoning Sun
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Mengyuan Fan
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Shanghua Xu
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Muha Cha
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Meishan Zhang
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Shaobi Lin
- Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd.Zhangzhou, China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China.,Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd.Zhangzhou, China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
14
|
Kohl KD, Varner J, Wilkening JL, Dearing MD. Gut microbial communities of American pikas (
O
chotona princeps
): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 2017; 87:323-330. [DOI: 10.1111/1365-2656.12692] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences Vanderbilt University Nashville TN USA
- Department of Biology University of Utah Salt Lake City UT USA
| | - Johanna Varner
- Department of Biology Colorado Mesa University Grand Junction CO USA
| | - Jennifer L. Wilkening
- Department of Ecology and Evolutionary Biology University of Colorado Boulder CO USA
| | | |
Collapse
|
15
|
Li H, Li T, Tu B, Kou Y, Li X. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas. Appl Microbiol Biotechnol 2017; 101:5519-5529. [DOI: 10.1007/s00253-017-8254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023]
|
16
|
Kohl KD, Dearing MD. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front Microbiol 2016; 7:1165. [PMID: 27516760 PMCID: PMC4963388 DOI: 10.3389/fmicb.2016.01165] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma) that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, non-gastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host's ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that could be useful in the treatment of diseases in humans and domestic animals.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA
| | | |
Collapse
|
17
|
|
18
|
Microbial diversity in forestomach and caecum contents of the greater long-tailed hamster Tscherskia triton (Rodentia: Cricetidae). Mamm Biol 2016. [DOI: 10.1016/j.mambio.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis. J Appl Genet 2015; 57:275-83. [PMID: 26423781 DOI: 10.1007/s13353-015-0319-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/19/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively.
Collapse
|
20
|
Kohl KD, Stengel A, Dearing MD. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 2015; 18:1720-9. [DOI: 10.1111/1462-2920.12841] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin D. Kohl
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - Ashley Stengel
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - M. Denise Dearing
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
21
|
Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 2014; 17:1238-46. [DOI: 10.1111/ele.12329] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin D. Kohl
- Department of Biology University of Utah 257 S. 1400 East Salt Lake City UT 84112 USA
| | - Robert B. Weiss
- Department of Human Genetics University of Utah 15 North 2030 East Salt Lake City UT 84112 USA
| | - James Cox
- Department of Biochemistry and the Metabolomics Core Research Facility University of Utah School of Medicine 20 South 2030 East Salt Lake City UT 84112 USA
| | - Colin Dale
- Department of Biology University of Utah 257 S. 1400 East Salt Lake City UT 84112 USA
| | - M. Denise Dearing
- Department of Biology University of Utah 257 S. 1400 East Salt Lake City UT 84112 USA
| |
Collapse
|
22
|
Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ Microbiol 2014; 16:2869-78. [DOI: 10.1111/1462-2920.12376] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/13/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin D. Kohl
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - Aaron W. Miller
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - James E. Marvin
- Flow Cytometry Core Facility; University of Utah; Salt Lake City UT 84132 USA
| | - Roderick Mackie
- Department of Animal Sciences; University of Illinois; Urbana IL 61801 USA
| | - M. Denise Dearing
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
23
|
The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 2013; 80:1595-601. [PMID: 24362432 DOI: 10.1128/aem.03742-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The microbiota inhabiting the mammalian gut is a functional organ that provides a number of services for the host. One factor that may regulate the composition and function of gut microbial communities is dietary toxins. Oxalate is a toxic plant secondary compound (PSC) produced in all major taxa of vascular plants and is consumed by a variety of animals. The mammalian herbivore Neotoma albigula is capable of consuming and degrading large quantities of dietary oxalate. We isolated and characterized oxalate-degrading bacteria from the gut contents of wild-caught animals and used high-throughput sequencing to determine the distribution of potential oxalate-degrading taxa along the gastrointestinal tract. Isolates spanned three genera: Lactobacillus, Clostridium, and Enterococcus. Over half of the isolates exhibited significant oxalate degradation in vitro, and all Lactobacillus isolates contained the oxc gene, one of the genes responsible for oxalate degradation. Although diverse potential oxalate-degrading genera were distributed throughout the gastrointestinal tract, they were most concentrated in the foregut, where dietary oxalate first enters the gastrointestinal tract. We hypothesize that unique environmental conditions present in each gut region provide diverse niches that select for particular functional taxa and communities.
Collapse
|
24
|
A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions. J Chem Ecol 2013; 39:465-80. [PMID: 23483346 DOI: 10.1007/s10886-013-0267-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
Abstract
We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.
Collapse
|
25
|
Shipley LA, Davis EM, Felicetti LA, McLean S, Forbey JS. Mechanisms for eliminating monoterpenes of sagebrush by specialist and generalist rabbits. J Chem Ecol 2012; 38:1178-89. [PMID: 23053918 DOI: 10.1007/s10886-012-0192-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 11/26/2022]
Abstract
Pygmy rabbits (Brachylagus idahoensis) are one of only three vertebrates that subsist virtually exclusively on sagebrush (Artemisia spp.), which contains high levels of monoterpenes that can be toxic. We examined the mechanisms used by specialist pygmy rabbits to eliminate 1,8-cineole, a monoterpene of sagebrush, and compared them with those of cottontail rabbits (Sylvilagus nuttalli), a generalist herbivore. Rabbits were offered food pellets with increasing concentrations of cineole, and we measured voluntary intake and excretion of cineole metabolites in feces and urine. We expected pygmy rabbits to consume more, but excrete cineole more rapidly by using less-energetically expensive methods of detoxification than cottontails. Pygmy rabbits consumed 3-5 times more cineole than cottontails relative to their metabolic body mass, and excreted up to 2 times more cineole metabolites in their urine than did cottontails. Urinary metabolites excreted by pygmy rabbits were 20 % more highly-oxidized and 6 times less-conjugated than those of cottontails. Twenty percent of all cineole metabolites recovered from pygmy rabbits were in feces, whereas cottontails did not excrete fecal metabolites. When compared to other mammals that consume cineole, pygmy rabbits voluntarily consumed more, and excreted more cineole metabolites in feces, but they excreted less oxidized and more conjugated cineole metabolites in urine. Pygmy rabbits seem to have a greater capacity to minimize systemic exposure to cineole than do cottontails, and other cineole-consumers, by minimizing absorption and maximizing detoxification of ingested cineole. However, mechanisms that lower systemic exposure to cineole may come with a higher energetic cost in pygmy rabbits than in other mammalian herbivores.
Collapse
Affiliation(s)
- Lisa A Shipley
- School of the Environment, Washington State University, Pullman, WA 99164-6410, USA.
| | | | | | | | | |
Collapse
|
26
|
Kohl KD, Dearing MD. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett 2012; 15:1008-15. [PMID: 22715970 DOI: 10.1111/j.1461-0248.2012.01822.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022]
Abstract
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biology, University of Utah, 257 S. 1400 East, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|