1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
3
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
4
|
Qin X, Yu M, Du H, Hu C, Wu S, Tan Q, Hu X, Shabala S, Sun X. Effects of molybdenum supply on microbial diversity and mineral nutrient availability in the rhizosphere soil of broad bean (Vicia Faba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108203. [PMID: 38000235 DOI: 10.1016/j.plaphy.2023.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Molybdenum application holds the potential to enhance agricultural productivity. However, the precise impact on soil microbial diversity and mineral nutrient availability remains uncertain. In this study, we collected rhizosphere soil samples from different growth stages of broad beans. By analyzing mineral element contents, soil phosphorus and zinc fractions, as well as fungal and bacterial diversity, we observed that Mo application resulted in a reduction of soil Citrate‒P and HCl‒P content. This reduction led to an increase in available P content at different stages. Moreover, Mo application elevated root P concentration, but concurrently impeded the translocation of P to the shoots. Mo application also decreased the soil Exc‒Zn (exchangeable Zn) content while increasing the Res‒Zn (residual Zn) content, ultimately causing a decrease in available Zn content at different stages. Consequently, the Zn concentration within broad beans correspondingly decreased. Mo application fostered an augmentation in fungal richness and Shannon indices at the branching and podding stages. The analysis of microbial co-occurrence networks indicated that Mo application bolstered positive connectivity among fungal taxa. Remarkably, Mo significantly increased the abundance of Chaetomium, Leucosporidium, and Thielavia fungi. Spearman correlation analysis demonstrated a significant positive correlation between fungal diversity and soil available P content, as well as a notable negative correlation with soil available Zn content. These findings suggest that Mo application may modify the availability of soil P and Zn by influencing fungal diversity in the rhizosphere of crop soil, ultimately impacting nutrient accumulation within the grains.
Collapse
Affiliation(s)
- Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Haijun Du
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas, 7001, Australia
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
6
|
Goyal V, Rani D, Ritika, Mehrotra S, Deng C, Wang Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. PLANTS (BASEL, SWITZERLAND) 2023; 12:3744. [PMID: 37960100 PMCID: PMC10649170 DOI: 10.3390/plants12213744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Nanotechnology has attracted remarkable attention due to its unique features and potential uses in multiple domains. Nanotechnology is a novel strategy to boost production from agriculture along with superior efficiency, ecological security, biological safety, and monetary security. Modern farming processes increasingly rely on environmentally sustainable techniques, providing substitutes for conventional fertilizers and pesticides. The drawbacks inherent in traditional agriculture can be addressed with the implementation of nanotechnology. Nanotechnology can uplift the global economy, so it becomes essential to explore the application of nanoparticles in agriculture. In-depth descriptions of the microbial synthesis of nanoparticles, the site and mode of action of nanoparticles in living cells and plants, the synthesis of nano-fertilizers and their effects on nutrient enhancement, the alleviation of abiotic stresses and plant diseases, and the interplay of nanoparticles with the metabolic processes of both plants and microbes are featured in this review. The antimicrobial activity, ROS-induced toxicity to cells, genetic damage, and growth promotion of plants are among the most often described mechanisms of operation of nanoparticles. The size, shape, and dosage of nanoparticles determine their ability to respond. Nevertheless, the mode of action of nano-enabled agri-chemicals has not been fully elucidated. The information provided in our review paper serves as an essential viewpoint when assessing the constraints and potential applications of employing nanomaterials in place of traditional fertilizers.
Collapse
Affiliation(s)
- Vinod Goyal
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Dolly Rani
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ritika
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Shweta Mehrotra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Chaoyi Deng
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| |
Collapse
|
7
|
Zhang J, Wang N, Li S, Wang J, Feng Y, Wang E, Li Y, Yang T, Chen W. The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3421. [PMID: 37836161 PMCID: PMC10575130 DOI: 10.3390/plants12193421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Chen
- College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
9
|
Martínez-Cano B, Mendoza-Meneses CJ, García-Trejo JF, Macías-Bobadilla G, Aguirre-Becerra H, Soto-Zarazúa GM, Feregrino-Pérez AA. Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry. Molecules 2022; 27:4248. [PMID: 35807492 PMCID: PMC9268634 DOI: 10.3390/molecules27134248] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Alginate is a polysaccharide with the property of forming hydrogels, which is economic production, zero toxicity, and biocompatibility. In the agro-industry, alginate is used as a super absorbent polymer, coating seeds, fruits, and vegetables and as a carrier of bacteria and fungi as plant-growth promoters and biocontrol. The latter has a high impact on agriculture since the implementation of microorganisms in a polymer matrix improves soil quality; plant nutrition, and is functional as a preventive measure for the appearance of phytopathogenic. Additionally, it minimizes losses of foods due to wrong post-harvest handling. In this review, we provide an overview of physicochemical properties of alginate, some methods for preparation and modification of capsules and coatings, to finally describe its application in agro-industry as a matrix of plant-growth-promoting microorganisms, its effectiveness in cultivation and post-harvest, and its effect on the environment, as well as the prospects for future agro-industrial applications.
Collapse
Affiliation(s)
- Betsie Martínez-Cano
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Cristian Josué Mendoza-Meneses
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Juan Fernando García-Trejo
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Gonzalo Macías-Bobadilla
- Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas, El Marques 76010, Mexico;
| | - Humberto Aguirre-Becerra
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Genaro Martín Soto-Zarazúa
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Ana Angélica Feregrino-Pérez
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| |
Collapse
|
10
|
Liu X, Le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 2022; 25:103821. [PMID: 35243218 PMCID: PMC8867051 DOI: 10.1016/j.isci.2022.103821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial inoculations contribute to reducing agricultural systems' environmental footprint by supporting sustainable production and regulating climate change. However, the indirect and cascading effects of microbial inoculants through the reshaping of soil microbiome are largely overlooked. By discussing the underlying mechanisms of plant- and soil-based microbial inoculants, we suggest that a key challenge in microbial inoculation is to understand their legacy on indigenous microbial communities and the corresponding impacts on agroecosystem functions and services relevant to climate change. We explain how these legacy effects on the soil microbiome can be understood by building on the mechanisms driving microbial invasions and placing inoculation into the context of ecological succession and community assembly. Overall, we advocate that generalizing field trials to systematically test inoculants' effectiveness and developing knowledge anchored in the scientific field of biological/microbial invasion are two essential requirements for applying microbial inoculants in agricultural ecosystems to tackle climate change challenges.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, the Netherlands
| | - Xavier Le Roux
- Microbial Ecology Centre LEM, INRAE, CNRS, VetAgroSup, Université Lyon 1, Université de Lyon, UMR 1418 INRAE, UMR 5557 CNRS, 69622 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
11
|
Akhtar N, Ilyas N, Meraj TA, Pour-Aboughadareh A, Sayyed RZ, Mashwani ZUR, Poczai P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:965. [PMID: 35335778 PMCID: PMC8949119 DOI: 10.3390/nano12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Drastic changes in the climate and ecosystem due to natural or anthropogenic activities have severely affected crop production globally. This concern has raised the need to develop environmentally friendly and cost-effective strategies, particularly for keeping pace with the demands of the growing population. The use of nanobiofertilizers in agriculture opens a new chapter in the sustainable production of crops. The application of nanoparticles improves the growth and stress tolerance in plants. Inoculation of biofertilizers is another strategy explored in agriculture. The combination of nanoparticles and biofertilizers produces nanobiofertilizers, which are cost-effective and more potent and eco-friendly than nanoparticles or biofertilizers alone. Nanobiofertilizers consist of biofertilizers encapsulated in nanoparticles. Biofertilizers are the preparations of plant-based carriers having beneficial microbial cells, while nanoparticles are microscopic (1-100 nm) particles that possess numerous advantages. Silicon, zinc, copper, iron, and silver are the commonly used nanoparticles for the formulation of nanobiofertilizer. The green synthesis of these nanoparticles enhances their performance and characteristics. The use of nanobiofertilizers is more effective than other traditional strategies. They also perform their role better than the common salts previously used in agriculture to enhance the production of crops. Nanobiofertilizer gives better and more long-lasting results as compared to traditional chemical fertilizers. It improves the structure and function of soil and the morphological, physiological, biochemical, and yield attributes of plants. The formation and application of nanobiofertilizer is a practical step toward smart fertilizer that enhances growth and augments the yield of crops. The literature on the formulation and application of nanobiofertilizer at the field level is scarce. This product requires attention, as it can reduce the use of chemical fertilizer and make the soil and crops healthy. This review highlights the formulation and application of nanobiofertilizer on various plant species and explains how nanobiofertilizer improves the growth and development of plants. It covers the role and status of nanobiofertilizer in agriculture. The limitations of and future strategies for formulating effective nanobiofertilizer are mentioned.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | | | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3183964653, Iran;
| | - R. Z. Sayyed
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent Region, Tashkent 111208, Uzbekistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Abstract
Soil micronutrients limit crop productivity in many regions worldwide, and micronutrient deficiencies affect over two billion people globally. Microbial biofertilizers could combat these issues by inoculating arable soils with microorganisms that mobilize micronutrients, increasing their availability to crop plants in an environmentally sustainable and cost-effective manner. However, the widespread application of biofertilizers is limited by complex micronutrient–microbe–plant interactions, which reduce their effectiveness under field conditions. Here, we review the current state of seven micronutrients in food production. We examine the mechanisms underpinning microbial micronutrient mobilization in natural ecosystems and synthesize the state-of-knowledge to improve our overall understanding of biofertilizers in food crop production. We demonstrate that, although soil micronutrient concentrations are strongly influenced by soil conditions, land management practices can also substantially affect micronutrient availability and uptake by plants. The effectiveness of biofertilizers varies, but several lines of evidence indicate substantial benefits in co-applying biofertilizers with conventional inorganic or organic fertilizers. Studies of micronutrient cycling in natural ecosystems provide examples of microbial taxa capable of mobilizing multiple micronutrients whilst withstanding harsh environmental conditions. Research into the mechanisms of microbial nutrient mobilization in natural ecosystems could, therefore, yield effective biofertilizers to improve crop nutrition under global changes.
Collapse
|
13
|
Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. CHEMOSPHERE 2022; 287:132107. [PMID: 34492409 DOI: 10.1016/j.chemosphere.2021.132107] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Modern agricultural practices are relying excessively upon the use of synthetic fertilizers to supply essential nutrients to promote crop productivity. Though useful in the short term, their prolonged and persistent applications are harmful to soil fertility and nutrient dynamics of the rhizospheric microbiome. The application of nanotechnology in form of nanofertilizer provides an innovative, efficient, and eco-friendly alternative to synthetic fertilizers. The nanofertilizers allow a slow and sustained release of nutrients that not only supports plant growth but also conserve the diversity of the beneficial microbiome. Such attributes may help the phytomicrobiome to efficiently mitigate both biotic and abiotic stress conditions. Unfortunately, despite, exceptional efficiency and ease of applications, certain limitations are also associated with the nanofertilizers such as their complicated production process, tenuous transport and dosage-sensitive efficiency. These bottlenecks are causing a delay in the large-scale applications of nanofertilizers in agriculture. This review aims to highlight the current trends and perspectives on the use of nanofertilizers for improving soil fertility with a special focus on their effects on beneficial phyromicrobiome.
Collapse
Affiliation(s)
- Mohneesh Kalwani
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
14
|
Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112459. [PMID: 34217114 DOI: 10.1016/j.ecoenv.2021.112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Nanotechnology is an avant-garde field of scientific research that revolutionizes technological advancements in the present world. It is a cutting-edge scientific approach that has undoubtedly a plethora of functions in controlling environmental pollutants for the welfare of the ecosystem. However, their unprecedented utilization and hysterical release led to a huge threat to the soil microbiome. Nanoparticles(NPs) hamper physicochemical properties of soil along with microbial metabolic activities within rhizospheric soils.Here in this review shed light on concentric aspects of NP-biosynthesis, types, toxicity mechanisms, accumulation within the ecosystem. However, the accrual of tiny NPs into the soil system has dramatically influenced rhizospheric activities in terms of soil properties and biogeochemical cycles. We have focussed on mechanistic pathways engrossed by microbes to deal with NPs.Also, we have elaborated the fate and behavior of NPs within soils. Besides, a piece of very scarce information on NPs-toxicity towards environment and rhizosphere communities is available. Therefore, the present review highlights ecological perspectives of nanotechnology and solutions to such implications. We have comprehend certain strategies such as avant-garde engineering methods, sustainable procedures for NP synthesis along with vatious regulatory actions to manage NP within environment. Moreover, we have devised risk management sustainable and novel strategies to utilize it in a rationalized and integrated manner. With this background, we can develop a comprehensive plan about NPs with novel insights to understand the resistance and toxicity mechanisms of NPs towards microbes. Henceforth, the orientation towards these issues would enhance the understanding of researchers for proper recommendation and promotion of nanotechnology in an optimized and sustainable manner.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Neha Handa
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harsimran Kaur
- Plant Protection Division, PG Department of Agriculture, Khalsa College, Amritsar 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Shelar A, Singh AV, Maharjan RS, Laux P, Luch A, Gemmati D, Tisato V, Singh SP, Santilli MF, Shelar A, Chaskar M, Patil R. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells 2021; 10:2428. [PMID: 34572078 PMCID: PMC8472472 DOI: 10.3390/cells10092428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
The global community decided in 2015 to improve people's lives by 2030 by setting 17 global goals for sustainable development. The second goal of this community was to end hunger. Plant seeds are an essential input in agriculture; however, during their developmental stages, seeds can be negatively affected by environmental stresses, which can adversely affect seed vigor, seedling establishment, and crop production. Seeds resistant to high salinity, droughts and climate change can result in higher crop yield. The major findings suggested in this review refer nanopriming as an emerging seed technology towards sustainable food amid growing demand with the increasing world population. This novel growing technology could influence the crop yield and ensure the quality and safety of seeds, in a sustainable way. When nanoprimed seeds are germinated, they undergo a series of synergistic events as a result of enhanced metabolism: modulating biochemical signaling pathways, trigger hormone secretion, reduce reactive oxygen species leading to improved disease resistance. In addition to providing an overview of the challenges and limitations of seed nanopriming technology, this review also describes some of the emerging nano-seed priming methods for sustainable agriculture, and other technological developments using cold plasma technology and machine learning.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | | | | | - Akanksha Shelar
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India;
| | - Manohar Chaskar
- Ramkrishna More Arts, Commerce and Science College, Pune 411044, India;
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
16
|
Han G, Mannaa M, Kim N, Jeon HW, Jung H, Lee HH, Kim J, Park J, Park AR, Kim JC, Seo YS. Response of Pine Rhizosphere Microbiota to Foliar Treatment with Resistance-Inducing Bacteria against Pine Wilt Disease. Microorganisms 2021; 9:microorganisms9040688. [PMID: 33810444 PMCID: PMC8065550 DOI: 10.3390/microorganisms9040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, two bacterial strains, IRP7 and IRP8, were selected to induce resistance against pine wilt disease (PWD). Foliar application with these strains to nematode-inoculated pine seedlings significantly reduced PWD severity. The effect of nematode inoculation and bacterial treatment on the rhizosphere bacterial community was investigated. The results indicated that the rhizosphere of nematode-inoculated seedlings contained a lower relative abundance of beneficial microbes such as Paraburkholderia, Bradyrhizobium, Rhizobacter, Lysobacter, and Caballeronia. Bacterial treatment resulted in significant changes in the microbes that were represented in relatively low relative abundance. Treatment with IRP7 resulted in an increase in the relative abundance of Nitrospirillum, Bacillus, and Luteibacter, which might be useful for protection against infection. Treatment with IRP8 resulted in an increase in the relative abundance of obligate bacterial predators of the Bdellovibrio genus that were previously shown to control several bacterial phytopathogens and may have a role in the management of nematode-carried bacteria. The selected bacteria were identified as Pseudomonas koreensis IRP7 and Lysobacter enzymogenes IRP8 and are suggested as a potential treatment for induced resistance against PWD. To our knowledge, this is the first report on the effect of foliar treatment with resistance-inducing bacteria on the rhizosphere microbiota.
Collapse
Affiliation(s)
- Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
| | - Hee Won Jeon
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Korea;
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Ae Ran Park
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (N.K.); (H.J.); (H.-H.L.); (J.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| |
Collapse
|
17
|
Nanotechnology Potential in Seed Priming for Sustainable Agriculture. NANOMATERIALS 2021; 11:nano11020267. [PMID: 33498531 PMCID: PMC7909549 DOI: 10.3390/nano11020267] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/09/2023]
Abstract
Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.
Collapse
|
18
|
Effect of Colloidal Metal Nanoparticles on Biomass, Polysaccharides, Flavonoids, and Melanin Accumulation in Medicinal Mushroom Inonotus obliquus (Ach.:Pers.) Pilát. Appl Biochem Biotechnol 2020; 191:1315-1325. [PMID: 32096061 DOI: 10.1007/s12010-020-03281-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
The article explores effect of colloidal nanoparticles (NPs) of Ag, Fe, and Mg metals on the growth activity of the medicinal mushroom Inonotus obliquus (Ach.:Pers.) Pilát and the synthesis of biologically active compounds (polysaccharides, flavonoids, and melanins). It was found that all the studied NPs stimulated growth activity. AgNPs inhibited polysaccharide and flavonoid synthesis, and stimulated melanin synthesis by 140%. Using MgNPs was effective to increase the level of accumulation of endopolysaccharides, flavonoids, and melanin pigments. FeNPs significantly increased the yield of endopolysaccharides. This effect should be used for biosynthesis stimulation for polysaccharides, flavonoids, and melanins obtaining from I. obliquus cultivated in vitro. The results demonstrate the potential of the use of metal colloidal solutions NPs for the development of environmentally friendly and effective biotechnology to produce biologically active compounds by medicinal macromycete I. obliquus.
Collapse
|
19
|
Dello Jacovo E, Valentine TA, Maluk M, Toorop P, Lopez Del Egido L, Frachon N, Kenicer G, Park L, Goff M, Ferro VA, Bonomi C, James EK, Iannetta PPM. Towards a characterisation of the wild legume bitter vetch (Lathyrus linifolius L. (Reichard) Bässler): heteromorphic seed germination, root nodule structure and N-fixing rhizobial symbionts. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:523-532. [PMID: 30120872 DOI: 10.1111/plb.12902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Lathyrus linifolius L. (Reichard) Bässler (Fabiaceae, bitter vetch) is a nitrogen (N) fixing species. A coloniser of low nutrient (N) soils, it supports biodiversity such as key moth and butterfly species, and its roots are known for their organoleptic and claimed therapeutic properties. Thus, the species has high potential for restoration, conservation, novel cropping and as a model species. The last because of its genetic synteny with important pulse crops. However, regeneration and functional attributes of L. linifolius remain to be characterised. Seeds of L. linifolius were characterised using physical, colorimetric and chemical data. Ultrastructural and functional characterisation of the N-fixing root nodules included immunolabelling with nifH protein antibodies (recognising the N-fixing enzyme, nitrogenase). Endosymbiotic bacteria were isolated from root nodules and characterised phylogenetically using 16S rRNA, nodA and nodD gene sequences. L. linifolius yielded heteromorphic seed of distinct colour classes: green and brown. Seed morphotypes had similar C:N ratios and were equally germinable (ca. 90%) after scarification at differing optimal temperatures (16 and 20 °C). Brown seeds were larger and comprised a larger proportion of the seed batch (69%). L. linifolius root nodules appeared indeterminate in structure, effective (capable of fixing atmospheric N) and having strains very similar to Rhizobium leguminosarum biovar viciae. The findings and rhizobial isolates have potential application for ecological restoration and horticulture using native seeds. Also, the data and rhizobial resources have potential applications in comparative and functional studies with related and socio-economically important crops such as Pisum, Lens and Vicia.
Collapse
Affiliation(s)
- E Dello Jacovo
- The James Hutton Institute, Scotland, UK
- University of Pavia, Pavia, Italy
| | | | - M Maluk
- The James Hutton Institute, Scotland, UK
| | - P Toorop
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens (Kew), West Sussex, UK
| | - L Lopez Del Egido
- The James Hutton Institute, Scotland, UK
- University of Pavia, Pavia, Italy
- Seed Physiology, Syngenta Seeds B.V., Enkhuizen, The Netherlands
| | | | | | - L Park
- Royal Botanic Garden, Edinburgh, UK
| | - M Goff
- Bitter-Vetch Ltd., Wingate, Co Durham, UK
| | | | - C Bonomi
- Museo delle Scienze, Trento, Italy
| | - E K James
- The James Hutton Institute, Scotland, UK
| | | |
Collapse
|
20
|
Wille L, Messmer MM, Studer B, Hohmann P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. PLANT, CELL & ENVIRONMENT 2019; 42:20-40. [PMID: 29645277 DOI: 10.1111/pce.13214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant-microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant-associated microbes play a key role in plant health, a systematic picture of how and to what extent plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant-microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarizes (a) the current knowledge of resistance against soil-borne pathogens in grain legumes, (b) evidence for genetic variation for rhizosphere-related traits, (c) the role of root exudation in microbe-mediated disease resistance and elaborates (d) how these traits can be incorporated in resistance breeding programmes.
Collapse
Affiliation(s)
- Lukas Wille
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| |
Collapse
|