1
|
Shahbaz M, Seelan JSS, Abasi F, Fatima N, Mehak A, Raza MU, Raja NI, Proćków J. Nanotechnology for controlling mango malformation: a promising approach. J Biomol Struct Dyn 2025; 43:2610-2630. [PMID: 38344816 DOI: 10.1080/07391102.2024.2312449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/30/2023] [Indexed: 04/05/2024]
Abstract
Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Fozia Abasi
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asma Mehak
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Umair Raza
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Masadeh MM, Bany-Ali NM, Khanfar MS, Alzoubi KH, Masadeh MM, Al Momany EM. Synergistic Antibacterial Effect of ZnO Nanoparticles and Antibiotics against Multidrug-resistant Biofilm Bacteria. Curr Drug Deliv 2025; 22:92-106. [PMID: 38231065 DOI: 10.2174/0115672018279213240110045557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The misuse of antibiotics leads to a global increase in antibiotic resistance. Therefore, it is imperative to search for alternative compounds to conventional antibiotics. ZnO nanoparticles (Zn NP) are one of these alternatives because they are an effective option to overcome biofilm bacterial cells and a novel way to overcome multidrug resistance in bacteria. The current research study aims to characterize the efficacy of ZnO nanoparticles alone and in combination with other antibacterial drugs against bacterial biofilms. METHODS ZnO NPs were prepared by co-precipitation method, and their anti-biofilm and antibacterial activities alone or combined with four types of broad-spectrum antibacterial (Norfloxacin, Colistin, Doxycycline, and Ampicillin) were evaluated against E. coli and S. aureus bacterial strains. Finally, the cytotoxicity and the hemolytic activity were evaluated. RESULTS ZnO NPs were prepared, and results showed that their size was around 10 nm with a spherical shape and a zeta potential of -21.9. In addition, ZnO NPs were found to have a strong antibacterial effect against Gram-positive and Gram-negative microorganisms, with a minimum inhibitory concentration (MIC) of 62.5 and 125 μg/mL, respectively. Additionally, they could eradicate biofilmforming microorganisms at a concentration of 125 μg/m. ZnO NPs were found to be non-toxic to erythrocyte cells. Still, some toxicity was observed for Vero cells at effective concentration ranges needed to inhibit bacterial growth and eradicate biofilm-forming organisms. When combined with different antibacterial, ZnO NP demonstrated synergistic and additive effects with colistin, and the MIC and MBEC of the combination decreased significantly to 0.976 μg/mL against planktonic and biofilm strains of MDR Gram-positive bacteria, resulting in significantly reduced toxicity. CONCLUSION The findings of this study encourage the development of alternative therapies with high efficacy and low toxicity. ZnO nanoparticles have demonstrated promising results in overcoming multi-drug resistant bacteria and biofilms, and their combination with colistin has shown a significant reduction in toxicity. Further studies are needed to investigate the potential of ZnO nanoparticles as a viable alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Noor M Bany-Ali
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| |
Collapse
|
3
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Guo Z, Liu H, Wang W, Hu Z, Li X, Chen H, Wang K, Li Z, Yuan C, Ge X. Recent Advances in Antibacterial Strategies Based on TiO 2 Biomimetic Micro/Nano-Structured Surfaces Fabricated Using the Hydrothermal Method. Biomimetics (Basel) 2024; 9:656. [PMID: 39590228 PMCID: PMC11591971 DOI: 10.3390/biomimetics9110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Ti and its alloys, widely utilized in orthopedic and dental implants, inherently lack antibacterial properties, posing significant infection risks, especially in the context of growing antibiotic resistance. This review critically evaluates non-antibiotic antibacterial strategies, with a particular focus on surface modifications and micro/nano-structured surfaces. Micro/nano-structured surfaces, inspired by natural topographies, utilize physical mechanisms to eradicate bacteria. Despite their potential, the antibacterial efficacy of these surfaces remains insufficient for clinical application. Titanium dioxide (TiO2), known for its excellent photocatalytic antibacterial activity and biocompatibility, is emerging as an ideal candidate for enhancing micro/nano-structured surfaces. By combining the photocatalytic antibacterial effects of TiO2 with the mechanical bactericidal properties of micro/nano-structured surfaces, superior antibacterial performance can be achieved. The hydrothermal method is frequently employed to fabricate TiO2 micro/nano-structured surfaces, and this area of research continues to thrive, particularly in the development of antibacterial strategies. With demonstrated efficacy, combined antibacterial strategies based on TiO2 micro/nano-structured surfaces have become a prominent focus in current research. Consequently, the integration of physical stimulation and chemical release mechanisms may represent the future direction for TiO2 micro/nano-structured surfaces. This review aims to advance the study of TiO2 micro/nano-structured surfaces in antibacterial applications and to inspire more effective non-antibiotic antibacterial solutions.
Collapse
Affiliation(s)
- Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofang Li
- College of Foreign Languages, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
5
|
Batool A, Azizullah A, Ullah K, Shad S, Khan FU, Seleiman MF, Aziz T, Zeb U. Green synthesis of Zn-doped TIO 2 nanoparticles from Zanthoxylum armatum. BMC PLANT BIOLOGY 2024; 24:820. [PMID: 39215226 PMCID: PMC11365237 DOI: 10.1186/s12870-024-05525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Green synthesis is an easy, safe, and environmentally beneficial nanoparticle creation method. It is a great challenge to simultaneously improve the capping and stabilizing agent carrier separation efficiency of photocatalysts. Herein, Zn-doped Titanium dioxide (TiO2) nanoparticles with high exposure of 360 nm using a UV/visible spectrophotometer were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. We have optimized the different parameters like concentration, time, and temperature. The peak for TiO2 is located at 600 cm-1 in FTIR. A scanning electron microscope revealed that TiO2 has a definite shape and morphology. The synthesized Zn-doped TiO2NPs were applied against various pathogens to study their anti-bacterial potentials. The anti-bacterial activity of Zn-doped TiO2 has shown robust against two gram-ve bacteria (Salmonella and Escherichia coli) and two gram + ve bacteria (Staphylococcus epidermidis and Staphylococcus aureus). Synthesized Zn-doped TiO2 has demonstrated strong antifungal efficacy against a variety of fungi. Moreover, doping TiO2 nanoparticles with metal oxide greatly improves their characteristics; as a result, doped metal oxide nanoparticles perform better than doped and un-doped metal oxide nanoparticles. Compared to pure TiO2, Zn-doped TiO2 nanoparticles exhibit considerable applications including antimicrobial treatment and water purification.
Collapse
Affiliation(s)
- Amina Batool
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Azizullah Azizullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Salma Shad
- Department of Chemistry, The University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology Bannu, Khyber Pakhtunkhwa, 28100, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| | - Umar Zeb
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Vargas-Lizarazo AY, Ali MA, Mazumder NA, Kohli GM, Zaborska M, Sons T, Garnett M, Senanayake IM, Goodson BM, Vargas-Muñiz JM, Pond A, Jensik PJ, Olson ME, Hamilton-Brehm SD, Kohli P. Electrically polarized nanoscale surfaces generate reactive oxygenated and chlorinated species for deactivation of microorganisms. SCIENCE ADVANCES 2024; 10:eado5555. [PMID: 39093965 PMCID: PMC11636998 DOI: 10.1126/sciadv.ado5555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.
Collapse
Affiliation(s)
- Annie Y. Vargas-Lizarazo
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - M. Aswad Ali
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Nehal A. Mazumder
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Miroslava Zaborska
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Tyler Sons
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michelle Garnett
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ishani M. Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Boyd M. Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - José M. Vargas-Muñiz
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amber Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Michael E. Olson
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | | | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Integrated Microscopy and Graphics Expertise (IMAGE) Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Hassan Abd El-Ghany SS, Azmy AF, Osama EL-Gendy A, Abd El-Baky RM, Mustafa A, Abourehab MAS, El‐Beeh ME, Ibrahem RA. Antimicrobial and Antibiofilm Activity of Monolaurin against Methicillin-Resistant Staphylococcus aureus Isolated from Wound Infections. Int J Microbiol 2024; 2024:7518368. [PMID: 39129910 PMCID: PMC11315973 DOI: 10.1155/2024/7518368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major pathogens associated with life-threatening infections, showing resistance to various antibiotics. This study aimed to assess the influence of monolaurin on biofilm-forming MRSA. Methods The agar dilution method determined the minimum inhibitory concentration (MIC) of monolaurin against MRSA isolates and explored its impact on the resistance profile of selected antibiotics. The assessment of combined therapy involving monolaurin and antibiotics was conducted using fractional inhibitory concentration (FIC). The tissue culture plate strategy appraised monolaurin's antibiofilm activity and its inhibitory concentration (IC50), with assessment via scanning electron microscopy. Reverse transcription polymerase chain reaction (RT-PCR) discerned a monolaurin effect on the expression of the icaD gene. Results Monolaurin exhibited MIC values ranging from 500 to 2000 μg/mL. FIC index showed a synergistic effect of monolaurin with β-lactam antibiotics ranging from 0.0039 to 0.25 (p < 0.001). Among the 103 investigated MRSA isolates, 44 (44.7%) displayed moderate biofilm formation, while 59 (55.3%) were strong biofilm producers. Antibiofilm activity demonstrated concentration dependence, confirming monolaurin's capacity to inhibit biofilm formation and exhibited strong eradicating effects against preformed MRSA biofilms with IC50 values of 203.6 μg/mL and 379.3 μg/mL, respectively. Scanning electron microscope analysis revealed reduced cell attachments and diminished biofilm formation compared to the control. The expression levels of the icaD gene were remarkably reduced at monolaurin concentrations of 250 and 500 μg/mL. Conclusion Monolaurin had significant inhibitory effects on MRSA pre-existing biofilms as well as biofilm development. So, it can be employed in the treatment of severe infections, particularly those associated with biofilm formation including catheter-associated infections.
Collapse
Affiliation(s)
- Shimaa Salah Hassan Abd El-Ghany
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
- Department of Microbiology and ImmunologyFaculty of PharmacyDeraya University, Minia 11566, Egypt
| | - Ahmed Farag Azmy
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Osama EL-Gendy
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
| | - Rehab Mahmoud Abd El-Baky
- Department of Microbiology and ImmunologyFaculty of PharmacyDeraya University, Minia 11566, Egypt
- Department of Microbiology and ImmunologyFaculty of PharmacyMinia University, Minia 61519, Egypt
| | - Ahmad Mustafa
- Faculty of EngineeringOctober University for Modern Science and Arts (MSA), Giza, Egypt
| | - Mohammed A. S. Abourehab
- Department of PharmaceuticsFaculty of PharmacyMinia University, Minia 61519, Egypt
- Department of PharmaceuticsFaculty of PharmacyUmm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed E. El‐Beeh
- Biology DepartmentAl‐Jumum University CollegeUmm Al‐Qura University, Makkah 21955, Saudi Arabia
| | - Reham Ali Ibrahem
- Department of Microbiology and ImmunologyFaculty of PharmacyMinia University, Minia 61519, Egypt
| |
Collapse
|
8
|
Hall RJ, Snaith AE, Element SJ, Moran RA, Smith H, Cummins EA, Bottery MJ, Chowdhury KF, Sareen D, Ahmad I, Blair JMA, Carter LJ, McNally A. Non-antibiotic pharmaceuticals are toxic against Escherichia coli with no evolution of cross-resistance to antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:11. [PMID: 39843932 PMCID: PMC11721113 DOI: 10.1038/s44259-024-00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent released by manufacturing facilities. In addition to antibiotics, pharmaceutical plants also produce non-antibiotic pharmaceuticals, both the active ingredients and other components of the formulations. The effect of these on the surrounding microbial communities is less clear. We aimed to assess whether non-antibiotic pharmaceuticals and other compounds produced by pharmaceutical plants have inherent toxicity, and whether long-term exposure might result in significant genetic changes or select for cross-resistance to antibiotics. To this end, we screened four non-antibiotic pharmaceuticals (acetaminophen, ibuprofen, propranolol, metformin) and titanium dioxide for toxicity against Escherichia coli K-12 MG1655 and conducted a 30 day selection experiment to assess the effect of long-term exposure. All compounds reduced the maximum optical density reached by E. coli at a range of concentrations including one of environmental relevance, with transcriptome analysis identifying upregulated genes related to stress response and multidrug efflux in response ibuprofen treatment. The compounds did not select for significant genetic changes following a 30 day exposure, and no evidence of selection for cross-resistance to antibiotics was observed for population evolved in the presence of ibuprofen in spite of the differential gene expression after exposure to this compound. This work suggests that these compounds, at environmental concentrations, do not select for cross-resistance to antibiotics in E. coli.
Collapse
Affiliation(s)
- Rebecca J Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah J Element
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah Smith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael J Bottery
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, M13 9PT, UK
| | | | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Uttar Pradesh, 202001, India
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura J Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Pandey P, Pradhan S, Meher K, Lopus M, Vavilala SL. Exploring the efficacy of tryptone-stabilized silver nanoparticles against respiratory tract infection-causing bacteria: a study on planktonic and biofilm forms. Biomed Mater 2024; 19:025047. [PMID: 38364289 DOI: 10.1088/1748-605x/ad2a40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 μg ml-1and 2.7 μg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sristi Pradhan
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| |
Collapse
|
10
|
Terfi S, Djerrad Z, Krimat S, Sadi F. Phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of Lavandula dentata L. grown under different levels of heavy metals stress condition. Drug Chem Toxicol 2023; 46:864-878. [PMID: 35892144 DOI: 10.1080/01480545.2022.2104868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
In order to know if the heavy metals stress condition is boon or bane for the plants growth, Lavandula dentata species was planted in pots under different levels of heavy metals stress condition and the phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of their leaf ethanolic extracts toward this stress condition were investigated compared to the control samples. Our findings showed significant differences in heavy metals bioaccumulation, photosynthetic pigments and total phenolic/flavonoids contents among L. dentata leafs ethanolic extracts, grown under different levels of heavy metals stress condition. The L. dentata leafs extracts, grown under Zn and Cu stress condition, showed the highest antioxidant and antimicrobial activities than those grown under Cd and Pb stress condition. Comparatively, the L. dentata leafs extracts, grown under Zn stress condition, showed higher antioxidant activity, and those, grown under Cu stress condition, showed higher antimicrobial activity. The highest cytotoxicity was showed by L. dentata leaf extracts, grown under Cd and Pb stress condition, which lead to conclude that these extracts could be served as a novel scaffold in search for new drugs against cancer. In conclusion, the highlighted variability reflects the high impact of heavy metals stress condition on phytochemical composition and consequently on the biological activities of medicinal plants. Such impact led to conclude that we should select medicinal plants extracts to be investigated carefully depending on this stress condition, in order to isolate the bioactive components or to have the best quality of extracts in terms of biological activities.
Collapse
Affiliation(s)
- Souhila Terfi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Zineb Djerrad
- Laboratory of Vegetal Ecology and Environment, Department of Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Soumeya Krimat
- Laboratory of Bioactive Products and Biomass Valorization Research, ENS Kouba, Algiers, Algeria
| | - Fatma Sadi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| |
Collapse
|
11
|
Pangprasit N, Thammawong Y, Kulsirorat A, Chuammitri P, Kongkaew A, Intanon M, Suriyasathaporn W, Pikulkaew S, Chaisri W. Titanium Dioxide Nano-Formulation: Characterization, Antimicrobial Activity, and Wound Healing in Animals. Animals (Basel) 2023; 13:2688. [PMID: 37684952 PMCID: PMC10486583 DOI: 10.3390/ani13172688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of metal oxide nanoparticles as an alternative antimicrobial agent has gained attention due to the increasing problem of antimicrobial resistance. Understanding its properties and potential benefits can contribute to the development of more effective and sustainable treatments in veterinary medicine. The aim of this study was to characterize TiO2-NP formulations and evaluate their antibacterial and wound healing abilities. The diameters and zeta potentials were determined using the Zetasizer in conjunction with dynamic light scattering. The agar-well diffusion method, time-kill kinetic assay and crystal violet assay were used to evaluate their antimicrobial activities. Wound healing assays were conducted both in vitro and in vivo. The study demonstrated that TiO2-NP formulations exhibit significant antimicrobial properties against various bacterial strains such as S. aureus and E. coli. No measurable E. coli growth was observed within a 15-min period following exposure to TiO2-NP formulations. The TiO2-NP formation can improve wound healing by enhancing cell migration and collagen formation in both in vitro and in vivo conditions. In summary, our study suggests that TiO2-NP has the potential for use as an antimicrobial agent for animal wound treatment due to its ability to suppress bacterial growth and biofilm formation, as well as to enhance wound healing.
Collapse
Affiliation(s)
- Noppason Pangprasit
- PhD’s Degree Program, Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
| | - Yada Thammawong
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
| | - Alongkorn Kulsirorat
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
| | - Phongsakorn Chuammitri
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (M.I.)
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Montira Intanon
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (M.I.)
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Surachai Pikulkaew
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wasana Chaisri
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (Y.T.); (A.K.); (W.S.); (S.P.)
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
12
|
Adesina MO, Block I, Günter C, Unuabonah EI, Taubert A. Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO 2 Composite. ACS OMEGA 2023; 8:21594-21604. [PMID: 37360480 PMCID: PMC10286278 DOI: 10.1021/acsomega.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
New TiO2 hybrid composites were prepared from kaolin clay, predried and carbonized biomass, and titanium tetraisopropoxide and explored for tetracycline (TET) and bisphenol A (BPA) removal from water. Overall, the removal rate is 84% for TET and 51% for BPA. The maximum adsorption capacities (qm) are 30 and 23 mg/g for TET and BPA, respectively. These capacities are far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change the adsorption capacity of the adsorbent. pH changes only slightly change BPA adsorption, while a pH > 7 significantly reduces the adsorption of TET on the material. The Brouers-Sotolongo fractal model best describes the kinetic data for both TET and BPA adsorption, predicting that the adsorption process occurs via a complex mechanism involving various forces of attraction. Temkin and Freundlich isotherms, which best fit the equilibrium adsorption data for TET and BPA, respectively, suggest that adsorption sites are heterogeneous in nature. Overall, the composite materials are much more effective for TET removal from aqueous solution than for BPA. This phenomenon is assigned to a difference in the TET/adsorbent interactions vs the BPA/adsorbent interactions: the decisive factor appears to be favorable electrostatic interactions for TET yielding a more effective TET removal.
Collapse
Affiliation(s)
- Morenike O. Adesina
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
- Lead
City University, Ibadan 200255, Oyo State, Nigeria
| | - Inga Block
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Christina Günter
- Institute
of Geosciences, University of Potsdam, D-14476 Potsdam, Germany
| | - Emmanuel I. Unuabonah
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
13
|
Ailincai D, Turin Moleavin IA, Sarghi A, Fifere A, Dumbrava O, Pinteala M, Balan GG, Rosca I. New Hydrogels Nanocomposites Based on Chitosan, 2-Formylphenylboronic Acid, and ZnO Nanoparticles as Promising Disinfectants for Duodenoscopes Reprocessing. Polymers (Basel) 2023; 15:2669. [PMID: 37376315 DOI: 10.3390/polym15122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
New hydrogels nanocomposites, based on iminoboronate hydrogels and ZnO nanoparticles (ZnO-NPs), were obtained and characterised in order to develop a new class of disinfectants able to fight the nosocomial infections produced by duodenoscopes investigation procedures. The formation of the imine linkages between chitosan and the aldehyde was demonstrated using NMR and FTIR spectroscopy, while the supramolecular architecture of the developed systems was evaluated via wide-angle X-ray diffraction and polarised optical microscopy. The morphological characterisation of the systems via scanning electron microscopy revealed the highly porous structure of the materials, in which no ZnO agglomeration could be observed, indicating the very fine and homogenous encapsulation of the nanoparticles into the hydrogels. The newly synthetised hydrogels nanocomposites was proven to have synergistic antimicrobial properties, being very efficient as disinfectants against reference strains as: Enterococcus faecalis, Klebsiella pneumoniae, and Candida albicans.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | | | - Alexandra Sarghi
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Adrian Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Oana Dumbrava
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gheorghe G Balan
- Faculty of Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
14
|
Elzahaby DA, Farrag HA, Haikal RR, Alkordi MH, Abdeltawab NF, Ramadan MA. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms 2023; 11:microorganisms11040913. [PMID: 37110336 PMCID: PMC10142706 DOI: 10.3390/microorganisms11040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings.
Collapse
|
15
|
Elimination of pathogenic multidrug resistant isolates through different metal oxide nanoparticles synthesized from organic plant and microbial sources. Microb Pathog 2023; 178:106055. [PMID: 36914056 DOI: 10.1016/j.micpath.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
Beta-hemolytic multidrug-resistant bacteria (MDR) are highly regarded as a major public health risk because they are resistant to at least 10 antibiotics in different groups with different mechanisms of action. The present study shows that among 98 bacterial isolates collected from laboratory fecal samples: 15 were beta-hemolytic and tested against 10 different antibiotics. 15 beta-hemolytic; 5 isolates exhibit strong multidrug resistance traits. Isolate 5 Escherichia coli (E. coli), Isolate 7 (E. coli), Isolate 21 (Enterococcus faecium), Isolate 27 (Staphylococcus sciuri), and isolate 36 (E. coli) are largely untested antibiotics. Substances (clear zone >10 mm) Its growth sensitivity to different types of nanoparticles was further evaluated by the agar well diffusion method. AgO, TiO2, ZnO, and Fe3O4 nanoparticles have been separately synthesized by microbial and plant-mediated biosynthesis. By evaluating the antibacterial activity of different nanoparticle types against selected MDR isolates, the results showed that global MDR bacterial growth was inhibited differently depending on the nanoparticle type. TiO2 was the most potent antibacterial nanoparticle type, followed by AgO, while Fe3O4 showed the least efficacy against selected isolates. The MICs of microbially synthesized AgO and TiO2 nanoparticles were 3 μg (67.2 μg/mL) and 9 μg (180 μg/mL) for isolates 5 and 27, respectively, indicating that biosynthetic nanoparticles via pomegranate of antibacterial activity at a higher MIC than microbial-mediated ones, it recorded (300 and 375 μg/ml, respectively) of AgO and TiO2 nanoparticles for isolates 5 and 27. Biosynthesized nanoparticles were examined by TEM, the average sizes of microbial AgO and TiO2 nanoparticles were 30 nm and 70 nm, respectively, and the average sizes of plant mediated AgO and TiO2 NPs were 52 nm and 82 nm respectively. Two most potent extensive MDR isolates (5 and 27) were identified as E. coli and Staphylococcus sciuri by 16s rDNA technology, and the sequencing results of the isolates were deposited with NCBI GenBank under accession numbers ON739202 and ON739204, respectively.
Collapse
|
16
|
Marzhoseyni Z, Rashki S, Nazari-Alam A. Evaluation of the inhibitory effects of TiO 2 nanoparticle and Ganoderma lucidum extract against biofilm-producing bacteria isolated from clinical samples. Arch Microbiol 2023; 205:59. [PMID: 36622472 DOI: 10.1007/s00203-023-03403-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
The emergence of multidrug-resistant pathogens leads to treatment failure. So, the need for new antibacterial drugs is urgent. We evaluated the antibacterial and antibiofilm effects of titanium dioxide (TiO2) nanoparticles (NPs) and Ganoderma extract against biofilm-producing Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) by microbroth dilution and crystal violet assays. The combined effect of these compounds was studied using the checkerboard method. The OD260 was measured to assess the destruction of the membrane permeability. The expression of biofilm-related genes (iacA and algD) was investigated by real-time PCR. MRSA isolate was more susceptible to test compounds. The OD260 increased and algD gene was down-regulated after treatment with TiO2 NPs and a combination of TiO2 NPs and Ganoderma extract. iacA gene did not affect by test compounds. Overall, these findings revealed that nanoparticles and natural substances might represent the potential candidates to develop promising antibacterial agents, especially against Gram-positive bacteria.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somaye Rashki
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nazari-Alam
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic Strategies against Biofilm Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010172. [PMID: 36676121 PMCID: PMC9866932 DOI: 10.3390/life13010172] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
A biofilm is an aggregation of surface-associated microbial cells that is confined in an extracellular polymeric substance (EPS) matrix. Infections caused by microbes that form biofilms are linked to a variety of animals, including insects and humans. Antibiotics and other antimicrobials can be used to remove or eradicate biofilms in order to treat infections. However, due to biofilm resistance to antibiotics and antimicrobials, clinical observations and experimental research clearly demonstrates that antibiotic and antimicrobial therapies alone are frequently insufficient to completely eradicate biofilm infections. Therefore, it becomes crucial and urgent for clinicians to properly treat biofilm infections with currently available antimicrobials and analyze the results. Numerous biofilm-fighting strategies have been developed as a result of advancements in nanoparticle synthesis with an emphasis on metal oxide np. This review focuses on several therapeutic strategies that are currently being used and also those that could be developed in the future. These strategies aim to address important structural and functional aspects of microbial biofilms as well as biofilms' mechanisms for drug resistance, including the EPS matrix, quorum sensing (QS), and dormant cell targeting. The NPs have demonstrated significant efficacy against bacterial biofilms in a variety of bacterial species. To overcome resistance, treatments such as nanotechnology, quorum sensing, and photodynamic therapy could be used.
Collapse
Affiliation(s)
- Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Upadhye
- Department of Microbiology, Parul Institute of Applied Science (PIAS), Center of Research for Development (CR4D), Parul University, Vadodara 391760, Gujarat, India
| | - Suresh C. Singh
- Pathkits Healthcare Pvt. Ltd., Gurugram 122001, Haryana, India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Möhrendorf, Germany
- Correspondence: ; Tel.: +49-913-148-730
| |
Collapse
|
18
|
Śmigiel J, Piszczek P, Wrzeszcz G, Jędrzejewski T, Golińska P, Radtke A. The Composites of PCL and Tetranuclear Titanium(IV)-Oxo Complex with Acetylsalicylate Ligands-Assessment of Their Biocompatibility and Antimicrobial Activity with the Correlation to EPR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 16:297. [PMID: 36614635 PMCID: PMC9822129 DOI: 10.3390/ma16010297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.
Collapse
Affiliation(s)
- Julia Śmigiel
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
19
|
Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, Afifi M, AL-Farga A, Goh KW, Ming LC. In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules 2022; 27:8309. [PMID: 36500402 PMCID: PMC9740921 DOI: 10.3390/molecules27238309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
Collapse
Affiliation(s)
- Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdulkader Shaikh Omar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
| | - Mohamed Afifi
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| |
Collapse
|
20
|
Mostafa Abdalhamed A, Zeedan GSG, Ahmed Arafa A, Shafeek Ibrahim E, Sedky D, Abdel nabey Hafez A. Detection of Methicillin-Resistant Staphylococcus aureus in Clinical and Subclinical Mastitis in Ruminants and Studying the Effect of Novel Green Synthetized Nanoparticles as One of the Alternative Treatments. Vet Med Int 2022; 2022:6309984. [PMID: 36457891 PMCID: PMC9708356 DOI: 10.1155/2022/6309984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/26/2023] Open
Abstract
Mastitis is an important disease in dairy animals worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of clinical and subclinical intramammary infections. In the current study, we isolated bacteria from 150 mastitic milk samples. Multiplex PCR was used to detect the methicillin resistance genes in S. aureus to detect the occurrence of MRSA isolates. Green synthesized titanium dioxide nanoparticles (TiO2 NPs) using aqueous leaf extracts of Artemisia herb Alba (A. herb Alba TiO2 NPs). The antibacterial efficacy of these nanoparticles was evaluated (in vitro and in vivo) against collected MRSA isolates using the disc diffusion method and SPF rats. Out of 150 mastitic milk samples, the frequency of S. aureus was 38 (25.3%), that of E. coli was 45 (30%), that of Klebsiella spp. Was 7 (4.7%), and that of Streptococcus spp. Was 11 (7.3%). Among 38 positive isolates of S. aureus, MRSA was 16 (42.1%) by antimicrobial sensitivity testing (AST) and 14 (38.8%) by multiplex PCR. The MRSA isolates were shown to have 100% resistance to penicillin and methicillin, 87.5% resistance to gentamicin, 50% resistance to cefoxitin and amoxicillin, and 75% resistance to ampicillin and ampicillin/sublactam with low resistance against erythromycin, ciprofloxacin, tetracycline, and levofloxacin by AST, respectively. A. herb Alba TiO2 NP formation was observed by changing the colour from white to dark green. The UV spectrum revealed absorbance peaks at 240-250 nm, and their sizes ranged from 42-66 nm and 11 to 45 nm by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A. herb Alba TiO2 NP suspensions were evaluated against MRSA, with the highest zone of inhibition (43 ± 0.45 mm) at a concentration of 40 μg/ml. Hematological parameters and histological examination after oral administration of 20 mg/kg of A. herb Alba TiO2 NPs indicated that A. herb Alba TiO2 NPs can be used as a new antimicrobial against resistant bacteria (MRSA) with consideration of the dose and methods of synthesis of plant-based compounds.
Collapse
Affiliation(s)
| | | | - Amany Ahmed Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Eman Shafeek Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Doaa Sedky
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Amani Abdel nabey Hafez
- Department of Animal Health, Division of Animal and Poultry Production, Desert Research Center, Matariya, Cairo, P. O. Box 11562, Egypt
| |
Collapse
|
21
|
Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Matyjasik W, Długosz O, Lis K, Banach M. Nanohybrids of oxides nanoparticles-chitosan and their antimicrobial properties. NANOTECHNOLOGY 2022; 33:435701. [PMID: 35820406 DOI: 10.1088/1361-6528/ac805e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing international problem with pathogens acquiring resistance to antibiotics is the reason for the search for bactericidal substances against which microorganisms cannot become resistant. The aim of this study was to synthesize inorganic-organic nanohybrids and obtain materials with antimicrobial effects. Chitosan (CS) was deposited on nanocomposite carriers such as calcium oxide with titanium dioxide (CaO-TiO2), magnesium oxide with titanium dioxide (MgO-TiO2) and copper(II) oxide with titanium dioxide (CuO-TiO2). The efficiency of the process was examined at varying concentrations of chitosan and temperature. The parameters for nanohybrids synthesis were selected based on the highest amount of nano-chitosan deposited on the nanohybrids-for each carrier, the process conditions were as follows: chitosan solution at 5 g l-1and 20 °C. The materials were obtained using these parameters and were used for microbiological tests againstE. coliATCC 25922,S. aureusATCC 25923 andC. albicansATCC 10231. The growth inhibitory activity of the obtained materials was qualitatively defined. These results suggest that the synthesized nanohybrids and nanocomposites exhibit biostatic action. The material with the broadest effect was the CuO-TiO2-CS hybrid, which had biostatic properties against all tested strains at a minimal concentration of 1250μg ml-1. Further research is required to find eco-friendly, non-toxic, and more effective antimicrobials with a broad action to prevent the acquisition of resistance.
Collapse
Affiliation(s)
- Wiktoria Matyjasik
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Olga Długosz
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Kinga Lis
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| |
Collapse
|
23
|
Rodríguez-Barajas N, Becerra-Solano L, Gutiérrez-Mercado YK, Macías-Carballo M, M. Gómez C, Pérez-Larios A. Study of the Interaction of Ti-Zn as a Mixed Oxide at Different pH Values Synthesized by the Sol-Gel Method and Its Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1948. [PMID: 35745287 PMCID: PMC9229482 DOI: 10.3390/nano12121948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
TiO2, ZnO, and their combination (TiO2−ZnO) at different molar ratios and pH values (Ti−Zn A and B 3:1, 1:1, and 1:3) via the sol−gel method were characterized by SEM, XRD, UV-Vis, and FT-IR. Moreover, antibacterial tests of the nanoparticles were conducted against Escherichia coli (E. coli), Salmonella paratyphi (S. paratyphi), Staphylococcus aureus (S. aureus), and Listeria monocytogenes (L. monocytogenes). The indirect bandgap of the Ti−Zn binary oxide synthesized in the basic process at molar ratios of 3:1, 1:1, and 1:3 exhibited a higher eV (3.31, 3.30, and 3.19 eV, respectively) compared to pure TiO2 (3.2 eV) and synthesized in the acid process (3.22, 3.29, and 3.19 eV at same molar ratio, respectively); in addition, the results of the indirect bandgap were interesting due to a difference found by other authors. Moreover, the sol−gel method promoted the formation of a spherical, semi-sphere, and semi-hexagonal shape (TiO2, Ti−Zn 1:1, and Ti−Zn 1:3) with a size ≤ 150 nm synthesized during the acid process, with a crystallite size of ~71, ~12, ~34, and ~21 nm, respectively, while ZnO NPs developed a hexagonal and large size (200−800 nm) under the same synthesis process (acid). Samples were classified as TiO2 anatase phase (basic synthesis); however, the presented changes developed in the rutile phase (24% rutile phase) at an acid pH during the synthesis process. Moreover, Ti−Zn maintained the anatase phase even with a molar ratio of 1:3. The most interesting assessment was the antibacterial test; the Ti−Zn A (1:3) demonstrated a bacteriostatic effect compared with all treatments except ZnO, which showed a similar effect in dark conditions, and only Gram-positive bacteria were susceptible (Listeria monocytogenes > Staphylococcus aureus). Therefore, the Ti−Zn characteristic suggests that the results have potential in treating wastewater as well as in pharmaceutical (as drug carriers) and medical applications.
Collapse
Affiliation(s)
- Noé Rodríguez-Barajas
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| | - Luis Becerra-Solano
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Yanet Karina Gutiérrez-Mercado
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Monserrat Macías-Carballo
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Claudia M. Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato 36050, Mexico
| | - Alejandro Pérez-Larios
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| |
Collapse
|
24
|
Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14091661. [PMID: 35566830 PMCID: PMC9103814 DOI: 10.3390/polym14091661] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, nanofibers with antimicrobial activity are of great importance due to the widespread antibiotic resistance of many pathogens. Electrospinning is a versatile method of producing ultrathin fibers with desired properties, and this technique can be optimized by controlling parameters such as solution/melt viscosity, feeding rate, and electric field. High viscosity and slow feeding rate cause blockage of the spinneret, while low viscosity and high feeding rate result in fiber discontinuities or droplet formation. The electric field must be properly set because high field strength shortens the solidification time of the fluid streams, while low field strength is unable to form the Taylor cone. Environmental conditions, temperature, and humidity also affect electrospinning. In recent years, significant advances have been made in the development of electrospinning methods and the engineering of electrospun nanofibers for various applications. This review discusses the current research on the use of electrospinning to fabricate composite polymer fibers with antimicrobial properties by incorporating well-defined antimicrobial nanoparticles (silver, titanium dioxide, zinc dioxide, copper oxide, etc.), encapsulating classical therapeutic agents (antibiotics), plant-based bioactive agents (crude extracts, essential oils), and pure compounds (antimicrobial peptides, photosensitizers) in polymer nanofibers with controlled release and anti-degradation protection. The analyzed works prove that the electrospinning process is an effective strategy for the formation of antimicrobial fibers for the biomedicine, pharmacy, and food industry.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| |
Collapse
|
25
|
Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol 2022; 16:171-189. [PMID: 35411585 PMCID: PMC9178655 DOI: 10.1049/nbt2.12085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.
Collapse
Affiliation(s)
- Rabia Javed
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noor Ul Ain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- NANOCAT Research Center, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weihong Guo
- Fuwai Hospial, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shen Tian
- Department of Neurology, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Manivasagam VK, Perumal G, Arora HS, Popat KC. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface. J Biomed Mater Res A 2022; 110:1314-1328. [PMID: 35188338 DOI: 10.1002/jbm.a.37375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Micro/nano scale surface modifications of titanium based orthopedic and cardiovascular implants has shown to augment biocompatibility. However, bacterial infection remains a serious concern for implant failure, aggravated by increasing antibiotic resistance and over usage of antibiotics. Bacteria cell adhesion on implant surface leads to colonization and biofilm formation resulting in morbidity and mortality. Hence, there is a need to develop new implant surfaces with high antibacterial properties. Recent developments have shown that superhydrophobic surfaces prevent protein and bacteria cell adhesion. In this study, a thermochemical treatment was used modify the surface properties for high efficacy antibacterial activity on titanium surface. The modification led to a micro-nano surface topography and upon modification with polyethylene glycol (PEG) and silane the surfaces were superhydrophilic and superhydrophobic, respectively. The modified surfaces were characterized for morphology, wettability, chemistry, corrosion resistance and surface charge. The antibacterial capability was characterized with Staphylococcus aureus and Escherichia coli by evaluating the bacteria cell inhibition, adhesion kinetics, and biofilm formation. The results indicated that the superhydrophobic micro-nano structured titanium surface reduced bacteria cell adhesion significantly (>90%) and prevented biofilm formation compared to the unmodified titanium surface after 24 h of incubation.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Gopinath Perumal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Harpreet Singh Arora
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Optimizing Graphene Oxide Encapsulated TiO2 and Hydroxyapatite; Structure and Biological Response. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Alavi SE, Koohi Moftakhari Esfahani M, Raza A, Adelnia H, Ebrahimi Shahmabadi H. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: An in vivo study. NANOIMPACT 2022; 25:100384. [PMID: 35559890 DOI: 10.1016/j.impact.2022.100384] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus (S. aureus) biofilm-associated infections are a primary concern for public health worldwide. Current therapeutics cannot penetrate the biofilms efficiently, resulting in low drug concentrations at the infected sites and increasing the frequency of drug usage. To solve this issue, nanotechnology platforms seem to be a promising approach. In this study, the potential therapeutic effects of (PEG)ylated liposome (PEG-Lip) for the delivery of nafcillin (NF) antibiotic were assessed. The results demonstrated that NF-loaded liposome (Lip-NF) and NF-loaded PEG-Lip (PEG-Lip-NF) released 76.4 and 62% of the loaded NF, respectively, in a controlled manner after 50 h. Also, it was found that PEG-Lip-NF, compared to Lip-NF and NF, was more effective against a methicillin-susceptible S. aureus (MSSA; minimum inhibitory concentration (MIC): 1.0 ± 0.03, 0.5 ± 0.02, and 0.25 ± 0.01 μg/mL; and minimum biofilm inhibitory concentration (MBIC50): 4.0 ± 0.18, 1.0 ± 0.04, and 0.5 ± 0.02 μg/mL for NF, Lip-NF, and PEG-Lip-NF, respectively). PEG-Lip-NF, compared to NF and Lip-NF, could also more efficiently decrease the side effects of NF through improving human MG-63 osteoblast cell viability (cell viability at 100 μM of NF: 76, 68, and 38% for PEG-Lip-NF, Lip-NF, and NF, respectively). PEG-Lip-NF, compared to control, NF, and Lip-NF groups, was more efficacious by 45, 25, and 10%, respectively, to decrease the virulence of MSSA bacteremia through inhibiting the weight loss of the infected mice. Also, PEG-Lip-NF and Lip-NF, compared to control and NF groups, caused a considerable decrease in the mortality rate in a murine model of bacteremia (number of dead mice: 0, 0, 2, and 8 out of 15 for PEG-Lip-NF, Lip-NF, NF, and control groups, respectively). Overall, the results of this study demonstrated that the loading of NF into PEG-Lip is a promising strategy to decrease the side effects of NF with improved antibacterial effects for the treatment of MSSA biofilm-associated infections.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Hossein Adelnia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
29
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
30
|
Sanjivkumar M, Silambarasan T, Ananthi S, ThangaTharani K. Biosynthesis and characterization of zinc oxide nanoparticles from an estuarine-associated actinobacterium Streptomyces spp. and its biotherapeutic applications. Arch Microbiol 2021; 204:17. [DOI: 10.1007/s00203-021-02609-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022]
|
31
|
Rasha E, Alkhulaifi MM, AlOthman M, Khalid I, Doaa E, Alaa K, Awad MA, Abdalla M. Effects of Zinc Oxide Nanoparticles Synthesized Using Aspergillus niger on Carbapenem-Resistant Klebsiella pneumonia In Vitro and In Vivo. Front Cell Infect Microbiol 2021; 11:748739. [PMID: 34869059 PMCID: PMC8635236 DOI: 10.3389/fcimb.2021.748739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, the mortality rate in Saudi Arabia's ICUs is increasing due to the spread of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This study was carried out to evaluate the ability of biologically synthesized zinc oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome carbapenem-resistant K. pneumoniae (KPC) in vitro and in vivo. ZnO-NPs were synthesized via a biological method and characterized using UV-Vis spectroscopy, Zetasizer and zeta potential analyses, x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by a macro-dilution method. The morphological alteration of KPC cells after ZnO-NPs treatment was observed by SEM. The in vivo susceptibility of KPC cells to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape, and size of the synthesized nanoparticles. The MIC and MBC were 0.7 and 1.8 mg/ml, respectively. The in vivo results displayed reduced inflammation and wound re-epithelialization of KPC-infected rats. These findings demonstrated that ZnO-NPs have great potential to be developed as antibacterial agents.
Collapse
Affiliation(s)
- Elsayim Rasha
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Monerah AlOthman
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Khalid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elnagar Doaa
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khatab Alaa
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal A Awad
- King Abdullah Institute of Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
32
|
Cruz A, Condinho M, Carvalho B, Arraiano CM, Pobre V, Pinto SN. The Two Weapons against Bacterial Biofilms: Detection and Treatment. Antibiotics (Basel) 2021; 10:1482. [PMID: 34943694 PMCID: PMC8698905 DOI: 10.3390/antibiotics10121482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilms are defined as complex aggregates of bacteria that grow attached to surfaces or are associated with interfaces. Bacteria within biofilms are embedded in a self-produced extracellular matrix made of polysaccharides, nucleic acids, and proteins. It is recognized that bacterial biofilms are responsible for the majority of microbial infections that occur in the human body, and that biofilm-related infections are extremely difficult to treat. This is related with the fact that microbial cells in biofilms exhibit increased resistance levels to antibiotics in comparison with planktonic (free-floating) cells. In the last years, the introduction into the market of novel compounds that can overcome the resistance to antimicrobial agents associated with biofilm infection has slowed down. If this situation is not altered, millions of lives are at risk, and this will also strongly affect the world economy. As such, research into the identification and eradication of biofilms is important for the future of human health. In this sense, this article provides an overview of techniques developed to detect and imaging biofilms as well as recent strategies that can be applied to treat biofilms during the several biofilm formation steps.
Collapse
Affiliation(s)
- Adriana Cruz
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Condinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
33
|
Ładniak A, Jurak M, Wiącek AE. Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:885-907. [PMID: 34675754 PMCID: PMC8525934 DOI: 10.1080/14686996.2021.1978801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.
Collapse
Affiliation(s)
- Nur Ameera Rosli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Research Centre for Sustainable Process Technology (Cespro), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
35
|
Abstract
Ag–TiO2 nanostructures were prepared by electrospinning, followed by calcination at 400 °C, and their photocatalytic and antibacterial actions were studied. Morphological characterization revealed the presence of one-dimensional uniform Ag–TiO2 nanostructured nanofibers, with a diameter from 65 to 100 nm, depending on the Ag loading, composed of small crystals interconnected with each other. Structural characterization indicated that Ag was successfully integrated as small nanocrystals without affecting much of the TiO2 crystal lattice. Moreover, the presence of nano Ag was found to contribute to reducing the band gap energy, which enables the activation by the absorption of visible light, while, at the same time, it delays the electron–hole recombination. Tests of their photocatalytic activity in methylene blue, amaranth, Congo red and orange II degradation revealed an increase by more than 20% in color removal efficiency at an almost double rate for the case of 0.1% Ag–TiO2 nanofibers with respect to pure TiO2. Moreover, the minimum inhibitory concentration was found as low as 2.5 mg/mL for E. coli and 5 mg/mL against S. aureus for the 5% Ag–TiO2 nanofibers. In general, the Ag–TiO2 nanostructured nanofibers were found to exhibit excellent structure and physical properties and to be suitable for efficient photocatalytic and antibacterial uses. Therefore, these can be suitable for further integration in various important applications.
Collapse
|
36
|
Yusuf A, Al Jitan S, Garlisi C, Palmisano G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. CHEMOSPHERE 2021; 278:130440. [PMID: 33838416 DOI: 10.1016/j.chemosphere.2021.130440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Corrado Garlisi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
37
|
Abdelraheem WM, Khairy RMM, Zaki AI, Zaki SH. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann Clin Microbiol Antimicrob 2021; 20:54. [PMID: 34419054 PMCID: PMC8379777 DOI: 10.1186/s12941-021-00459-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Multidrug resistant (MDR) and biofilm producing Staphylococcus aureus strains are usually associated with serious infections. This study aimed to evaluate the antibacterial and antibiofilm-formation effects of zinc oxide nanoparticles (ZnO-NPs) against staphylococcus aureus (S. aureus) isolates. Methods A total of 116 S. aureus isolates were recovered from 250 burn wound samples. The antimicrobial/antibiofilm effects of ZnO-NPs against methicillin, vancomycin and linezolid resistant S. aureus (MRSA, VRSA and LRSA) isolates were examined using phenotypic and genotypic methods. The minimum inhibitory concentration (MIC) of ZnO-NPs was determined by microdilution method. The effects of sub-MIC concentrations of ZnO-NPs on biofilm formation and drug resistance in S. aureus were determined by the microtiter plate method. The change in the expression levels of the biofilm encoding genes and resistance genes in S. aureus isolates after treatment with ZnO-NPs was assessed by real time reverse transcriptase PCR (rt-PCR). Results MICs of ZnO-NPs in S. aureus isolates were (128–2048 µg/ml). The sub-MIC of ZnO-NPs significantly reduced biofilm formation rate (the highest inhibition rate was 76.47% at 1024 µg/ml) and the expression levels of biofilm genes (ica A, ica D and fnb A) with P < 0.001. Moreover, Sub-MIC of ZnO-NPs significantly reduced the rates of MRSA from 81.9 (95 isolates) to 13.30% (15 isolates), VRSA from 33.60 (39 isolates) to 0% and LARSA from 29.30 (34) to 0% as well as the expression levels of resistance genes (mec A, van A and cfr) with P value < 0.001. Conclusion ZnO-NPs can be used as antibiofilm and potent antimicrobial against MRSA, VRSA and LRSA isolates. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00459-2.
Collapse
Affiliation(s)
- Wedad M Abdelraheem
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Rasha M M Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Alaa I Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Shaimaa H Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| |
Collapse
|
38
|
Harun AM, Noor NFM, Zaid A, Yusoff ME, Shaari R, Affandi NDN, Fadil F, Rahman MAA, Alam MK. The Antimicrobial Properties of Nanotitania Extract and Its Role in Inhibiting the Growth of Klebsiella pneumonia and Haemophilus influenza. Antibiotics (Basel) 2021; 10:961. [PMID: 34439011 PMCID: PMC8388903 DOI: 10.3390/antibiotics10080961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Titanium dioxide (TiO2) is an antimicrobial agent which is considered of potential value in inhibiting the growth of multiple bacteria. Klebsiella pneumonia and Haemophilus influenza are two of the most common respiratory infection pathogens, and are the most. Klebsiella pneumonia causes fatal meningitis, while Haemophilus influenza causes mortality even in younger patients. Both are associated with bacteremia and mortality. The purpose of this study was to test a new antibacterial material, namely nanotitania extract combined with 0.03% silver that was developed at Universiti Malaysia Sabah (UMS) and tested against K. pneumonia and H. influenza. The nanoparticles were synthesized through a modified hydrothermal process, combined with molten salt and proven to have excellent crystallinity, with the band-gap energy falling in the visible light spectrum. The nanoparticle extract was tested using a macro-dilutional method, which involved combining it with 0.03% silver solution during the process of nanoparticle synthesis and then introducing it to the bacteria. A positive control containing the bacteria minus the nanoparticles extract was also prepared. 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL concentrations of the samples were produced using the macro dilution method. After adding the bacteria to multiple concentrations of nanoparticle extract, the suspensions were incubated for 24 h at a temperature of 37 °C. The suspensions were then spread on Mueller-Hinton agar (K. pneumonia) and chocolate blood agar (H. influenza), where the growth of bacteria was observed after 24 h. Nanoparticle extract in combination with silver at 0.03% was proven to have potential as an antimicrobial agent as it was able to inhibit H. influenza at all concentrations. Furthermore, it was also shown to be capable of inhibiting K. pneumonia at concentrations of 25 mg/mL and 50 mg/mL. In conclusion, the nanoparticle extract, when tested using a macro-dilutional method, displayed antimicrobial properties which were proven effective against the growth of both K. pneumonia and H. influenza.
Collapse
Affiliation(s)
- Ahmad Mukifza Harun
- Engineering Faculty, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Nor Farid Mohd Noor
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Awatief Zaid
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mohamad Ezany Yusoff
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ramizu Shaari
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Nor Dalila Nor Affandi
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Fatirah Fadil
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Azizi Abdul Rahman
- Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Mohammad Khursheed Alam
- College of Dentistry, Jouf University, Sakaka 72721, Saudi Arabia
- Department of Dental Research Cell, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
39
|
Utilization of Antibacterial Nanoparticles in Photocurable Additive Manufacturing of Advanced Composites for Improved Public Health. Polymers (Basel) 2021; 13:polym13162616. [PMID: 34451156 PMCID: PMC8400150 DOI: 10.3390/polym13162616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents the additive manufacturing and characterization of nanoparticle-reinforced photocurable resin-based nanocomposites with a potential antimicrobial function for improved public health applications. Two types of photocurable resins are reinforced by titanium dioxide (TiO2) or zinc oxide (ZnO) nanoparticles with average diameters in the 10-30 nm range to provide antimicrobial properties. The developed nanocomposites can be additively manufactured using the digital light processing method with an outstanding surface quality and precise geometrical accuracy. Experimental characterizations are conducted to investigate key mechanical properties of the 3D printed nanocomposites, including Young's Modulus, tensile strength, and abrasion resistance. Specimens produced were observed to demonstrate the following characteristics during testing. Tensile strength increased by 42.2% at a maximum value of 29.53 MPa. The modulus of elasticity increased by 14.3%, and abrasion resistance increased by 15.8%. The proper dispersion of the nanoparticles within the cured resin is validated by scanning electron images. The wettability and water absorption testing results indicate that the developed nanocomposites have an outstanding water resistance capability. The pairing of digital light processing with these novel nanocomposites allows for the creation of complex composite geometries that are not capable through other manufacturing processes. Therefore, they have the potential for long-term usage to improve general public health with antimicrobial functionality. The pairing of an unmodified photocurable resin with a 1% ZnO concentration demonstrated the most promise for commercial applications.
Collapse
|
40
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
41
|
Synergistic In Vitro Antimicrobial Activity of Pomegranate Rind Extract and Zinc (II) against Micrococcus luteus under Planktonic and Biofilm Conditions. Pharmaceutics 2021; 13:pharmaceutics13060851. [PMID: 34201223 PMCID: PMC8230037 DOI: 10.3390/pharmaceutics13060851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious diseases caused by microbial biofilms are a major clinical problem, and new antimicrobial agents that can inhibit biofilm formation and eradicate pre-formed biofilms are urgently needed. Pomegranate extracts are a well-established folkloric medicine and have been used in the treatment of infectious diseases since ancient times, whilst the addition of metal ions, including zinc (II), has enhanced the antimicrobial activity of pomegranate. Micrococcus luteus is generally a non-pathogenic skin commensal bacterium, although it can act as an opportunistic pathogen and cause serious infections, particularly involving catheterization and comorbidities. The aims of this study were to evaluate the holistic activity of pomegranate rind extract (PRE), Zn (II), and PRE/Zn (II) individually and in combination against M. luteus under both planktonic and biofilm conditions. Antimicrobial activity was detected in vitro using the broth dilution method, and synergistic activity was determined using checkerboard and time-kill assays. Effects on biofilm formation and eradication were determined by crystal violet and BacLightTM Live/Dead staining. PRE and Zn (II) exerted antimicrobial activity against M. luteus under both planktonic and biofilm conditions. After 4 h, potent synergistic bactericidal activity was also found when PRE and Zn (II) were co-administered under planktonic conditions (log reductions: PRE 1.83 ± 0.24, Zn (II) 3.4 ± 0.08, and PRE/Zn (II) 6.88 ± 1.02; p < 0.0001). In addition, greater heterogeneity was induced in the structure of M. luteus biofilm using the PRE/Zn (II) combination compared to when PRE and Zn (II) were applied individually. The activity of PRE and the PRE/Zn (II) combination could offer a novel antimicrobial therapy for the treatment of disease-associated infections caused by M. luteus and potentially other bacteria.
Collapse
|
42
|
Enhancing microbial management and shelf life of shrimp Penaeus vannamei by using nanoparticles of metallic oxides as an alternate active packaging tool to synthetic chemicals. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Raj NB, PavithraGowda N, Pooja O, Purushotham B, Kumar MA, Sukrutha S, Ravikumar C, Nagaswarupa H, Murthy HA, Boppana SB. Harnessing ZnO nanoparticles for antimicrobial and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
45
|
Enhanced Activity and Sustained Release of Protocatechuic Acid, a Natural Antibacterial Agent, from Hybrid Nanoformulations with Zinc Oxide Nanoparticles. Int J Mol Sci 2021; 22:ijms22105287. [PMID: 34069756 PMCID: PMC8156785 DOI: 10.3390/ijms22105287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hybrid nanostructures can be developed with inorganic nanoparticles (NPs) such as zinc oxide (ZnO) and natural antibacterials. ZnO NPs can also exert antibacterial effects, and we used them here to examine their dual action in combination with a natural antibacterial agent, protocatechuic acid (PCA). To produce hybrid nanoformulations, we functionalized ZnO NPs with four types of silane organic molecules and successfully linked them to PCA. Physicochemical assessment confirmed PCA content up to ~18% in hybrid nanoformulations, with a PCA entrapment efficiency of ~72%, indicating successful connection. We then investigated the in vitro release kinetics and antibacterial effects of the hybrid against Staphylococcus aureus. PCA release from hybrid nanoformulations varied with silane surface modification. Within 98 h, only 8% of the total encapsulated PCA was released, suggesting sustained long-term release. We used nanoformulation solutions collected at days 3, 5, and 7 by disc diffusion or log reduction to evaluate their antibacterial effect against S. aureus. The hybrid nanoformulation showed efficient antibacterial and bactericidal effects that also depended on the surface modification and at a lower minimum inhibition concentration compared with the separate components. A hybrid nanoformulation of the PCA prodrug and ZnO NPs offers effective sustained-release inhibition of S. aureus growth.
Collapse
|
46
|
Hemmati F, Bahrami A, Esfanjani AF, Hosseini H, McClements DJ, Williams L. Electrospun antimicrobial materials: Advanced packaging materials for food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Antibacterial activity against Gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
El-Kahky D, Attia M, Easa SM, Awad NM, Helmy EA. Interactive Effects of Biosynthesized Nanocomposites and Their Antimicrobial and Cytotoxic Potentials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:903. [PMID: 33916082 PMCID: PMC8067103 DOI: 10.3390/nano11040903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
The present study investigated the biosynthesis of silver (AgNPs), zinc oxide (ZnONPs) and titanium dioxide (TiO2NPs) nanoparticles using Aspergillusoryzae, Aspergillusterreus and Fusariumoxysporum. Nanocomposites (NCs) were successfully synthesized by mixing nanoparticles using a Sonic Vibra-Cell VC/VCX processor. A number of analytical techniques were used to characterize the synthesized biological metal nanoparticles. Several experiments tested biologically synthesized metal nanoparticles and nanocomposites against two types of human pathogenic bacteria, including Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative Escherichia coli and Pseudomonasaeruginosa. Additionally, the antitumor activity in HCT-116 cells (colonic carcinoma) was also evaluated. Significant antimicrobial effects of various synthesized forms of nanoparticles and nanocomposites against E. coli and P. aeruginosa bacteria were detected. Various synthesized biogenic forms of nanoparticles and nanocomposite (9.0 to 29 mm in diameter) had high antibacterial activity and high antitumor activity against HCT-116 cells (colonic carcinoma) with IC50 values of 0.7-100 µg/mL. Biosynthesized NPs are considered an alternative to large-scale biosynthesized metallic nanoparticles and nanocomposites, are simple and cost effective, and provide stable nanomaterials.
Collapse
Affiliation(s)
- Dina El-Kahky
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Magdy Attia
- Agricultural Microbiology Department, National Research Centre, 33 El-Bohouth Street, (Former El-Tahrir Street) Dokki, Giza 12622, Egypt; (M.A.); (N.M.A.)
| | - Saadia M. Easa
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Nemat M. Awad
- Agricultural Microbiology Department, National Research Centre, 33 El-Bohouth Street, (Former El-Tahrir Street) Dokki, Giza 12622, Egypt; (M.A.); (N.M.A.)
| | - Eman A. Helmy
- Microbiology Department, The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
49
|
Rasha E, Monerah A, Manal A, Rehab A, Mohammed D, Doaa E. Biosynthesis of Zinc Oxide Nanoparticles from Acacia nilotica (L.) Extract to Overcome Carbapenem-Resistant Klebsiella Pneumoniae. Molecules 2021; 26:molecules26071919. [PMID: 33805514 PMCID: PMC8037469 DOI: 10.3390/molecules26071919] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.
Collapse
Affiliation(s)
- Elsayim Rasha
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (E.R.); (A.M.)
| | - AlOthman Monerah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alkhulaifi Manal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (E.R.); (A.M.)
| | - Ali Rehab
- Department of Drug and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Doud Mohammed
- Department of Microbiology, Prince Mohammed bin Abdulaziz Hospital-National Guard Health Affairs, Medina 41311, Saudi Arabia;
| | - Elnagar Doaa
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| |
Collapse
|
50
|
Molapour Rashedi S, Khajavi R, Rashidi A, Rahimi MK, Bahador A. Nanocomposite-Coated Sterile Cotton Gas Based on Polylactic Acid and Nanoparticles (Zinc Oxide and Copper Oxide) and Tranexamic Acid Drug with the Aim of Wound Dressing. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|