1
|
Santos BLP, Vieira IMM, Santos POL, Menezes MS, de Souza RR, Ruzene DS, Silva DP. Use of corncob and pineapple peel as associated substrates for biosurfactant production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57973-57988. [PMID: 39305414 DOI: 10.1007/s11356-024-35044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Biosurfactants are amphiphilic biomolecules with promising tensoative and emulsifying properties that find application in the most varied industrial sectors: environment, food, agriculture, petroleum, cosmetics, and hygiene. In the current work, a 23 full-factorial design was performed to evaluate the effect and interactions of pineapple peel and corncob as substrates for biosurfactant production by Bacillus subtilis LMA-ICF-PC 001. In a previous stage, an alkaline pretreatment was applied to corncob samples to extract the xylose-rich hydrolysate. The results indicated that pineapple peel extract and xylose-rich hydrolysate acted as partial glucose substitutes, minimizing production costs with exogenous substrates. Biosurfactant I (obtained at 8.11% pineapple peel extract, 8.11% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited a significant surface tension reduction (52.37%) and a promising bioremediation potential (87.36%). On the other hand, biosurfactant III (obtained at 8.11% pineapple peel extract, 31.89% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited the maximum emulsification index in engine oil (69.60%), the lowest critical micellar concentration (68 mg/L), and the highest biosurfactant production (5.59 g/L). These findings demonstrated that using pineapple peel extract and xylose-rich hydrolysate from corncob effectively supports biosurfactant synthesis by B. subtilis, reinforcing how agro-industrial wastes can substitute traditional carbon sources, contributing to cost reduction and environmental sustainability.
Collapse
Affiliation(s)
| | | | - Pablo Omar Lubarino Santos
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Millena Souza Menezes
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Roberto Rodrigues de Souza
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Graduate Program in Biotechnology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Graduate Program in Biotechnology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Graduate Program in Intellectual Property Science, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
- Department of Production Engineering, Federal University of Sergipe Rodovia Marechal Rondon, S/N, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil.
| |
Collapse
|
2
|
Albasri HM, Almohammadi AA, Alhhazmi A, Bukhari DA, Waznah MS, Mawad AMM. Production and characterization of rhamnolipid biosurfactant from thermophilic Geobacillus stearothermophilus bacterium isolated from Uhud mountain. Front Microbiol 2024; 15:1358175. [PMID: 38873141 PMCID: PMC11173098 DOI: 10.3389/fmicb.2024.1358175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications. Materials and methods In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of rhlAB. The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated. Results and discussion The isolated HA-1 was identified as Geobacillus stearothermophilus strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat (Triticum aestivum) growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic G. stearothermophilus is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.
Collapse
Affiliation(s)
- Hibah M. Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa A. Almohammadi
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Areej Alhhazmi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Duaa A. Bukhari
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
4
|
Vučurović D, Bajić B, Trivunović Z, Dodić J, Zeljko M, Jevtić-Mučibabić R, Dodić S. Biotechnological Utilization of Agro-Industrial Residues and By-Products-Sustainable Production of Biosurfactants. Foods 2024; 13:711. [PMID: 38472824 DOI: 10.3390/foods13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The importance and interest in the efficient use and valorization of agro-industrial residues and by-products have grown due to environmental problems associated with improper disposal. Biotechnological production processes, including microbial biosurfactant production, represent a sustainable way to utilize agro-industrial residues and by-products, which are applied as substrates in these processes. Biosurfactants produced by microorganisms using renewable resources are a viable alternative to traditional petrochemical surfactants and have several potential uses in a wide range of industrial sectors due to their minimal ecotoxicity, easy biodegradability, and moderate production conditions. The common applications of biosurfactants, besides in food industry as food additives and preservatives, are in agriculture, environmental protection, the cosmetics and pharmaceutical industry, wastewater treatment, the petroleum industry, etc. This review aims to summarize the comprehensive scientific research related to the use of various agro-industrial residues and by-products in the microbial production of biosurfactants, as well as to emphasize the present state and the importance of their sustainable production. Additionally, based on the available biosurfactant market analysis datasets and research studies, the current situation in science and industry and the future perspectives of microbial biosurfactant production have been discussed.
Collapse
Affiliation(s)
- Damjan Vučurović
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Bajić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zorana Trivunović
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Dodić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marko Zeljko
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Rada Jevtić-Mučibabić
- Institute for Food Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Siniša Dodić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Das S, Rao KVB. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry. Arch Microbiol 2024; 206:60. [PMID: 38197951 DOI: 10.1007/s00203-023-03786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Sriya Das
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India.
| |
Collapse
|
6
|
Begum W, Saha B, Mandal U. A comprehensive review on production of bio-surfactants by bio-degradation of waste carbohydrate feedstocks: an approach towards sustainable development. RSC Adv 2023; 13:25599-25615. [PMID: 37649573 PMCID: PMC10463011 DOI: 10.1039/d3ra05051c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The advancement of science and technology demands chemistry which is safer, smarter and green by nature. The sustainability of science thus requires well-behaved alternates that best suit the demand. Bio-surfactants are surface active compounds, established to affect surface chemistry. In general, microbial bio-surfactants are a group of structurally diverse molecules produced by different microbes. A large number of bio-surfactants are produced during hydrocarbon degradation by hydrocarbonoclistic microorganisms during their own growth on carbohydrates and the production rate is influenced by the rate of degradation of carbohydrates. The production of such biological surfactants is thus of greater importance. This write up is a dedicated review to update the existing knowledge of inexpensive carbohydrate sources as substrates, microorganisms and technologies of biosurfactant production. This is an economy friendly as well as sustainable approach which will facilitate achieving some sustainable development goals. The production is dependent on the fermentation strategies, different factors of the microbial culture broth and downstream processing; these all have been elaborately presented in this article.
Collapse
Affiliation(s)
- Wasefa Begum
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Ujjwal Mandal
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| |
Collapse
|
7
|
Gaur S, Gupta S, Jain A. Production, characterization, and kinetic modeling of biosurfactant synthesis by Pseudomonas aeruginosa gi |KP 163922|: a mechanism perspective. World J Microbiol Biotechnol 2023; 39:178. [PMID: 37129646 DOI: 10.1007/s11274-023-03623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Kinetic studies and modeling of production parameters are essential for developing economical biosurfactant production processes. This study will provide a perspective on mechanistic reaction pathways to metabolize Waste Engine Oil (WEO). The results will provide relevant information on (i) WEO concentration above which growth inhibition occurs, (ii) chemical changes in WEO during biodegradation, and (iii) understanding of growth kinetics for the strain utilizing complex substrates. Laboratory scale experiments were conducted to study the kinetics and biodegradation potential of the strain Pseudomonas aeruginosa gi |KP 163922| over a range (0.5-8% (v/v)) of initial WEO concentration for 168 h. The kinetic models, such as Monod, Powell, Edward, Luong, and Haldane, were evaluated by fitting the experimental results in respective model equations. An unprecedented characterization of the substrate before and after degradation is presented, along with biosurfactant characterization. The secretion of biosurfactant during the growth, validated by surface tension reduction (72.07 ± 1.14 to 29.32 ± 1.08 mN/m), facilitated the biodegradation of WEO to less harmful components. The strain showed an increase in maximum specific growth rate (µmax) from 0.0185 to 0.1415 h-1 upto 49.92 mg/L WEO concentration. Maximum WEO degradation was found to be ~ 94% gravimetrically. The Luong model (adj. R2 = 0.97) adapted the experimental data using a non-linear regression method. Biochemical, 1H NMR, and FTIR analysis of the produced biosurfactant revealed a mixture of mono- and di- rhamnolipid. The degradation compounds in WEO were identified using FTIR, 1H NMR, and GC-MS analysis to deduce the mechanism.
Collapse
Affiliation(s)
- Shailee Gaur
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Amit Jain
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
8
|
Lvova K, Martínez-Arcos A, López-Prieto A, Vecino X, Moldes AB, Cruz JM. Optimization of the Operational Conditions to Produce Extracellular and Cell-Bound Biosurfactants by Aneurinibacillus aneurinilyticus Using Corn Steep Liquor as a Unique Source of Nutrients. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The relevance of this work lies in the fact that it is the first time that corn steep liquor (CSL) has been proposed as a unique source of nutrients for producing biosurfactants in a controlled fermentation and Aneurinibacillus aneurinilyticus, isolated from CSL, has been evaluated for producing extracellular and cell-bound biosurfactants in a controlled fermentation, using secondary raw materials as a source of nutrients. In the present study, A. aneurinilyticus was inoculated into the culture medium containing sterilized CSL solutions (100–400 g L−1) and incubated using different temperatures (20–60 °C) and fermentation times (8–30 days). The dependent variables under study were the concentration of extracellular biosurfactants and cell-bound biosurfactant production in terms of critical micellar concentration (CMC), as well as the C/N ratio for cell-bound biosurfactant extracts. It was observed that CSL could increase the concentration of extracellular biosurfactants produced by A. aneurinilyticus if these were fermented during 19 days at 40 °C, using 250 g L−1 of CSL; a mean value of 6 g L−1 for extracellular biosurfactants and favorable CMC concentrations enabled the detection of cell-bound biosurfactant extracts under these conditions. Hence, these conditions could be considered optimal for producing both extracellular and cell-bound biosurfactants from CSL.
Collapse
Affiliation(s)
- Ksenia Lvova
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Andrea Martínez-Arcos
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Alejandro López-Prieto
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ana Belén Moldes
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - José Manuel Cruz
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
9
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
10
|
Interactive analysis of biosurfactants in fruit-waste fermentation samples using BioSurfDB and MEGAN. Sci Rep 2022; 12:7769. [PMID: 35546170 PMCID: PMC9095615 DOI: 10.1038/s41598-022-11753-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Agroindustrial waste, such as fruit residues, are a renewable, abundant, low-cost, commonly-used carbon source. Biosurfactants are molecules of increasing interest due to their multifunctional properties, biodegradable nature and low toxicity, in comparison to synthetic surfactants. A better understanding of the associated microbial communities will aid prospecting for biosurfactant-producing microorganisms. In this study, six samples of fruit waste, from oranges, mangoes and mixed fruits, were subjected to autochthonous fermentation, so as to promote the growth of their associated microbiota, followed by short-read metagenomic sequencing. Using the DIAMOND+MEGAN analysis pipeline, taxonomic analysis shows that all six samples are dominated by Proteobacteria, in particular, a common core consisting of the genera Klebsiella, Enterobacter, Stenotrophomonas, Acinetobacter and Escherichia. Functional analysis indicates high similarity among samples and a significant number of reads map to genes that are involved in the biosynthesis of lipopeptide-class biosurfactants. Gene-centric analysis reveals Klebsiella as the main assignment for genes related to putisolvins biosynthesis. To simplify the interactive visualization and exploration of the surfactant-related genes in such samples, we have integrated the BiosurfDB classification into MEGAN and make this available. These results indicate that microbiota obtained from autochthonous fermentation have the genetic potential for biosynthesis of biosurfactants, suggesting that fruit wastes may provide a source of biosurfactant-producing microorganisms, with applications in the agricultural, chemical, food and pharmaceutical industries.
Collapse
|
11
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
12
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
13
|
Schweitzer HD, Smith HJ, Barnhart EP, McKay LJ, Gerlach R, Cunningham AB, Malmstrom RR, Goudeau D, Fields MW. Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics. NPJ Biofilms Microbiomes 2022; 8:7. [PMID: 35177633 PMCID: PMC8854433 DOI: 10.1038/s41522-022-00267-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
Collapse
Affiliation(s)
- Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,UiT-The Arctic University of Norway, 9019, Tromsø, Norway.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,US Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Biological and Chemical Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Alfred B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil Engineering, Montana State University, Bozeman, MT, 59717, USA
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
14
|
Vieira IMM, Santos BLP, Silva LS, Ramos LC, de Souza RR, Ruzene DS, Silva DP. Potential of pineapple peel in the alternative composition of culture media for biosurfactant production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68957-68971. [PMID: 34282549 DOI: 10.1007/s11356-021-15393-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The large pineapple's consumption and processing have generated a massive amount of waste yearly, which requires adequate treatment measures to avoid damages to the environment. Pineapple peel is one of the main residues obtained from this fruit and a promising strategy to take advantage of its potential is using it for biosurfactant production due to the peel's rich composition in fermentable sugars and nutrients, such as potassium and magnesium that favor the Bacillus subtilis growth and biosurfactant excretion as well. The current research performed a central composite design (CCD) with four independent variables (glucose, pineapple peel, potassium, and magnesium), evaluating substrates' influence on the surface tension reduction rate (STRR) and the emulsification index (EI24). The results indicated that pineapple peel has the necessary potential to act as a partial substitute for glucose and salt nutrients, minimizing the costs of supplementing with exogenous minerals. The highest surface tension reduction rate (57.744%) was obtained at 2.18% glucose (w/v); 14.67% pineapple peel (v/v); 2.38 g/L KH2PO4; and 0.15 g/L MgSO4.7H2O; whereas to obtain the maximum predicted value for EI24 (61.92%) the medium was composed by 2.24% glucose (w/v); 12.63% pineapple peel (v/v); 2.53 g/L KH2PO4; and 0.29 g/L MgSO4.7H2O.
Collapse
Affiliation(s)
- Isabela Maria Monteiro Vieira
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Brenda Lohanny Passos Santos
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Lucas Santos Silva
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Larissa Castor Ramos
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Roberto Rodrigues de Souza
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Graduate Program in Biotechnology, Federal University of Sergipe, Rodovia Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Graduate Program in Biotechnology, Federal University of Sergipe, Rodovia Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
15
|
Elumalai P, Parthipan P, Huang M, Muthukumar B, Cheng L, Govarthanan M, Rajasekar A. Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117956. [PMID: 34426181 DOI: 10.1016/j.envpol.2021.117956] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
Hydrocarbons and their derivative compounds are recalcitrant in nature and causing adverse impacts to the environment and are classified as important pollutants. Removal of these pollutants from the atmosphere is a challenging process. Hydrophobic organic pollutants (HOPs) including crude oil, diesel, dotriacontane (C32), and tetracontane (C40) are subjected to the biodegradation study by using a bacterial consortium consist of Bacillus subtilis, Pseudomonas stutzeri, and Acinetobacter baumannii. The impact of pH and temperature on the biodegradation process was monitored. During the HOPs biodegradation, the impact of hydrocarbon-degrading extracellular enzymes such as alcohol dehydrogenase, alkane hydroxylase, and lipase was examined, and found average activity about 47.2, 44.3, and 51.8 μmol/mg-1, respectively. Additionally, other enzymes such as catechol 1,2 dioxygenase and catechol 2,3 dioxygenase were found as 118 and 112 μmol/mg-1 Enzyme as an average range in all the HOPs degradation, respectively. Also, the impact of the extracellular polymeric substance and proteins were elucidated during the biodegradation of HOPs with the average range of 116.90, 54.98 mg/L-1 respectively. The impact of biosurfactants on the degradation of different types of HOPs is elucidated. Very slight changes in the pH were also noticed during the biodegradation study. Biodegradation efficiency was calculated as 90, 84, 76, and 72% for crude oil, diesel, C32, and C40, respectively. Changes in the major functional groups (CH, C-O-C, CO, =CH2, CH2, CH3) were confirmed by FTIR analysis and intermediated metabolites were identified by GCMS analysis. The surface-active molecules along with the enzymes played a crucial role in the biodegradation process.
Collapse
Affiliation(s)
- Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Punniyakotti Parthipan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| |
Collapse
|
16
|
Alsayegh SY, Disi ZA, Al-Ghouti MA, Zouari N. Evaluation by MALDI-TOF MS and PCA of the diversity of biosurfactants and their producing bacteria, as adaption to weathered oil components. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00660. [PMID: 34557388 PMCID: PMC8446580 DOI: 10.1016/j.btre.2021.e00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Indigenous Qatari bacterial strains were isolated from highly weathered oil-contaminated sites, identified, and differentiated based on their protein profiles using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Their diversity was demonstrated by the principal component analysis (PCA) analysis and establishment of a proteodendogram. Both were based on the protein profile of each strain. Interestingly, this approach also showed diversity within the same subspecies. This high diversity is reflected in the emulsification and solubilization activities of their extracellular biosurfactants. The highest emulsification activity (42.1 ± 2.11 AU/mL) was obtained with a strain of Lysinibacillus fusiformis (SA4) after one week of growth in the minimum salt medium in which diesel (5%) is the sole carbon source, while the highest solubilization activity (9.47% ± 0.47%) was produced by the strain Bacillus subtilis (SA6). The functional diversity of the biosurfactants was demonstrated by PCA analysis which allowed their further clustering based on the Fourier-transform infrared spectroscopy (FTIR) analysis. These findings clearly showed that two types of adaptations occur with hydrocarbons degrading bacteria in the weathered-oily soils, one related to the bacterial cell composition maintaining the biosurfactants composition and one to the biosurfactants, which are the primary tool employed by the cell to interact with the weathered oil. This finding would shed light on the potential and strategies of applications for the bioremediation of highly weathered oil-contaminated soils.
Collapse
Affiliation(s)
- Shaikha Y. Alsayegh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Zulfa Al Disi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| |
Collapse
|
17
|
Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS, Wong JWC, Bui XT. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 2021; 20:120. [PMID: 34174898 PMCID: PMC8236176 DOI: 10.1186/s12934-021-01613-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
18
|
Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Sci Rep 2020; 10:19660. [PMID: 33184305 PMCID: PMC7665202 DOI: 10.1038/s41598-020-75170-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/28/2020] [Indexed: 11/08/2022] Open
Abstract
Microorganisms that display unique biotechnological characteristics are usually selected for industrial applications. Bacillus cereus NWUAB01 was isolated from a mining soil and its heavy metal resistance was determined on Luria-Bertani agar. The biosurfactant production was determined by screening methods such as drop collapse, emulsification and surface tension measurement. The biosurfactant produced was evaluated for metal removal (100 mg/L of each metal) from contaminated soil. The genome of the organism was sequenced using Illumina Miseq platform. Strain NWUAB01 tolerated 200 mg/L of Cd and Cr, and was also tolerant to 1000 mg/L of Pb. The biosurfactant was characterised as a lipopeptide with a metal-complexing property. The biosurfactant had a surface tension of 39.5 mN/m with metal removal efficiency of 69%, 54% and 43% for Pb, Cd and Cr respectively. The genome revealed genes responsible for metal transport/resistance and biosynthetic gene clusters involved in the synthesis of various secondary metabolites. Putative genes for transport/resistance to cadmium, chromium, copper, arsenic, lead and zinc were present in the genome. Genes responsible for biopolymer synthesis were also present in the genome. This study highlights biosurfactant production and heavy metal removal of strain NWUAB01 that can be harnessed for biotechnological applications.
Collapse
|
19
|
Enhancement of glycolipid production by Stenotrophomonas acidaminiphila TW3 cultivated in low cost substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Domínguez Rivera Á, Martínez Urbina MÁ, López Y López VE. Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 2019; 35:155. [PMID: 31576428 DOI: 10.1007/s11274-019-2729-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/18/2019] [Indexed: 11/25/2022]
Abstract
Biosurfactants are amphiphilic molecules produced by a variety of microorganisms, including bacteria, yeast and filamentous fungi. Unlike chemically synthesized surfactants, biosurfactants present advantages, such as biodegradability, low toxicity, high selectivity and activity under extreme temperature, pH and salinity conditions, as well as a low critical micelle concentration. Moreover, they can be produced from agro-industrial waste and renewable sources. Their structural diversity and functional properties mean that they have potential applications in various industrial processes as wetting agents, dispersants, emulsifiers, foaming agents, food additives and detergents, as well as in the field of environmental biotechnology. However, opportunities for their commercialization have been limited due to the low yields obtained in the fermentation processes involved in their production as well as the use of refined raw materials, which means higher cost in production. In an attempt to solve these limitations on the commercialization of biosurfactants, various research groups have focused on testing the use of inexpensive alternative sources, such as agro-industrial waste, as substrates for the production of different biosurfactants. In addition to enabling the economical production of biosurfactants, the use of such waste aims to reduce the accumulation of compounds that cause environmental damage. This review shows advances in biosurfactant production carried out using different waste materials or by-products from agro-industrial activities.
Collapse
Affiliation(s)
- Ángeles Domínguez Rivera
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | | | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
21
|
Doshi B, Hietala S, Sirviö JA, Repo E, Sillanpää M. A powdered orange peel combined carboxymethyl chitosan and its acylated derivative for the emulsification of marine diesel and 2T-oil with different qualities of water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Prado AAOS, Santos BLP, Vieira IMM, Ramos LC, de Souza RR, Silva DP, Ruzene DS. Evaluation of a new strategy in the elaboration of culture media to produce surfactin from hemicellulosic corncob liquor. ACTA ACUST UNITED AC 2019; 24:e00364. [PMID: 31440459 PMCID: PMC6698937 DOI: 10.1016/j.btre.2019.e00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022]
Abstract
The biosurfactant production is characterized by high costs with substrates, which does not make them sufficiently competitive against synthetic surfactants. The insertion of alternative sources of low cost, especially agro-industrial residue, is an excellent alternative to make this competitiveness viable. An alkaline pretreatment was used to extract the hemicellulose from corncob in order to enhance its C5 fraction, common to vegetable biomasses. The hemicellulosic corncob liquor was used with glucose and mineral salt solution as carbon and nutrients sources in a fermentation process for the growth of Bacillus subtilis. It was performed a 23 full factorial design to determine the best conditions for the surfactin production in relation to the following response variables: surface tension reduction rate (STRR) and emulsification index (EI24), from which were obtained two optimized bioproducts under specific conditions. The optimized biosurfactants found to be effected presenting a critical micelle concentration of 100 mg.L-1 and a maximum bioremediation potential of 85.18%, as well as maximum values of 57.38% and 65.30% for STRR and EI24 variables, respectively. Overall results pointed for a successful commercial application for the surfactin produced.
Collapse
Affiliation(s)
- Aline Alves Oliveira Santos Prado
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Coordination of Food Technical Course, Federal Institute of Sergipe, 49055-260, Aracaju, SE, Brazil
| | | | - Isabela Maria Monteiro Vieira
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Larissa Castor Ramos
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Roberto Rodrigues de Souza
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Corresponding author at: Federal University of Sergipe, Center for Exact Sciences and Technology, Rodovia Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe 49100-000, Brazil.
| | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|
23
|
Soussi S, Essid R, Hardouin J, Gharbi D, Elkahoui S, Tabbene O, Cosette P, Jouenne T, Limam F. Utilization of Grape Seed Flour for Antimicrobial Lipopeptide Production by Bacillus amyloliquefaciens C5 Strain. Appl Biochem Biotechnol 2019; 187:1460-1474. [PMID: 30251231 DOI: 10.1007/s12010-018-2885-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
An endophytic Bacillus amyloliquefaciens strain called C5, able to produce biosurfactant lipopeptides with a broad antibacterial activity spectrum, has been isolated from the roots of olive tree. Optimization of antibacterial activity was undertaken using grape seed flour (GSF) substrate at 0.02, 0.2, and 2% (w/v) in M9 medium. Strain C5 exhibited optimal growth and antimicrobial activity (MIC value of 60 μg/ml) when incubated in the presence of 0.2% GSF while lipopeptide production culminated at 2% GSF. Thin layer chromatography analysis of lipopeptide extract revealed the presence of at least three active spots at Rf 0.35, 0.59, and 0.72 at 0.2% GSF. Data were similar to those obtained in LB-rich medium. MALDI-TOF/MS analysis of lipopeptide extract obtained from 0.2% GSF substrate revealed the presence of surfactin and bacillomycin D. These results show that GSF could be used as a low-cost culture medium supplement for optimizing the production of biosurfactants by strain C5.
Collapse
Affiliation(s)
- Siwar Soussi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia.,University of Carthage, Avenue de la République, BP-77, 1054, Amilcar, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, Mont-Saint-Aignan, France.,Proteomic Platform PISSARO, 76821, Mont-Saint-Aignan, France
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia.,University of Carthage, Avenue de la République, BP-77, 1054, Amilcar, Tunisia
| | - Salem Elkahoui
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, Mont-Saint-Aignan, France.,Proteomic Platform PISSARO, 76821, Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, Mont-Saint-Aignan, France.,Proteomic Platform PISSARO, 76821, Mont-Saint-Aignan, France
| | - Ferid Limam
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP-901, 2050, Hammam-lif, Tunisia.
| |
Collapse
|
24
|
Ojha N, Mandal SK, Das N. Enhanced degradation of indeno(1,2,3-cd)pyrene using Candida tropicalis NN4 in presence of iron nanoparticles and produced biosurfactant: a statistical approach. 3 Biotech 2019; 9:86. [PMID: 30800597 PMCID: PMC6385070 DOI: 10.1007/s13205-019-1623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/08/2019] [Indexed: 01/25/2023] Open
Abstract
Seven yeast isolates were screened for the remediation of indeno(1,2,3-cd)pyrene (InP) using biosynthesized iron nanoparticles and produced biosurfactant in growth medium. Four yeast isolates showed positive response to produce biosurfactant which was confirmed by drop collapse test, emulsification index, methylene blue agar plate method, oil displacement test and lipase activity. The yeast strain showing maximum potential for InP degradation and biosurfactant production was identified as Candida tropicalis NN4. The produced biosurfactant was characterized as sophorolipid type through TLC and FTIR analysis. Iron nanoparticles were biosynthesized using mint leaf extract and characterized by various instrumental analysis. Response surface methodology (RSM), three-level five-variable Box-Behnken design (BBD) was employed to optimize the factors, viz., pH (7), temperature (30 °C), salt concentration (1.5 g L-1), incubation time (15 days) and iron nanoparticles concentration (0.02 g L-1) for maximum InP degradation (90.68 ± 0.7%) using C. tropicalis NN4. It was well in close agreement with the predicted value which was obtained by RSM model (90.68 ± 0.4%) indicating the validity of the model. InP degradation was confirmed through FTIR and GC-MS analysis. A kinetic study demonstrated that InP degradation fitted first-order kinetic model. This is the first report on yeast-mediated nanobioremediation of InP and optimization of the whole process using RSM.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT (Vellore Institute of Technology), Vellore, Tamil Nadu 632014 India
| | - Sanjeeb Kumar Mandal
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT (Vellore Institute of Technology), Vellore, Tamil Nadu 632014 India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT (Vellore Institute of Technology), Vellore, Tamil Nadu 632014 India
| |
Collapse
|
25
|
Nurfarahin AH, Mohamed MS, Phang LY. Culture Medium Development for Microbial-Derived Surfactants Production-An Overview. Molecules 2018; 23:molecules23051049. [PMID: 29723959 PMCID: PMC6099601 DOI: 10.3390/molecules23051049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
Collapse
Affiliation(s)
- Abdul Hamid Nurfarahin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
26
|
Parthipan P, Elumalai P, Sathishkumar K, Sabarinathan D, Murugan K, Benelli G, Rajasekar A. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech 2017; 7:278. [PMID: 28794933 DOI: 10.1007/s13205-017-0902-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu 632115 India
| | - Punniyakotti Elumalai
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu 632115 India
| | - Kuppusamy Sathishkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu 632115 India
| | - Devaraj Sabarinathan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641046 India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamilnadu 641046 India
- Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu 632115 India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu 632115 India
| |
Collapse
|
27
|
Elumalai P, Parthipan P, Karthikeyan OP, Rajasekar A. Enzyme-mediated biodegradation of long-chain n-alkanes (C 32 and C 40) by thermophilic bacteria. 3 Biotech 2017; 7:116. [PMID: 28567628 DOI: 10.1007/s13205-017-0773-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 01/31/2023] Open
Abstract
Removal of long-chain hydrocarbons and n-alkanes from oil-contaminated environments are mere important to reduce the ecological damages, while bio-augmentation is a very promising technology that requires highly efficient microbes. In present study, the efficiency of pure isolates, i.e., Geobacillus thermoparaffinivorans IR2, Geobacillus stearothermophillus IR4 and Bacillus licheniformis MN6 and mixed consortium on degradation of long-chain n-alkanes C32 and C40 was investigated by batch cultivation test. Biodegradation efficiencies were found high for C32 by mixed consortium (90%) than pure strains, while the pure strains were better in degradation of C40 than mixed consortium (87%). In contrast, the maximum alkane hydroxylase activities (161 µmol mg-1 protein) were recorded in mixed consortium system that had supplied with C40 as sole carbon source. Also, the alcohol dehydrogenase (71 µmol mg-1 protein) and lipase activity (57 µmol mg-1 protein) were found high. Along with the enzyme activities, the hydrophobicity natures of the bacterial strains were found to determine the degradation efficiency of the hydrocarbons. Thus, the study suggested that the hydrophobicity of the bacteria is a critical parameter to understand the biodegradation of n-alkanes.
Collapse
|