1
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
2
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
3
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
4
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Tendenedzai JT, Chirwa EMN, Brink HG. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci Rep 2023; 13:20379. [PMID: 37989844 PMCID: PMC10663618 DOI: 10.1038/s41598-023-47616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Selenium, an essential micronutrient for plants and animals, can cause selenium toxicity as an oxyanion or at elevated doses. However, the toxic selenite (SeO32-) oxyanion, can be converted into less harmful elemental nano-selenium (Se0), with various practical applications. This research aimed to investigate two methods for reducing SeO32-: abiotic reduction using cell-free extract from Enterococcus spp. (abiotic-SeNPs) and chemical reduction involving L-ascorbic acid (chemical-SeNPs). Analysis with XPS confirmed the presence of Se0, while FTIR analysis identified surface functional groups on all SeNPs. The study evaluated the effects of SeO32-, abiotic-SeNPs, and chemical-SeNPs at different concentrations on the growth and germination of Pisum sativum L. seeds. SeO32- demonstrated detrimental effects on germination at concentrations of 1 ppm (germination index (GI) = 0.3). Conversely, both abiotic- and chemical-SeNPs had positive impacts on germination, with GI > 120 at 10 ppm. Through the DPPH assay, it was discovered that SeNPs exhibited superior antioxidant capabilities at 80 ppm, achieving over 70% inhibition, compared to SeO32- (less than 20% inhibition), therefore evidencing significant antioxidant properties. This demonstrates that SeNPs have the potential to be utilized as an agricultural fertilizer additive, benefiting seedling germination and development, while also protecting against oxidative stress.
Collapse
Affiliation(s)
- Job T Tendenedzai
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Hendrik G Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
6
|
Sarkar J, Mridha D, Davoodbasha MA, Banerjee J, Chanda S, Ray K, Roychowdhury T, Acharya K, Sarkar J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 2023; 201:5000-5036. [PMID: 36633786 DOI: 10.1007/s12011-022-03549-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Mubarak Ali Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, PIN-600048, India
| | - Jishnu Banerjee
- Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, PIN-700118, India
| | - Sumeddha Chanda
- Department of Botany, Scottish Church College, Kolkata, PIN-700006, India
| | - Kasturi Ray
- Department of Botany, North Campus, University of Delhi, University Road, Delhi, PIN-110007, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India.
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Kolkata, PIN-700084, India.
| |
Collapse
|
7
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
8
|
El-Fakharany EM, Abu-Serie MM, Ibrahim A, Eltarahony M. Anticancer activity of lactoferrin-coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects. Sci Rep 2023; 13:9579. [PMID: 37311791 PMCID: PMC10264462 DOI: 10.1038/s41598-023-36492-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18-40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ μg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GE‑BRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| | - Amany Ibrahim
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Ain Shams University, Cairo, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| |
Collapse
|
9
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
10
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
12
|
Zhang X, Liang F, Li T, Jiang Y, Ren F. Metformin ameliorates calcium oxalate crystallization and stone formation by activating the Nrf2/HO-1 signaling pathway: Two birds with one stone. Arch Biochem Biophys 2023; 739:109568. [PMID: 36914110 DOI: 10.1016/j.abb.2023.109568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023]
Abstract
Deposition of calcium oxalate (CaOx) crystals and oxidative stress-induced injury of renal tubular epithelial cell are the primary pathogenic factors of nephrolithiasis. In this study we investigated the beneficial effects of metformin hydrochloride (MH) against nephrolithiasis and explored the underlying molecular mechanism. Our results demonstrated that MH inhibited the formation of CaOx crystals and promoted the transformation of thermodynamically stable CaOx monohydrate (COM) to more unstable CaOx dihydrate (COD). MH treatment effectively ameliorated oxalate-induced oxidative injury and mitochondrial damage in renal tubular cells and reduced CaOx crystal deposition in rat kidneys. MH also attenuated oxidative stress by lowering MDA level and enhancing SOD activity in HK-2 and NRK-52E cells and in a rat model of nephrolithiasis. In both HK-2 and NRK-52E cells, COM exposure significantlylowered the expressions of HO-1 and Nrf2, which was rescued by MH treatment even in the presence of Nrf2 and HO-1 inhibitors. In rats with nephrolithiasis, MH treatment significantly rescued the down-regulation of the mRNA and protein expression of Nrf2 and HO-1 in the kidneys. These results demonstrate that MH can alleviate CaOx crystal deposition and kidney tissue injury in rats with nephrolithiasis by suppressing oxidative stress and activating the Nrf2/HO-1 signaling pathway, suggesting the potential value of MH in the treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Futu Liang
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Tianyang Li
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yaodong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Fei Ren
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
13
|
Shahbaz M, Akram A, Mehak A, Haq EU, Fatima N, Wareen G, Fitriatin BN, Sayyed RZ, Ilyas N, Sabullah MK. Evaluation of Selenium Nanoparticles in Inducing Disease Resistance against Spot Blotch Disease and Promoting Growth in Wheat under Biotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:761. [PMID: 36840109 PMCID: PMC9958785 DOI: 10.3390/plants12040761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
In the present study, SeNPs were synthesized using Melia azedarach leaf extracts and investigated for growth promotion in wheat under the biotic stress of spot blotch disease. The phytosynthesized SeNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The in vitro efficacy of different concentrations of phytosynthesized SeNPs (i.e., 100 μg/mL, 150 μg/mL, 200 μg/mL, 250 μg/mL, and 300 μg/mL) was evaluated using the well diffusion method, which reported that 300 μg/mL showed maximum fungus growth inhibition. For in vivo study, different concentrations (10, 20, 30, and 40 mg/L) of SeNPs were applied exogenously to evaluate the morphological, physiological, and biochemical parameters under control conditions and determine when infection was induced. Among all treatments, 30 mg/L of SeNPs performed well and increased the plant height by 2.34% compared to the control and 30.7% more than fungus-inoculated wheat. Similarly, fresh plant weight and dry weight increased by 17.35% and 13.43% over the control and 20.34% and 52.48% over the fungus-treated wheat, respectively. In leaf surface area and root length, our findings were 50.11% and 10.37% higher than the control and 40% and 71% higher than diseased wheat, respectively. Plant physiological parameters i.e., chlorophyll a, chlorophyll b, and total chlorophyll content, were increased 14, 133, and 16.1 times over the control and 157, 253, and 42 times over the pathogen-inoculated wheat, respectively. Our findings regarding carotenoid content, relative water content, and the membrane stability index were 29-, 49-, and 81-fold higher than the control and 187-, 63-, and 48-fold higher than the negative control, respectively. In the case of plant biochemical parameters, proline, sugar, flavonoids, and phenolic contents were recorded at 6, 287, 11, and 34 times higher than the control and 32, 107, 33, and 4 times more than fungus-inoculated wheat, respectively. This study is considered the first biocompatible approach to evaluate the potential of green-synthesized SeNPs as growth-promoting substances in wheat under the spot blotch stress and effective management strategy to inhibit fungal growth.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Abida Akram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Asma Mehak
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Ehsan ul Haq
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Gull Wareen
- Department of Biology, Faculty of Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Betty Natalie Fitriatin
- Department of Soil Sciences and Land Resources Management, Agriculture Faculty, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - R. Z. Sayyed
- Asian PGPR Society for Sustainable Agriculture, Auburn Ventures, Auburn, AL 36830, USA
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Mohd Khalizan Sabullah
- Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
14
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
15
|
Saranya T, Kavithaa K, Paulpandi M, Ramya S, Winster SH, Mani G, Dhayalan S, Balachandar V, Narayanasamy A. The creation of selenium nanoparticles decorated with troxerutin and their ability to adapt to the tumour microenvironment have therapeutic implications for triple-negative breast cancer. NEW J CHEM 2023. [DOI: 10.1039/d2nj05671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The unique use of selenium–troxerutin nanoconjugates as an effective management therapy for treating TNBC.
Collapse
Affiliation(s)
- Thiruvenkataswamy Saranya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Krishnamoorthy Kavithaa
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 641028, TN, India
| | - Manickam Paulpandi
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Sennimalai Ramya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore 641004, Tamil Nadu, India
| | - Sureshbabu Harysh Winster
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| | - Geetha Mani
- Department of Microbiology, Faculty of Science, Annamalai University, TN, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, TN, India
| | - Vellingiri Balachandar
- Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, TN, India
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, TN, India
| |
Collapse
|
16
|
Kumar A, Kumar A, Vats C, Sangwan P, Kumar V, Abhineet, Chauhan P, Chauhan RS, Chaudhary K. Recent insights into metallic nanoparticles in shelf-life extension of agrifoods: Properties, green synthesis, and major applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1025342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology emerged as a revolutionary technology in various fields of applied sciences, such as biomedical engineering and food technology. The pivotal roles of nanocompounds have been explored in various fields, such as food protection, preservation, and enhancement of shelf life. In this sequence, metallic nanoparticles (MNPs) are proven to be useful in developing products with antimicrobial activity and subsequently improve the shelf life of agrifoods. The major application of MNPs has been observed in the packaging industry due to the combining ability of biopolymers with MNPs. In recent years, various metal nanoparticles have been explored to formulate various active food packaging materials. However, the method of production and the need for risk evaluation are still a topic of discussion among researchers around the world. In general, MNPs are synthesized by various chemical and physical means, which may pose variable health risks. To overcome such issues, the green synthesis of MNPs using microbial and plant extracts has been proposed by various researchers. In this review, we aimed at exploring the green synthesis of MNPs, their properties and characterization, various ways of utilizing MNPs to extend their shelf life, and, most importantly, the risk associated with these along with their quality and safety considerations.
Collapse
|
17
|
Saranya T, Ramya S, Kavithaa K, Paulpandi M, Cheon YP, Harysh Winster S, Balachandar V, Narayanasamy A. Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02334-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. J Funct Biomater 2022; 13:jfb13030112. [PMID: 35997450 PMCID: PMC9397004 DOI: 10.3390/jfb13030112] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411, 208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts. In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal, and insecticidal activities, which can be used in biomedical and environmental applications.
Collapse
|
19
|
Martínez-Esquivias F, Guzmán-Flores JM, Perez-Larios A. Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2088432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Alejandro Perez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| |
Collapse
|
20
|
Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060893. [PMID: 35743924 PMCID: PMC9227136 DOI: 10.3390/life12060893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/13/2022]
Abstract
There is an increase of pathogenic multidrug-resistant bacteria globally due to the misuse of antibiotics. Recently, more scientists used metal nanoparticles to counteract antibacterial resistance. In this study, orange peel waste (OPW) was used for selenium nanoparticles’ (Se-NPs) biosynthesis through the green and ecofriendly method, and their applications as antibacterial and antibiofilm agents. Green biosynthesized Se-NPs were characterized using FTIR, XRD, SEM, EDAX, and TEM. Characterization results revealed that biosynthesized Se-NPs were highly crystalline, spherical, and polydisperse, and had sizes in the range of 16–95 nm. The biosynthesized Se-NPs were evaluated as antibacterial and antibiofilm activities against multidrug-resistant bacteria. Results illustrated that Se-NPs exhibited potential antibacterial activity against Gram-positive bacteria (S. aureus ATCC 29213 and biofilm-producing clinical isolates of S. aureus) and Gram-negative bacteria (Pseudomonas aeruginosa PAO1, MDR, biofilm, and quorum-sensing and producing clinical isolates of MDR P. aeruginosa, MDR E. coli, and K. pneumonia). Moreover, results illustrated that S. aureus ATCC 29213 was the most sensitive bacteria to Se-NPs at 1000 µg/mL, where the inhibition zone was 35 mm and MIC was 25 µg/mL. Furthermore, Se-NPs at 0.25 and 0.5 MIC decreased the biofilm significantly. The largest inhibition of biofilm was noticed in MDR K. pneumonia, which was 62% and 92% at 0.25 and 0.5 MIC, respectively. In conclusion, Se-NPs were successfully biosynthesized using OPW through the green method and had promising antibacterial and antibiofilm activity against multidrug-resistant bacteria, which can be used later in fighting resistant bacteria.
Collapse
Affiliation(s)
- Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| |
Collapse
|
21
|
Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA. Biological agents for synthesis of nanoparticles and their applications. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101869. [DOI: 10.1016/j.jksus.2022.101869] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Nath D, Kaur L, Sohal HS, Malhi DS, Garg S, Thakur D. Application of Selenium Nanoparticles in Localized Drug Targeting for Cancer Therapy. Anticancer Agents Med Chem 2022; 22:2715-2725. [PMID: 35168523 DOI: 10.2174/1871520622666220215122756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) have gardened their place in the biomedical field and serve as a chemotherapeutic agent for targeted drug delivery due to their capacity to exert distinct mechanisms of action on cancer and normal cells. The principle behind these mechanisms is the generation of Reactive Oxygen Species (ROS) eventually leads to apoptosis via the dysfunction of various pathways. SeNPs, when used in higher concentrations, lead to toxicity; therefore, conjugation and surface functionalization not only improve their toxic nature but also enhance their anticancer activity. OBJECTIVES The primary goal of this analysis is to provide a thorough and systematic investigation into the use of various SeNPs in localized drug targeting for cancer therapy. This has been achieved by citing examples of numerous SeNPs and their use as a drug targeting agent for cancer therapy. METHODS All relevant data and information about the various SeNPs for drug targeting in cancer therapy were gathered from various databases, including Science Direct, PubMed, Taylor and Francis imprints, American Chemical Society, Springer, Royal Society of Chemistry, and Google scholar. RESULTS SeNPs are explored due to their better biopharmaceutical properties and their cytostatic behavior. Se, as an essential component of the enzyme glutathione peroxidase (GPx) and other seleno-chemical substances, might boost chemotherapeutic efficacy, and protect tissues from cellular damage caused by ROS. SeNPs have the potential to set the stage for developing new strategies to treat malignancy. CONCLUSION This review extensively analyzed the anticancer efficacy and functionalization strategies of SeNPs in drug delivery to cancer cells. In addition, this review highlights the mechanism of action of drug-loaded SeNPs to suppress the proliferation of cancer cells in different cell lines.
Collapse
Affiliation(s)
- Dipak Nath
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Deepa Thakur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
23
|
Alvares JJ, Furtado IJ. Conversion of selenite by Haloferax alexandrinus GUSF-1 (KF796625) to pentagonal selenium nanoforms which in vitro modulates the formation of calcium oxalate crystals. J Appl Microbiol 2021; 132:1900-1913. [PMID: 34586705 DOI: 10.1111/jam.15309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
AIM To investigate the ability of Haloferax alexandrinus GUSF-1 (KF796625) to biosynthesize non-toxic elemental selenium (Se0 ) and check their capacity in in vitro crystal structure modulation of calcium oxalate, which are implicated in the development of renal calculi. METHODS AND RESULTS Haloferax alexandrinus GUSF-1 (KF796625) during growth in the presence of 5 mmol L-1 of selenite formed insoluble brick-red particles. Se0 formed was monitored spectrophotometrically using a combination of two assays; the ascorbic acid reduction and sodium sulphide solubilization assay. After 168 h of growth, 2.89 mmol L-1 of Se0 was formed from 4.9 mmol L-1 of selenite. Absorption bands at 1.5, 11.2 and 12.5 keV in EDX spectroscopy confirmed that the brick-red particulate matter was Se0 . Furthermore, these selenium nanoparticles (SeNPs) were pentagonal in shape in transmission electron microscopy imaging. The peak positions in X-ray diffractogram at 2θ values of 23.40°, 29.66°, 41.26°, 43.68°, 45.24°, 51.62°, 55.93° and 61.47° and the relative intensities further confirmed the formation of Se0 . In vitro addition of 50 and 100 µg ml-1 of these SeNPs to the mixture of sodium chloride, calcium chloride and sodium oxalate affected and modulated the shape and size of rectangular-shaped calcium oxalate crystals (average area of 1.23 ± 0.2 µm2 ) to smaller rectangular-shaped crystals (average area of 0.54 ± 0.2 µm2 ) and spherical-shaped crystals (average area 0.13 ± 0.005 µm2 ). CONCLUSION Haloferax alexandrinus GUSF-1 (KF796625) transformed selenite to Se0 pentagonal nanoforms that modulated in vitro the formation of crystal shape and size of calcium oxalate. SIGNIFICANCE AND IMPACT OF STUDY There are no reports on conversion of selenite to Se0 among the Haloferax genera, and this study involving the formation of pentagonal SeNPs with capacity to modulate the formation of calcium oxalate crystals in haloarchaea is recorded as the first report and of significance in pharmaceutical research related to formulations abetting urinary calculi.
Collapse
|
24
|
Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2516. [PMID: 34684956 PMCID: PMC8539562 DOI: 10.3390/nano11102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles (BNPs) have shown better biological potential compared to their monometallic counterparts owing to the synergistic effect produced by these alloys. In this study, selenium-capped silver nanoparticles (Ag@Se NPs) were synthesized using an Ocimum tenuiflorum extract. These BNPs were characterized using UV-visible, Fourier transform infrared spectroscopy, nanoparticle tracking analysis, electron microscopy and energy dispersive x-ray analysis. Response surface methodology was used to understand how extract volume and temperature influenced the zeta potential, hydrodynamic size and NP concentration. The phytoconstituents were identified using gas chromatography-mass spectrometry (GC-MS) and molecular docking studies were performed on B-DNA to determine possible genotoxicity. Antioxidant activities, in vitro cytotoxicity (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay), and genotoxicity (Allium cepa root cells) of these BNPs, were also evaluated. A surface plasmon resonance band around 420 nm confirmed BNP formation with significant quantities of silver and selenium. The Ag@Se NPs displayed good stability, dispersity, antioxidant activity, and compatibility at low concentrations but showed significant cytotoxicity and genotoxicity at high concentrations. Molecular docking analysis showed weak interactions between the plant constituents and B-DNA, suggesting no genotoxicity. These results provide an insight into the conditions required for optimal production of eco-friendly Ag@Se NPs with interesting biological properties.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (F.O.); (M.A.)
| |
Collapse
|
25
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
26
|
Yang Y, Deng G, Wang P, Lv G, Mao R, Sun Y, Wang B, Liu X, Bian L, Zhou D. A Selenium Nanocomposite Protects the Mouse Brain from Oxidative Injury Following Intracerebral Hemorrhage. Int J Nanomedicine 2021; 16:775-788. [PMID: 33574665 PMCID: PMC7871993 DOI: 10.2147/ijn.s293681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a common neurological crisis leading to high mortality and morbidity. Oxidative stress-induced secondary injury plays a critical role in neurological deterioration. Previously, we synthesized a porous Se@SiO2 nanocomposite and identified their therapeutic role in osteonecrosis of the femoral head. Whether this nanocomposite is neuroprotective remains to be elucidated. METHODS A porous Se@SiO2 nanocomposite was synthesized, and its biosafety was determined using a CCK-8 assay. The neuroprotective effect was evaluated by TUNEL staining, and intracellular ROS were detected with a DCFH-DA probe in SH-SY5Y cells exposed to hemin. Furthermore, the effect of the nanocomposite on cell apoptosis, brain edema and blood-brain barrier permeability were evaluated in a collagenase-induced ICH mouse model. The potential mechanism was also explored. RESULTS The results demonstrated that Se@SiO2 treatment significantly improved neurological function, increased glutathione peroxidase activity and downregulated malonaldehyde levels. The proportion of apoptotic cells, brain edema and blood-brain barrier permeability were reduced significantly in ICH mice treated with Se@SiO2 compared to vehicle-treated mice. In vitro, Se@SiO2 protected SH-SY5Y cells from hemin-induced apoptosis by preventing intracellular reactive oxygen species accumulation. CONCLUSION These results suggested that the porous Se@SiO2 nanocomposite exerted neuroprotection by suppressing oxidative stress. Se@SiO2 may be a potential candidate for the clinical treatment of ICH and oxidative stress-related brain injuries.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201620, People’s Republic of China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People’s Republic of China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
27
|
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. Int J Mol Sci 2021; 22:989. [PMID: 33498184 PMCID: PMC7863925 DOI: 10.3390/ijms22030989] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
28
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
29
|
Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 2021; 199:344-370. [PMID: 32377944 DOI: 10.1007/s12011-020-02138-3] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Collapse
Affiliation(s)
- Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|