1
|
Zheng Z, Xu Y, Zou HX, Yan X, Cao P. N-Acetyl-O-methyl-tyrosine from Bipolaris bicolor: A novel fungicide for postharvest anthracnose and citrus preservation. Food Microbiol 2025; 130:104779. [PMID: 40210402 DOI: 10.1016/j.fm.2025.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
The necessity for safe and effective alternatives to conventional chemical fungicides is underscored by postharvest citrus fruit losses due to anthracnose, caused by Colletotrichum gloeosporioides. In this context, the biocontrol fungus Bipolaris bicolor WZU-HOG4, isolated from Ougan pericarp, was identified as possessing antimicrobial activity. Through bioassay-guided fractionation and subsequent metabolite profiling, N-Acetyl-O-methyl-tyrosine was identified as the active antifungal compound using NMR and HRESIMS. This compound demonstrated significant inhibitory effects against C. gloeosporioides and other pathogens, exhibiting a relatively broad-spectrum antifungal activity. Molecular docking analysis indicated that N-acetyl-O-methyl-tyrosine binds to tyrosinase with greater affinity than Vitamin C, effectively inhibiting its activity. Furthermore, Ougan fruits treated with the compound exhibited increased activities of antioxidant enzymes SOD, POD, and CAT, reduced MDA content, and decreased oxidative stress during storage. Cytotoxicity assays conducted on HEK-293 cells confirmed the compound's safety at the tested concentrations. N-acetyl-O-methyl-tyrosine emerges as a promising natural antifungal and tyrosinase inhibitor for citrus postharvest preservation, providing a safe alternative to chemical preservatives for extending shelf life.
Collapse
Affiliation(s)
- Zikui Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yicheng Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Ouhai Road, Wenzhou, 325014, China.
| | - Peng Cao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Ouhai Road, Wenzhou, 325014, China.
| |
Collapse
|
2
|
Ahmadpour A, Heidarian Z, Ghosta Y, Alavi Z, Alavi F, Manamgoda DS, Kumla J, Karunarathna SC, Rampelotto PH, Suwannarach N. Morphological and phylogenetic analyses of Bipolaris species associated with Poales and Asparagales host plants in Iran. Front Cell Infect Microbiol 2025; 15:1520125. [PMID: 40171167 PMCID: PMC11958717 DOI: 10.3389/fcimb.2025.1520125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025] Open
Abstract
Bipolaris species exhibit various ecological roles, including plant pathogens, epiphytes, saprophytes, or endophytes, primarily associated with poaceous hosts, including cultivated cereals. Iran is known for its diverse climates and rich flora, which serve as a hotspot for fungal diversity. In this study, to determine the species diversity of Bipolaris associated with members of the Poales and Asparagales plant orders, samples with leaf and stem lesion symptoms were collected from these plants across various locations in Iran between 2010 and 2022. Based on the morphological characteristics and multi-locus phylogeny (ITS-rDNA, GAPDH, and TEF1), nine Bipolaris species were identified: Bipolaris avrinica sp. nov., Bipolaris azarbaijanica sp. nov., Bipolaris banihashemii sp. nov., Bipolaris hedjaroudei sp. nov., Bipolaris hemerocallidis sp. nov., Bipolaris iranica sp. nov., Bipolaris persica sp. nov., Bipolaris crotonis, and Bipolaris salkadehensis. B. crotonis represents a new record for Iran's funga, while B. salkadehensis has been documented on several new hosts globally. The study provides detailed morphological descriptions and illustrations of all identified species, along with insights into their habitats, distributions, and phylogenetic relationships within the Bipolaris genus. This study also emphasizes the need for further research into fungal biodiversity in Iran and provides significant data on the distribution and host range of Bipolaris species.
Collapse
Affiliation(s)
- Abdollah Ahmadpour
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - Zeinab Heidarian
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Zahra Alavi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fatemeh Alavi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Sri Lanka
| | - Jaturong Kumla
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biology Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nakarin Suwannarach
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Li J, Wang X, Zhang R, Shan H, Li Y, Wang C, Huang Y. Identification and Characterization of Bipolaris secalis and B. setariae Associated with Brown Stripe Disease on Saccharum officinarum in Yunnan, China. PLANT DISEASE 2025; 109:562-569. [PMID: 39441533 DOI: 10.1094/pdis-10-24-2166-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Sugarcane (Saccharum officinarum L.) is the most important sugar crop that belongs to the Poaceae family and is mainly cultivated in tropical and subtropical regions worldwide. Brown stripe disease is a common and serious foliar fungal disease of sugarcane and has become a serious threat to sugarcane production in China. Yunnan Province is the second-largest sugar base in China. From 2022 to 2023, brown stripe-like symptoms from different sugarcane varieties were observed in Yunnan. Thirty-nine Bipolaris-like isolates were obtained from symptomatic leaves of different sugarcane varieties and characterized by means of morphological identification combined with multilocus phylogeny comprising internal transcribed spacer rDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the translation elongation factor-1α (TEF-1α) gene sequence data. The analysis provided strong support for the delineation and identification of two Bipolaris species associated with sugarcane brown stripe, including Bipolaris secalis and B. setariae. The pathogenicity test in potted sugarcane plants confirmed that these two Bipolaris species can cause brown stripe of sugarcane, thus fulfilling Koch's postulates. This study confirmed that B. secalis and B. setariae were the pathogens of brown stripe in Yunnan Province. To the best of our knowledge, this study is the first to report B. secalis as a causal agent of brown stripe of sugarcane. Collectively, this finding provides a basis for the accurate diagnosis of sugarcane brown stripe disease and would be helpful to the development of effective management strategies.
Collapse
Affiliation(s)
- Jie Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Xiaoyan Wang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Rongyue Zhang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Hongli Shan
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Yinhu Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Changmi Wang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Yingkun Huang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| |
Collapse
|
4
|
Pereira D, Phillips A. Diaporthe species on palms - integrative taxonomic approach for species boundaries delimitation in the genus Diaporthe, with the description of D. pygmaeae sp. nov. Stud Mycol 2024; 109:487-594. [PMID: 39717652 PMCID: PMC11663421 DOI: 10.3114/sim.2024.109.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/14/2024] [Indexed: 12/25/2024] Open
Abstract
The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events. This phenomenon has been extensively documented in Diaporthe, and species identifications in this genus remains an ongoing challenge. However, the accurate delimitation of Diaporthe species is critical as the genus encompasses several cosmopolitan pathogens that cause serious diseases on many economically important plant hosts. In this regard, following a survey of palm leaf spotting fungi in Lisbon, Portugal, Diaporthe species occurring on Arecaceae hosts were used as a case study to implement an integrative taxonomic approach for a reliable species identification in the genus. Molecular analyses based on the genealogical concordance phylogenetic species recognition (GCPSR) and DNA-based species delimitation methods revealed that speciation events in the genus have been highly overestimated. Most IEL identified by the GCPSR were also recognised by Poisson tree processes (PTP) coalescent-based methods, which indicated that phylogenetic lineages in Diaporthe are likely influenced by incomplete lineage sorting (ILS) and reticulation events. Furthermore, the recognition of genetic recombination signals and the evaluation of genetic variability based on sequence polymorphisms reinforced these hypotheses. New clues towards the intraspecific variation in the common loci used for phylogenetic inference of Diaporthe species are discussed. These results demonstrate that intraspecific variability has often been used as an indicator to introduce new species in Diaporthe, which has led to a proliferation of species names in the genus. Based on these data, 53 species are reduced to synonymy with 18 existing Diaporthe species, and a new species, D. pygmaeae, is introduced. Thirteen new plant host-fungus associations are reported, all of which represent new host family records for Arecaceae. This study has recognised and resolved a total of 14 valid Diaporthe species associated with Arecaceae hosts worldwide, some of which are associated with disease symptoms. This illustrates the need for more systematic research to examine the complex of Diaporthe taxa associated with palms and determine their potential pathogenicity. By implementing a more rational framework for future studies on species delimitation in Diaporthe, this study provides a solid foundation to stabilise the taxonomy of species in the genus. Guidelines for species recognition, definition and identification in Diaporthe are included. Taxonomic novelties: New species: Diaporthe pygmaeae D.S. Pereira & A.J.L. Phillips. New synonyms: Diaporthe afzeliae Monkai & Lumyong, Diaporthe alangii C.M. Tian & Q. Yang, Diaporthe araliae-chinensis S.Y. Wang et al., Diaporthe australiana R.G. Shivas et al., Diaporthe australpacifica Y.P. Tan & R.G. Shivas, Diaporthe bombacis Monkai & Lumyong, Diaporthe caryae C.M. Tian & Q. Yang, Diaporthe chimonanthi (C.Q. Chang et al.) Y.H. Gao & L. Cai, Diaporthe conferta H. Dong et al., Diaporthe diospyrina Y.K. Bai & X.L. Fan, Diaporthe durionigena L.D. Thao et al., Diaporthe etinsideae Y.P. Tan & R.G. Shivas, Diaporthe eucalyptorum Crous & R.G. Shivas, Diaporthe fujianensis Jayaward. et al., Diaporthe fusiformis Jayaward. et al., Diaporthe globoostiolata Monkai & Lumyong, Diaporthe hainanensis Qin Yang, Diaporthe hongkongensis R.R. Gomes et al., Diaporthe hubeiensis Dissan. et al., Diaporthe infecunda R.R. Gomes et al., Diaporthe italiana Chethana et al., Diaporthe juglandigena S.Y. Wang et al., Diaporthe lagerstroemiae (C.Q. Chang et al.) Y.H. Gao & L. Cai, Diaporthe lithocarpi (Y.H. Gao et al.) Y.H. Gao & L. Cai, Diaporthe lutescens S.T. Huang et al., Diaporthe machili S.T. Huang et al., Diaporthe megabiguttulata M. Luo et al., Diaporthe middletonii R.G. Shivas et al., Diaporthe morindae M. Luo et al., Diaporthe nannuoshanensis S.T. Huang et al., Diaporthe nigra Brahman. & K.D. Hyde, Diaporthe orixae Q.T. Lu & Zhen Zhang, Diaporthe passifloricola Crous & M.J. Wingf., Diaporthe pimpinellae Abeywickrama et al., Diaporthe pseudoinconspicua T.G.L Oliveira et al., Diaporthe pungensis S.T. Huang et al., Diaporthe rhodomyrti C.M. Tian & Qin Yang, Diaporthe rosae M.C. Samar. & K.D. Hyde, Diaporthe rumicicola Manawas et al., Diaporthe salicicola R.G. Shivas et al., Diaporthe samaneae Monkai & Lumyong, Diaporthe subcylindrospora S.K. Huang et al., Diaporthe tectonae Doilom et al., Diaporthe tectonigena Doilom et al., Diaporthe theobromatis H. Dong et al., Diaporthe thunbergiicola Udayanga & K.D. Hyde, Diaporthe tuyouyouiae Y.P. Tan et al., Diaporthe unshiuensis F. Huang et al., Diaporthe vochysiae S.A. Noriler et al., Diaporthe xishuangbannaensis Hongsanan & K.D. Hyde, Diaporthe xylocarpi M.S. Calabon & E.B.G. Jones, Diaporthe zaobaisu Y.S. Guo & G.P. Wang, Diaporthe zhaoqingensis M. Luo et al. Citation: Pereira DS, Phillips AJL (2024). Diaporthe species on palms - integrative taxonomic approach for species boundaries delimitation in the genus Diaporthe, with the description of D. pygmaeae sp. nov. Studies in Mycology 109: 487-594. doi: 10.3114/sim.2024.109.08.
Collapse
Affiliation(s)
- D.S. Pereira
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Liu NG, Hyde KD, Sun YR, Bhat DJ, Jones EBG, Jumpathong J, Lin CG, Lu YZ, Yang J, Liu LL, Liu ZY, Liu JK. Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes. FUNGAL DIVERS 2024; 129:1-281. [DOI: 10.1007/s13225-024-00539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2024] [Indexed: 01/05/2025]
|
6
|
Song X, Geng Y, Xu C, Li J, Guo Y, Shi Y, Ma Q, Li Q, Zhang M. The complete mitochondrial genomes of five critical phytopathogenic Bipolaris species: features, evolution, and phylogeny. IMA Fungus 2024; 15:15. [PMID: 38863028 PMCID: PMC11167856 DOI: 10.1186/s43008-024-00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.
Collapse
Affiliation(s)
- Xinzheng Song
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
de Sousa LP, Mondego JMC. Leaf surface microbiota transplantation confers resistance to coffee leaf rust in susceptible Coffea arabica. FEMS Microbiol Ecol 2024; 100:fiae049. [PMID: 38599638 PMCID: PMC11141781 DOI: 10.1093/femsec/fiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/10/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
Coffee leaf rust, caused by the fungus Hemileia vastatrix, has become a major concern for coffee-producing countries. Additionally, there has been an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi, such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora and Torula, and bacteria, such as Chryseobacterium, Sphingobium and especially Enterobacter, had their populations increased and this may be related to the antagonism seen against H. vastatrix. Interestingly, the relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplantation, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust, as well as help to optimize the development of biocontrol agents.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, Campinas, 13020-902 São Paulo, Brazil
| | - Jorge Maurício Costa Mondego
- Instituto Agronômico, Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, Campinas, 13020-902 São Paulo, Brazil
| |
Collapse
|
8
|
Phookamsak R, Hongsanan S, Bhat DJ, Wanasinghe DN, Promputtha I, Suwannarach N, Kumla J, Xie N, Dawoud TM, Mortimer PE, Xu J, Lumyong S. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses. MycoKeys 2024; 104:9-50. [PMID: 38665970 PMCID: PMC11040200 DOI: 10.3897/mycokeys.104.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 04/28/2024] Open
Abstract
This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicolahongheensis, Periconiakunmingensis and Trichobotryssinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Sinang Hongsanan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Darbhe Jayarama Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Dhanushka N. Wanasinghe
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
- Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Itthayakorn Promputtha
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter E. Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Zhang Q, Meng Y, Zhao W, Wang Q, Wang X, Xue L, Xu X, Chen C. Bipolaris fujianensis sp. nov., an Emerging Pathogen of Sapling Shoot Blight on Chinese Fir, and Its Sensitivity to Fungicides. PLANT DISEASE 2024; 108:1025-1032. [PMID: 38085971 DOI: 10.1094/pdis-07-23-1254-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Chinese fir is an extremely important economic tree species in southern China. In recent years, 74.5% of Chinese fir saplings suffered from shoot blight in Shunchang County, Nanping City, Fujian Province, China. Seventeen isolates were collected from rotten shoots, and their pathogenicity was confirmed following Koch's postulates. The five pathogenic isolates were identified as belonging to the genus Bipolaris based on morphological characteristics, including septate and geniculate conidiophores, smooth to slightly verruculose conidiogenous nodes, dematiaceous phragmospore conidia, oblong or fusiform conidia, and slightly protruding or truncate hilum on conidia, but the number of pseudosepta (3 to 11, mostly 5 to 8) and the size of conidia ([22.81 to 116.13] × [9.16 to 26.58] μm) are different from those of the known species of Bipolaris. A phylogenetic analysis based on ITS, GAPDH, and Tef1-α sequences determined that the five strains belong to a new species of Bipolaris, and the name Bipolaris fujianensis sp. nov. is proposed. The fungicide sensitivity of the pathogen strain Cfsb3 was further evaluated using eight fungicides. Flusilazole, difenoconazole, tebuconazole, and propiconazole exhibited high toxicity to Cfsb3, and the effective concentration inhibiting 50% (EC50) of mycelial growth was 0.08, 0.20, 0.34, and 0.36 μg/ml, respectively, for these four fungicides. Flusilazole, difenoconazole, and iprodione inhibited B. fujianensis by 100% on detached Chinese fir shoots at their recommended concentrations, but azoxystrobin and thiram were ineffective. In conclusion, this study reported an emerging pathogen of Chinese fir sapling shoot blight and proposed triazole and dicarboximide fungicides for disease control.
Collapse
Affiliation(s)
- Qinghua Zhang
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhan Meng
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbao Zhao
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Wang
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Wang
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Xue
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaochen Xu
- Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunli Chen
- Fujian Yangkou State-Owned Forest Farm, Nanping 353299, China
| |
Collapse
|
10
|
Samaradiwakara NP, de Farias ARG, Tennakoon DS, Aluthmuhandiram JVS, Bhunjun CS, Chethana KWT, Kumla J, Lumyong S. Appendage-Bearing Sordariomycetes from Dipterocarpus alatus Leaf Litter in Thailand. J Fungi (Basel) 2023; 9:625. [PMID: 37367561 DOI: 10.3390/jof9060625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Nethmini P Samaradiwakara
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Danushka S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janith V S Aluthmuhandiram
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chitrabhanu S Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Phylogeographic Diversity Analysis of Bipolaris sorokiniana (Sacc.) Shoemaker Causing Spot Blotch Disease in Wheat and Barley. Genes (Basel) 2022; 13:genes13122206. [PMID: 36553473 PMCID: PMC9778185 DOI: 10.3390/genes13122206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Bipolaris sorokiniana is a fungal pathogen that infects wheat, barley, and other crops, causing spot blotch disease. The disease is most common in humid, warm, wheat-growing regions, with South Asia's Eastern Gangetic Plains serving as a hotspot. There is very little information known about its genetic variability, demography, and divergence period. The current work is the first to study the phylogeographic patterns of B. sorokiniana isolates obtained from various wheat and barley-growing regions throughout the world, with the goal of elucidating the demographic history and estimating divergence times. In this study, 162 ITS sequences, 18 GAPDH sequences, and 74 TEF-1α sequences from B. sorokiniana obtained from the GenBank, including 21 ITS sequences produced in this study, were used to analyse the phylogeographic pattern of distribution and evolution of B. sorokiniana infecting wheat and barley. The degrees of differentiation among B. sorokiniana sequences from eighteen countries imply the presence of a broad and geographically undifferentiated global population. The study provided forty haplotypes. The H_1 haplotype was identified to be the ancestral haplotype, followed by H_29 and H_27, with H_1 occupying a central position in the median-joining network and being shared by several populations from different continents. The phylogeographic patterns of species based on multi-gene analysis, as well as the predominance of a single haplotype, suggested that human-mediated dispersal may have played a significant role in shaping this pathogen's population. According to divergence time analysis, haplogroups began at the Plio/Pleistocene boundary.
Collapse
|
13
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
14
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Su W, Xu R, Bhunjun CS, Tian S, Dai Y, Li Y, Phukhamsakda C. Diversity of Ascomycota in Jilin: Introducing Novel Woody Litter Taxa in Cucurbitariaceae. J Fungi (Basel) 2022; 8:jof8090905. [PMID: 36135630 PMCID: PMC9501381 DOI: 10.3390/jof8090905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Cucurbitariaceae has a high biodiversity worldwide on various hosts and is distributed in tropical and temperate regions. Woody litters collected in Changchun, Jilin Province, China, revealed a distinct collection of fungi in the family Cucurbitariaceae based on morphological and molecular data. Phylogenetic analyses of the concatenated matrix of the internal transcribed spacer (ITS) region, the large subunit (LSU) of ribosomal DNA, the RNA polymerase II subunit (rpb2), the translation elongation factor 1-alpha (tef1-α) and β-tubulin (β-tub) genes indicated that the isolates represent Allocucurbitaria and Parafenestella species based on maximum likelihood (ML), maximum parsimony (MP) and Bayesian analysis (BPP). We report four novel species: Allocucurbitaria mori, Parafenestella changchunensis, P. ulmi and P. ulmicola. The importance of five DNA markers for species-level identification in Cucurbitariaceae was determined by Assemble Species by Automatic Partitioning (ASAP) analyses. The protein-coding gene β-tub is determined to be the best marker for species level identification in Cucurbitariaceae.
Collapse
Affiliation(s)
- Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yueting Dai
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (C.P.)
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (C.P.)
| |
Collapse
|
16
|
Torres-Garcia D, García D, Cano-Lira JF, Gené J. Two Novel Genera, Neostemphylium and Scleromyces (Pleosporaceae) from Freshwater Sediments and Their Global Biogeography. J Fungi (Basel) 2022; 8:jof8080868. [PMID: 36012856 PMCID: PMC9409710 DOI: 10.3390/jof8080868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Although the Pleosporaceae is one of the species-richest families in the Pleosporales, research into less-explored substrates can contribute to widening the knowledge of its diversity. In our ongoing survey on culturable Ascomycota from freshwater sediments in Spain, several pleosporacean specimens of taxonomic interest were isolated. Phylogenetic analyses based on five gene markers (ITS, LSU, gapdh, rbp2, and tef1) revealed that these fungi represent so far undescribed lineages, which are proposed as two novel genera in the family, i.e., Neostemphylium typified by Neostemphylium polymorphum sp. nov., and Scleromyces to accommodate Scleromyces submersus sp. nov. Neostemphylium is characterized by the production of phaeodictyospores from apically swollen and darkened conidiogenous cells, the presence of a synanamorph that consists of cylindrical and brown phragmoconidia growing terminally or laterally on hyphae, and by the ability to produce secondary conidia by a microconidiation cycle. Scleromyces is placed phylogenetically distant to any genera in the family and only produces sclerotium-like structures in vitro. The geographic distribution and ecology of N. polymorphum and Sc. submersus were inferred from metabarcoding data using the GlobalFungi database. The results suggest that N. polymorphum is a globally distributed fungus represented by environmental sequences originating primarily from soil samples collected in Australia, Europe, and the USA, whereas Sc. submersus is a less common species that has only been found associated with one environmental sequence from an Australian soil sample. The phylogenetic analyses of the environmental ITS1 and ITS2 sequences revealed at least four dark taxa that might be related to Neostemphylium and Scleromyces. The phylogeny presented here allows us to resolve the taxonomy of the genus Asteromyces as a member of the Pleosporaceae.
Collapse
|
17
|
Manzar N, Kashyap AS, Maurya A, Rajawat MVS, Sharma PK, Srivastava AK, Roy M, Saxena AK, Singh HV. Multi-Gene Phylogenetic Approach for Identification and Diversity Analysis of Bipolaris maydis and Curvularia lunata Isolates Causing Foliar Blight of Zea mays. J Fungi (Basel) 2022; 8:802. [PMID: 36012790 PMCID: PMC9410300 DOI: 10.3390/jof8080802] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Bipolaris species are known to be important plant pathogens that commonly cause leaf spot, root rot, and seedling blight in a wide range of hosts worldwide. In 2017, complex symptomatic cases of maydis leaf blight (caused by Bipolaris maydis) and maize leaf spot (caused by Curvularia lunata) have become increasingly significant in the main maize-growing regions of India. A total of 186 samples of maydis leaf blight and 129 maize leaf spot samples were collected, in 2017, from 20 sampling sites in the main maize-growing regions of India to explore the diversity and identity of this pathogenic causal agent. A total of 77 Bipolaris maydis isolates and 74 Curvularia lunata isolates were screened based on morphological and molecular characterization and phylogenetic analysis based on ribosomal markers-nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region, 28S nuclear ribosomal large subunit rRNA gene (LSU), D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA), and protein-coding gene-glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Due to a dearth of molecular data from ex-type cultures, the use of few gene regions for species resolution, and overlapping morphological features, species recognition in Bipolaris has proven difficult. The present study used the multi-gene phylogenetic approach for proper identification and diversity of geographically distributed B. maydis and C. lunata isolates in Indian settings and provides useful insight into and explanation of its quantitative findings.
Collapse
Affiliation(s)
- Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Abhijeet Shankar Kashyap
- Molecular Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India
| | - Avantika Maurya
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Mahendra Vikram Singh Rajawat
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Pawan Kumar Sharma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Alok Kumar Srivastava
- Microbial Technology Unit I, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India;
| | - Manish Roy
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| | - Harsh Vardhan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| |
Collapse
|
18
|
Ikeda S, Okazaki K, Tsurumaru H, Suzuki T, Hirafuji M. Effects of Different Types of Additional Fertilizers on Root-associated Microbes of Napa Cabbage Grown in an Andosol Field in Japan. Microbes Environ 2022; 37. [PMID: 35650110 PMCID: PMC9530736 DOI: 10.1264/jsme2.me22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of different types of additional fertilizations (a compound fertilizer and Chiyoda-kasei) on the root-associated microbes of napa cabbage grown in an Andosol field were investigated by molecular community ana-lyses. Most of the closest known species of the bacterial sequences whose relative abundance significantly differed among fertilizers were sensitive to nitrogen fertilization and/or related to the geochemical cycles of nitrogen. The fungal community on the roots of napa cabbage was dominated by two genera, Bipolaris and Olpidium. The relative abundance of these two genera was affected by the types of fertilizers to some extent and showed a strong negative correlation.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | | |
Collapse
|
19
|
Molecular phylogeny and morphology reveal two new graminicolous species, Bipolaris adikaramae sp. nov and B. petchii sp. nov., with new records of fungi from cultivated rice and weedy grass hosts. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Xu R, Su W, Tian S, Bhunjun CS, Tibpromma S, Hyde KD, Li Y, Phukhamsakda C. Synopsis of Leptosphaeriaceae and Introduction of Three New Taxa and One New Record from China. J Fungi (Basel) 2022; 8:416. [PMID: 35628672 PMCID: PMC9146790 DOI: 10.3390/jof8050416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Leptosphaeriaceae, a diverse family in the order Pleosporales, is remarkable for its scleroplectenchymatous or plectenchymatous peridium cells. Four Leptosphaeriaceae species were discovered and studied during the investigation of saprobic fungi from plant substrates in China. Novel taxa were defined using multiloci phylogenetic analyses and are supported by morphology. Based on maximum likelihood (ML) and Bayesian inference (BI) analyses, these isolates represent three novel taxa and one new record within Leptosphaeriaceae. A new genus, Angularia, is introduced to accommodate Angularia xanthoceratis, with a synopsis chart for 15 genera in Leptosphaeriaceae. This study also revealed a new species, Plenodomus changchunensis, and a new record of Alternariaster centaureae-diffusae. These species add to the increasing number of fungi known from China.
Collapse
Affiliation(s)
- Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (W.S.); (S.T.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (W.S.); (S.T.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (W.S.); (S.T.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (C.S.B.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saowaluck Tibpromma
- The Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (C.S.B.); (K.D.H.)
- China Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (W.S.); (S.T.)
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (W.S.); (S.T.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| |
Collapse
|
21
|
|
22
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
23
|
Singh V, Lakshman DK, Roberts DP, Ismaiel A, Abhishek A, Kumar S, Hooda KS. Fungal Species Causing Maize Leaf Blight in Different Agro-Ecologies in India. Pathogens 2021; 10:1621. [PMID: 34959576 PMCID: PMC8705428 DOI: 10.3390/pathogens10121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Foliar diseases of maize cause severe economic losses in India and around the world. The increasing severity of maize leaf blight (MLB) over the past ten years necessitates rigorous identification and characterization of MLB-causing pathogens from different maize production zones to ensure the success of resistance breeding programs and the selection of appropriate disease management strategies. Although Bipolaris maydis is the primary pathogen causing MLB in India, other related genera such as Curvularia, Drechslera, and Exserohilum, and a taxonomically distant genus, Alternaria, are known to infect maize in other countries. To investigate the diversity of pathogens associated with MLB in India, 350 symptomatic leaf samples were collected between 2016 and 2018, from 20 MLB hotspots in nine states representing six ecological zones where maize is grown in India. Twenty representative fungal isolates causing MLB symptoms were characterized based on cultural, pathogenic, and molecular variability. Internal Transcribed Spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (GADPH) gene sequence-based phylogenies showed that the majority of isolates (13/20) were Bipolaris maydis. There were also two Curvularia papendorfii isolates, and one isolate each of Bipolaris zeicola, Curvularia siddiquii, Curvularia sporobolicola, an unknown Curvularia sp. isolate phylogenetically close to C. graminicola, and an Alternaria sp. isolate. The B. zeicola, the aforesaid four Curvularia species, and the Alternaria sp. are the first reports of these fungi causing MLB in India. Pathogenicity tests on maize plants showed that isolates identified as Curvularia spp. and Alternaria sp. generally caused more severe MLB symptoms than those identified as Bipolaris spp. The diversity of fungi causing MLB, types of lesions, and variation in disease severity by different isolates described in this study provide baseline information for further investigations on MLB disease distribution, diagnosis, and management in India.
Collapse
Affiliation(s)
- Vimla Singh
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University Regional Research Station, Karnal 132001, India
| | - Dilip K. Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Daniel P. Roberts
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Adnan Ismaiel
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Alok Abhishek
- ICAR-Indian Institute of Maize Research (Delhi Unit), Pusa Campus, New Delhi 110012, India;
| | - Shrvan Kumar
- Department of Mycology and Plant Pathology, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, India;
| | - Karambir S. Hooda
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| |
Collapse
|
24
|
Hurdeal VG, Gentekaki E, Hyde KD, Nguyen TTT, Lee HB. Novel Mucor species (Mucoromycetes, Mucoraceae) from northern Thailand. MycoKeys 2021; 84:57-78. [PMID: 34759734 PMCID: PMC8575866 DOI: 10.3897/mycokeys.84.71530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
Mucor species are common fast-growing fungi found in soil. Two new species of Mucor and one new geographical record of M.nederlandicus were collected from northern Thailand and are described in this study. Evidence from morphophysiological data and phylogenetic analysis supports the introduction of the new taxa. Phylogenetic analysis based on the internal transcribed spacer (ITS) and large subunit of the nuclear ribosomal RNA (LSU) data showed that the new isolates cluster distinctly from other Mucor species with high or maximum bootstrap support. Mucoraseptatophorus is characterized by aseptate sporangiophores, globose columella, resistant and deliquescent sporangia, has sympodial, and monopodial branches and shows growth at 37 °C. It also differs from M.irregularis in having smaller sporangiospores, and larger sporangia. Mucorchiangraiensis has subglobose or slightly elongated globose columella, produces hyaline sporangiospores, and resistant and deliquescent sporangia. Furthermore, this species has wider sporangiophore, smaller sporangia and lower growth than M.nederlandicus. A detailed description of the species and illustrations are provided for the novel species.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Thuong T T Nguyen
- Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
25
|
Bhunjun CS, Phillips AJL, Jayawardena RS, Promputtha I, Hyde KD. Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch's Postulates. Pathogens 2021; 10:1096. [PMID: 34578129 PMCID: PMC8465164 DOI: 10.3390/pathogens10091096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/02/2022] Open
Abstract
Fungi are an essential component of any ecosystem, but they can also cause mild and severe plant diseases. Plant diseases are caused by a wide array of fungal groups that affect a diverse range of hosts with different tissue specificities. Fungi were previously named based only on morphology and, in many cases, host association, which has led to superfluous species names and synonyms. Morphology-based identification represents an important method for genus level identification and molecular data are important to accurately identify species. Accurate identification of fungal pathogens is vital as the scientific name links the knowledge concerning a species including the biology, host range, distribution, and potential risk of the pathogen, which are vital for effective control measures. Thus, in the modern era, a polyphasic approach is recommended when identifying fungal pathogens. It is also important to determine if the organism is capable of causing host damage, which usually relies on the application of Koch's postulates for fungal plant pathogens. The importance and the challenges of applying Koch's postulates are discussed. Bradford Hill criteria, which are generally used in establishing the cause of human disease, are briefly introduced. We provide guidelines for pathogenicity testing based on the implementation of modified Koch's postulates incorporating biological gradient, consistency, and plausibility criteria from Bradford Hill. We provide a set of protocols for fungal pathogenicity testing along with a severity score guide, which takes into consideration the depth of lesions. The application of a standard protocol for fungal pathogenicity testing and disease assessment in plants will enable inter-studies comparison, thus improving accuracy. When introducing novel plant pathogenic fungal species without proving the taxon is the causal agent using Koch's postulates, we advise the use of the term associated with the "disease symptoms" of "the host plant". Where possible, details of disease symptoms should be clearly articulated.
Collapse
Affiliation(s)
- Chitrabhanu S. Bhunjun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kevin D. Hyde
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
26
|
Karunarathna A, Tibpromma S, Jayawardena RS, Nanayakkara C, Asad S, Xu J, Hyde KD, Karunarathna SC, Stephenson SL, Lumyong S, Kumla J. Fungal Pathogens in Grasslands. Front Cell Infect Microbiol 2021; 11:695087. [PMID: 34434901 PMCID: PMC8381356 DOI: 10.3389/fcimb.2021.695087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Grasslands are major primary producers and function as major components of important watersheds. Although a concise definition of grasslands cannot be given using a physiognomic or structural approach, grasslands can be described as vegetation communities experiencing periodical droughts and with canopies dominated by grasses and grass-like plants. Grasslands have a cosmopolitan distribution except for the Antarctic region. Fungal interactions with grasses can be pathogenic or symbiotic. Herbivorous mammals, insects, other grassland animals, and fungal pathogens are known to play important roles in maintaining the biomass and biodiversity of grasslands. Although most pathogenicity studies on the members of Poaceae have been focused on economically important crops, the plant-fungal pathogenic interactions involved can extend to the full range of ecological circumstances that exist in nature. Hence, it is important to delineate the fungal pathogen communities and their interactions in man-made monoculture systems and highly diverse natural ecosystems. A better understanding of the key fungal players can be achieved by combining modern techniques such as next-generation sequencing (NGS) together with studies involving classic phytopathology, taxonomy, and phylogeny. It is of utmost importance to develop experimental designs that account for the ecological complexity of the relationships between grasses and fungi, both above and below ground. In grasslands, loss in species diversity increases interactions such as herbivory, mutualism, predation or infectious disease transmission. Host species density and the presence of heterospecific host species, also affect the disease dynamics in grasslands. Many studies have shown that lower species diversity increases the severity as well as the transmission rate of fungal diseases. Moreover, communities that were once highly diverse but have experienced decreased species richness and dominancy have also shown higher pathogenicity load due to the relaxed competition, although this effect is lower in natural communities. This review addresses the taxonomy, phylogeny, and ecology of grassland fungal pathogens and their interactions in grassland ecosystems.
Collapse
Affiliation(s)
- Anuruddha Karunarathna
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Saowaluck Tibpromma
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Ruvishika S Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianchu Xu
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Samantha C Karunarathna
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
|
28
|
|
29
|
Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T, Mallátová N, Man M, Mencl K, Nenoff P, Peano A, Prausová H, Stubbe D, Uhrlaß S, Větrovský T, Wiegand C, Hubka V. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00465-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S. The numbers of fungi: is the descriptive curve flattening? FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00458-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|