1
|
Mo A, Paz‐Ebstein E, Yanovsky‐Dagan S, Lai A, Mor‐Shaked H, Gilboa T, Yang E, Shao DD, Walsh CA, Harel T. A recurrent de novo variant in NUSAP1 escapes nonsense-mediated decay and leads to microcephaly, epilepsy, and developmental delay. Clin Genet 2023; 104:73-80. [PMID: 37005340 PMCID: PMC10236379 DOI: 10.1111/cge.14335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
NUSAP1 encodes a cell cycle-dependent protein with key roles in mitotic progression, spindle formation, and microtubule stability. Both over- and under-expression of NUSAP1 lead to dysregulation of mitosis and impaired cell proliferation. Through exome sequencing and Matchmaker Exchange, we identified two unrelated individuals with the same recurrent, de novo heterozygous variant (NM_016359.5 c.1209C > A; p.(Tyr403Ter)) in NUSAP1. Both individuals had microcephaly, severe developmental delay, brain abnormalities, and seizures. The gene is predicted to be tolerant of heterozygous loss-of-function mutations, and we show that the mutant transcript escapes nonsense mediated decay, suggesting that the mechanism is likely dominant-negative or toxic gain of function. Single-cell RNA-sequencing of an affected individual's post-mortem brain tissue indicated that the NUSAP1 mutant brain contains all main cell lineages, and that the microcephaly could not be attributed to loss of a specific cell type. We hypothesize that pathogenic variants in NUSAP1 lead to microcephaly possibly by an underlying defect in neural progenitor cells.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emuna Paz‐Ebstein
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | | | - Abbe Lai
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
| | - Hagar Mor‐Shaked
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Tal Gilboa
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Pediatric Neurology UnitHadassah Medical CenterJerusalemIsrael
| | - Edward Yang
- Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Diane D. Shao
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMassachusettsUSA
| | - Tamar Harel
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
2
|
Lin X, Liu F, Meng K, Liu H, Zhao Y, Chen Y, Hu W, Luo D. Comprehensive Transcriptome Analysis Reveals Sex-Specific Alternative Splicing Events in Zebrafish Gonads. Life (Basel) 2022; 12:life12091441. [PMID: 36143477 PMCID: PMC9501657 DOI: 10.3390/life12091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Alternative splicing is an important way of regulating gene functions in eukaryotes. Several key genes involved in sex determination and gonadal differentiation, such as nr5a1 and ddx4, have sex-biased transcripts between males and females, suggesting a potential regulatory role of alternative splicing in gonads. Currently, the sex-specific alternative splicing events and genes have not been comprehensively studied at the genome-wide level in zebrafish. In this study, through global splicing analysis on three independent sets of RNA-seq data from matched zebrafish testes and ovaries, we identified 120 differentially spliced genes shared by the three datasets, most of which haven’t been reported before. Functional enrichment analysis showed that the GO terms of mRNA processing, mRNA metabolism and microtubule-based process were strongly enriched. The testis- and ovary-biased alternative splicing genes were identified, and part of them (tp53bp1, tpx2, mapre1a, kif2c, and ncoa5) were further validated by RT-PCR. Sequence characteristics analysis suggested that the lengths, GC contents, and splice site strengths of the alternative exons or introns may have different influences in different types of alternative splicing events. Interestingly, we identified an unexpected high proportion (over 70%) of non-frameshift exon-skipping events, suggesting that in these cases the two protein isoforms derived from alternative splicing may both have functions. Furthermore, as a representative example, we found that the alternative splicing of ncoa5 causes the loss of a conserved RRM domain in the short transcript predominantly produced in testes. Our study discovers novel sex-specific alternative splicing events and genes with high reliabilities in zebrafish testes and ovaries, which would provide attractive targets for follow-up studies to reveal the biological significances of alternative splicing events and genes in sex determination and gonadal differentiation.
Collapse
Affiliation(s)
- Xing Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (D.L.)
| | - Kaifeng Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hairong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanyuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: (F.L.); (D.L.)
| |
Collapse
|
3
|
Silva DMZA, Castro JP, Goes CAG, Utsunomia R, Vidal MR, Nascimento CN, Lasmar LF, Paim FG, Soares LB, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. B Chromosomes in Psalidodon scabripinnis (Characiformes, Characidae) Species Complex. Animals (Basel) 2022; 12:2174. [PMID: 36077895 PMCID: PMC9454733 DOI: 10.3390/ani12172174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
B chromosomes are extra-genomic components of cells found in individuals and in populations of some eukaryotic organisms. They have been described since the first observations of chromosomes, but several aspects of their biology remain enigmatic. Despite being present in hundreds of fungi, plants, and animal species, only a small number of B chromosomes have been investigated through high-throughput analyses, revealing the remarkable mechanisms employed by these elements to ensure their maintenance. Populations of the Psalidodon scabripinnis species complex exhibit great B chromosome diversity, making them a useful material for various analyses. In recent years, important aspects of their biology have been revealed. Here, we review these studies presenting a comprehensive view of the B chromosomes in the P. scabripinnis complex and a new hypothesis regarding the role of the B chromosome in the speciation process.
Collapse
Affiliation(s)
- Duílio M. Z. A. Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Jonathan P. Castro
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Caio A. G. Goes
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Ricardo Utsunomia
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
- Laboratory of Fish Genetics, Department of Genetics, Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Mateus R. Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Cristiano N. Nascimento
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Lucas F. Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fabilene G. Paim
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Letícia B. Soares
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fábio Porto-Foresti
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Roberto F. Artoni
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
4
|
Hu Y, Xue Z, Qiu C, Feng Z, Qi Q, Wang J, Jin W, Zhong Z, Liu X, Li W, Zhang Q, Huang B, Chen A, Wang J, Yang N, Zhou W. Knockdown of NUSAP1 inhibits cell proliferation and invasion through downregulation of TOP2A in human glioblastoma. Cell Cycle 2022; 21:1842-1855. [PMID: 35532155 PMCID: PMC9359390 DOI: 10.1080/15384101.2022.2074199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nucleolar and spindle associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development, progression, and metastasis of several types of cancer. Here, we investigated the expression and biological function of NUSAP1 in human glioblastoma (GBM), an aggressive brain tumor type with largely ineffective treatment options. Analysis of the molecular data in CGGA, TCGA and Rembrandt datasets demonstrated that NUSAP1 was significantly upregulated in GBM relative to low grade gliomas and non-neoplastic brain tissue samples. Kaplan-Meier analysis indicated that patients with tumors showing high NUSAP1 expression exhibited significantly poorer survival in both CGGA (P = 0.002) and Rembrandt cohorts (P = 0.017). Analysis of RNA sequencing data from P3-cells with stable knockdown of NUSAP1 revealed topoisomerase 2A (TOP2A) as a possible molecule downregulated by the loss of NUSAP1. Molecular analysis of the CGGA data revealed a strong correlation between NUSAP1 and TOP2A expression in primary gliomas and recurrent gliomas samples. SiRNA knockdown of either NUSAP1 or TOP2A in U251, T98 and GBM derived patient P3 cells inhibited GBM cell proliferation and invasion, and induced cell apoptosis. Finally, stable knockdown of NUSAP1 with shRNA led to decreased tumor growth in an orthotopic xenograft model of GBM in mice. Taken together, NUSAP1 gene silencing induced apoptosis possibly through the downregulation of the candidate downstream molecule TOP2A. Interference with the expression of NUSAP1 might therefore inhibit malignant progression in GBM, and NUSAP1 might thus serve as a promising molecular target for GBM treatment.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxing Jin
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhaoyang Zhong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Biomedicine, University of Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhang L, Dang Y, Wang Y, Fan X. Nucleolar and spindle-associated protein 1 accelerates cellular proliferation and invasion in nasopharyngeal carcinoma by potentiating Wnt/β-catenin signaling via modulation of GSK-3β. J Bioenerg Biomembr 2020; 52:441-451. [PMID: 33196964 DOI: 10.1007/s10863-020-09860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a pivotal tumor-related protein that has been implicated in the progression of broad spectrum of tumors. However, no detailed study of the role of NUSAP1 in nasopharyngeal carcinoma (NPC) has been reported. The aim of this work is to enhance our understanding of NUSAP1 in the progression of NPC. By analyzing data available within the Oncomine database, we found that NUSAP1 expression was elevated in NPC relative to normal tissues. Further, we showed that NUSAP1 expression in clinical specimens of NPC and several NPC cell lines was elevated. Down-regulation of NUSAP1 by gene silencing markedly depleted the capacity of NPC cells to proliferate and invade. Contrastingly, overexpression of NUSAP1 potentiated the proliferative and invasive abilities of NPC cells. Further mechanistic research revealed that NUSAP1 knockdown decreased levels of Wnt/β-catenin signaling in NPC cells via a mechanism associated with downregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. However, suppression of GSK-3β markedly abolished the inhibitory effect of NUSAP1 knockdown on Wnt/β-catenin signaling. Further, inhibition of Wnt/β-catenin signaling partially reversed NUSAP1-mediated tumor growth in NPC cells. In addition, NUSAP1 knockdown restrained tumorigenesis of NPC in vivo, and was associated with down-regulation of Wnt/β-catenin signaling. In conclusion, these findings demonstrate that NUSAP1 is capable of accelerating proliferation and invasion in NPC cells by potentiating Wnt/β-catenin signaling. Our study unveils a potential role of NUSAP1 in promoting NPC tumors and suggests that the protein is an attractive antitumor target for NPC treatment.
Collapse
Affiliation(s)
- Ligang Zhang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Yabin Dang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Ying Wang
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China
| | - Xin Fan
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China.
| |
Collapse
|
6
|
Li L, Zhu M, Huang H, Wu J, Meng D. Identification of Hub Genes in Anaplastic Thyroid Carcinoma: Evidence From Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820962135. [PMID: 33025856 PMCID: PMC7545761 DOI: 10.1177/1533033820962135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare type of thyroid cancer that results in fatal clinical outcomes; the pathogenesis of this life-threatening disease has yet to be fully elucidated. This study aims to identify the hub genes of ATC that may play key roles in ATC development and could serve as prognostic biomarkers or therapeutic targets. Two microarray datasets (GSE33630 and GSE53072) were obtained from the Gene Expression Omnibus database; these sets included 16 ATC and 49 normal thyroid samples. Differential expression analyses were performed for each dataset, and 420 genes were screened as common differentially expressed genes using the robust rank aggregation method. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential bio-functions of these differentially expressed genes (DEGs). The terms and enriched pathways were primarily associated with cell cycle, cell adhesion, and cancer-related signaling pathways. Furthermore, a protein-protein interaction network of DEG expression products was constructed using Cytoscape. Based on the whole network, we identified 7 hub genes that included CDK1, TOP2A, CDC20, KIF11, CCNA2, NUSAP1, and KIF2C. The expression levels of these hub genes were validated using quantitative polymerase chain reaction analyses of clinical specimens. In conclusion, the present study identified several key genes that are involved in ATC development and provides novel insights into the understanding of the molecular mechanisms of ATC development.
Collapse
Affiliation(s)
- Liqi Li
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Mingjie Zhu
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Hu Huang
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Junqiang Wu
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Dong Meng
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
7
|
Li H, Kittur FS, Hung CY, Li PA, Ge X, Sane DC, Xie J. Quantitative Proteomics Reveals the Beneficial Effects of Low Glucose on Neuronal Cell Survival in an in vitro Ischemic Penumbral Model. Front Cell Neurosci 2020; 14:272. [PMID: 33033473 PMCID: PMC7491318 DOI: 10.3389/fncel.2020.00272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.5 h with 0.69 mM low glucose (H+LG) could mimic ischemic penumbral cells since they had much higher cell viability and viable cell number compared to hypoxia without glucose (H-G) treatment. To validate established cell-based ischemic penumbral model and understand the beneficial effects of low glucose (LG), quantitative proteomics analysis was performed on H+LG, H-G, and normoxia with normal 22 mM glucose (N+G) treated cells. We identified 427 differentially abundant proteins (DAPs) between H-G and N+G and further identified 105 DAPs between H+LG and H-G. Analysis of 105 DAPs revealed that LG promotes cell survival by activating HIF1α to enhance glycolysis; preventing the dysregulations of extracellular matrix remodeling, cell cycle and division, and antioxidant and detoxification; as well as attenuating inflammatory reaction response, protein synthesis and neurotransmission activity. Our results demonstrated that this established cell-based system could mimic penumbral conditions and can be used for molecular studies.
Collapse
Affiliation(s)
- Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xinghong Ge
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States.,Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - David C Sane
- Carilion Clinic, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
8
|
Guan C, Liu Z, Lu C, Xiao M, Shi H, Ni R, Bian Z. Nucleolar spindle-associated protein 1 promotes tumorigenesis and predicts poor prognosis in human esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:11726-11737. [PMID: 30793360 DOI: 10.1002/jcb.28452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The microtubule binding protein, nucleolar spindle-associated protein 1 (NUSAP1), has a crucial function in mitosis and its expression is closely associated with carcinogenesis. Herein, we aimed to determine the function of NUSAP1 in the development of human esophageal squamous cell carcinoma (ESCC), and the association of NUSAP1 expression with ESCC. Immunohistochemical staining of ESCC tissue sections indicated that NUSAP1 was expressed to a higher degree in tumor tissues than in adjacent nontumor tissues. NUSAP1 levels were relevant closely to histological differentiation (P = 0.049). Overall survival was longer in patients with lower NUSAP1 levels ( P < 0.001). NUSAP1 expression ( P = 0.002), histological differentiation ( P < 0.001), tumor depth ( P = 0.045), lymph node metastases ( P < 0.001), and tumor-node-metastasis staging ( P = 0.008) were greatly associated with overall survival using univariate analysis. Multivariate analysis suggested that histological differentiation ( P = 0.014) and NUSAP1 expression ( P = 0.026) could be independent prognostic markers for ESCC. Additionally, the biological behavior of ESCC cells was investigated in vitro and in vivo. Suppression of NUSAP1 inhibited cellular proliferation and invasion, and induced cell cycle arrest and apoptosis in vitro. More importantly, knockdown of NUSAP1 led to inhibition of tumor formation in nude mice. These findings indicated that NUSAP1 is a potential prognostic biomarker in ESCC, and is an ESCC oncogene. Thus, NUSAP1 could represent a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chengqi Guan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaolian Bian
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Disease, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Zhang X, Pan Y, Fu H, Zhang J. Nucleolar and Spindle Associated Protein 1 (NUSAP1) Inhibits Cell Proliferation and Enhances Susceptibility to Epirubicin In Invasive Breast Cancer Cells by Regulating Cyclin D Kinase (CDK1) and DLGAP5 Expression. Med Sci Monit 2018; 24:8553-8564. [PMID: 30476929 PMCID: PMC6278864 DOI: 10.12659/msm.910364] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Differentially expressed genes (DEGs) of IBC were selected from the Gene Expression Omnibus (GEO) chip data: GSE21422 and GSE21974. Network analysis of the DEGs and IBC-related genes was performed in STRING database to find the core gene. Thus, this study aimed to determine the role of NUSAP1 in invasive breast cancer (IBC) and to investigate its effect on drug susceptibility to epirubicin (E-ADM). MATERIAL AND METHODS The mRNA expression of NUSAP1 was determined by quantitative polymerase chain reaction (q-PCR). The protein expression was detected by Western blotting. Cell growth and growth cycle were detected by MTT assay and flow cytometry, respectively. Cell migration and invasion were tested by Transwell assay. RESULTS Through use of gene network analysis, we found that NUSAP1 interacts with IBC-related genes. NUSAP1 presented high expression in IBC tissue samples and MCF-7 cells. NUSAP1 overexpression promoted the growth, migration, and invasion of MCF-7 cells. While NUSAP1 gene silencing downregulated the expression of genes associated with cell cycle progression in G2/M phase, cyclin D kinase (CDK1) and DLGAP5 arrested cells in G2/M phase and significantly inhibited the growth, migration, and invasion of MCF-7 cells. si-NUSAP1 increased the susceptibility of MCF-7 cells to E-ADM-induced apoptosis. CONCLUSIONS Our study provides evidence that downregulation of NUSAP1 can inhibit the proliferation, migration, and invasion of IBC cells by regulating CDK1 and DLGAP5 expression and enhances the drug susceptibility to E-ADM.
Collapse
|
10
|
Choudhary I, Lee H, Pyo MJ, Heo Y, Chae J, Yum SS, Kang C, Kim E. Proteomic Investigation to Identify Anticancer Targets of Nemopilema nomurai Jellyfish Venom in Human Hepatocarcinoma HepG2 Cells. Toxins (Basel) 2018; 10:E194. [PMID: 29748501 PMCID: PMC5983250 DOI: 10.3390/toxins10050194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/30/2022] Open
Abstract
Nemopilema nomurai is a giant jellyfish that blooms in East Asian seas. Recently, N. nomurai venom (NnV) was characterized from a toxicological and pharmacological point of view. A mild dose of NnV inhibits the growth of various kinds of cancer cells, mainly hepatic cancer cells. The present study aims to identify the potential therapeutic targets and mechanism of NnV in the growth inhibition of cancer cells. Human hepatocellular carcinoma (HepG2) cells were treated with NnV, and its proteome was analyzed using two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS). The quantity of twenty four proteins in NnV-treated HepG2 cells varied compared to non-treated control cells. Among them, the amounts of fourteen proteins decreased and ten proteins showed elevated levels. We also found that the amounts of several cancer biomarkers and oncoproteins, which usually increase in various types of cancer cells, decreased after NnV treatment. The representative proteins included proliferating cell nuclear antigen (PCNA), glucose-regulated protein 78 (GRP78), glucose-6-phosphate dehydrogenase (G6PD), elongation factor 1γ (EF1γ), nucleolar and spindle-associated protein (NuSAP), and activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1). Western blotting also confirmed altered levels of PCNA, GRP78, and G6PD in NnV-treated HepG2 cells. In summary, the proteomic approach explains the mode of action of NnV as an anticancer agent. Further characterization of NnV may help to unveil novel therapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Hyunkyoung Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Min Jung Pyo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Yunwi Heo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, Gunpo 15850, Korea.
| | - Seung Shic Yum
- South Sea Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Korea.
- Faculty of Marine Environmental Science, University of Science and technology (UST), Geoje 53201, Korea.
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
- Institutes of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
11
|
Gordon CA, Gong X, Ganesh D, Brooks JD. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget 2018; 8:29935-29950. [PMID: 28404898 PMCID: PMC5444715 DOI: 10.18632/oncotarget.15604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/25/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously identified nucleolar and spindle associated protein 1 (NUSAP1) as a prognostic biomarker in early stage prostate cancer. To better understand the role of NUSAP1 in prostate cancer progression, we tested the effects of increased and decreased NUSAP1 expression in cell lines, in vivo models, and patient samples. NUSAP1 promotes invasion, migration, and metastasis, possibly by modulating family with sequence similarity 101 member B (FAM101B), a transforming growth factor beta 1 (TGFβ1) signaling effector involved in the epithelial to mesenchymal transition. Our findings provide insights into the importance of NUSAP1 in prostate cancer progression and provide a rationale for further study of NUSAP1 function, regulation, and clinical utility.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xue Gong
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Durga Ganesh
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Zhu T, Xie P, Gao YF, Huang MS, Li X, Zhang W, Zhou HH, Liu ZQ. Nucleolar and spindle-associated protein 1 is a tumor grade correlated prognosis marker for glioma patients. CNS Neurosci Ther 2018; 24:178-186. [PMID: 29336114 DOI: 10.1111/cns.12803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/26/2017] [Accepted: 12/24/2017] [Indexed: 02/02/2023] Open
Abstract
AIMS Despite therapeutic advances in glioma management including surgery, radiation, and chemotherapy, the improvement of patient outcome is far from satisfactory. Nucleolar and spindle-associated protein 1 (NUSAP1) is an important functional protein during mitosis, and its abnormal expression is implicated in progression of different types of tumors. However, the role of NUSAP1 in gliomas remains unclear. METHODS NUSAP1 expression in gliomas with different grades was investigated based on GEO glioma datasets. Kaplan-Meier survival analysis was used to evaluate its prognostic significance. In vitro assays were also performed to evaluate effects of NUSAP1 on malignant phenotypes of glioma cells by silencing NUSAP1. RESULTS NUSAP1 expression was correlated not only with glioma grade but also with prognosis of glioma patients. NUSAP1 depletion suppressed proliferation of U251 cells by inducing cell cycle arrest at G2/M phase and apoptosis. NUSAP1 depletion rendered U251 cells impaired migratory ability as well. CONCLUSION NUSAP1 is a potential prognosis marker for glioma patients and therapeutic strategies targeting NUSAP1 might hold promise in improving glioma treatment.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Pan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| |
Collapse
|
13
|
Fang L, Zhang M, Chen L, Xiong H, Ge Y, Lu W, Wu X, Heng B, Yu D, Wu S. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses cell migration, proliferation and invasion in renal cell carcinoma. Oncol Rep 2016; 36:1506-16. [PMID: 27461786 DOI: 10.3892/or.2016.4955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-binding protein that plays an essential role in mitosis and cancer. Previous studies have demonstrated that NUSAP1 expression is relatively elevated in several malignancies. However, the biological roles of NUSAP1 in renal cell carcinoma (RCC) remain unknown. In the present study, we firstly performed reverse transcription‑polymerase chain reaction (RT-PCR) and western blot analysis to reveal that the expression of NUSAP1 was relatively elevated in clear cell RCC (ccRCC) tissue specimens and RCC cell lines. Immunohistochemical analysis showed that upregulation of NUSAP1 was significantly correlated with Fuhrman grade (P<0.001), tumor size (P=0.016), clinical stage (P<0.001) and distant metastasis (P=0.023). Additionally, high expression of NUSAP1 was closely associated with a shorter overall survival time of the ccRCC patients (P=0.006). Furthermore, we investigated the biological behaviors of RCC cells in vitro, and we identified that NUSAP1 depletion inhibited RCC cell migration, proliferation and invasion, and apoptosis was induced and the cell cycle was arrested. On the basis of our studies, NUSAP1 was identified as a potential prognostic indicator and a novel therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Lu Fang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Meng Zhang
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hu Xiong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yukun Ge
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei Lu
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xun Wu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Baoli Heng
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Song Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518037, P.R. China
| |
Collapse
|
14
|
Liu C, Niu Y, Zhou X, Xu X, Yang Y, Zhang Y, Zheng L. Cell cycle control, DNA damage repair, and apoptosis-related pathways control pre-ameloblasts differentiation during tooth development. BMC Genomics 2015; 16:592. [PMID: 26265206 PMCID: PMC4534026 DOI: 10.1186/s12864-015-1783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/16/2015] [Indexed: 02/05/2023] Open
Abstract
Background Ameloblast differentiation is the most critical stepwise process in amelogenesis, and it is controlled by precise molecular events. To better understand the mechanism controlling pre-ameloblasts (PABs) differentiation into secretory ameloblasts (SABs), a more precise identification of molecules and signaling networks will elucidate the mechanisms governing enamel formation and lay a foundation for enamel regeneration. Results We analyzed transcriptional profiles of human PABs and SABs. From a total of 28,869 analyzed transcripts, we identified 923 differentially expressed genes (DEGs) with p < 0.05 and Fold-change > 2. Among the DEGs, 647 genes showed elevated expression in PABs compared to SABs. Notably, 38 DEGs displayed greater than eight-fold changes. Comparative analysis revealed that highly expressed genes in PABs were involved in cell cycle control, DNA damage repair and apoptosis, while highly expressed genes in SABs were related to cell adhesion and extracellular matrix. Moreover, coexpression network analysis uncovered two highly conserved sub-networks contributing to differentiation, containing transcription regulators (RUNX2, ETV1 and ETV5), solute carrier family members (SLC15A1 and SLC7A11), enamel matrix protein (MMP20), and a polymodal excitatory ion channel (TRPA1). Conclusions By combining comparative analysis and coexpression networks, this study provides novel biomarkers and research targets for ameloblast differentiation and the potential for their application in enamel regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1783-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
15
|
Guedj F, Pennings JLA, Ferres MA, Graham LC, Wick HC, Miczek KA, Slonim DK, Bianchi DW. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome. Am J Med Genet A 2015; 167A:1993-2008. [PMID: 25975229 DOI: 10.1002/ajmg.a.37156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Jeroen L A Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Millie A Ferres
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Leah C Graham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| |
Collapse
|
16
|
Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate 2015; 75:517-26. [PMID: 25585568 DOI: 10.1002/pros.22938] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Overexpression of NUSAP1 is associated with poor prognosis in prostate cancer, but little is known about what leads to its overexpression. Based on previous observations that NUSAP1 expression is enhanced by E2F1, we hypothesized that NUSAP1 expression is regulated, at least in part, by loss of RB1 via the RB1/E2F1 axis. METHODS Using Significance Analysis of Microarrays, we examined RB1, E2F1, and NUSAP1 transcript levels in prostate cancer gene expression datasets. We compared NUSAP1 expression levels in DU145, LNCaP, and PC-3 prostate cancer cell lines via use of cDNA microarray data, RT-qPCR, and Western blots. In addition, we used lentiviral expression constructs to knockdown RB1 in prostate cancer cell lines and transient transfections to knockdown E2F1, and investigated RB1, E2F1, and NUSAP1 expression levels with RT-qPCR and Western blots. Finally, in DU145 cells or PC-3 cells that stably underexpress RB1, we used proliferation and invasion assays to assess whether NUSAP1 knockdown affects proliferation or invasion. RESULTS NUSAP1 transcript levels are positively correlated with E2F1 and negatively correlated with RB1 transcript levels in prostate cancer microarray datasets. NUSAP1 expression is elevated in the RB1-null DU145 prostate cancer cell line, as opposed to LNCaP and PC-3 cell lines. Furthermore, NUSAP1 expression increases upon knockdown of RB1 in prostate cancer cell lines (LNCaP and PC-3) and decreases after knockdown of E2F1. Lastly, knockdown of NUSAP1 in DU145 cells or PC-3 cells with stable knockdown of RB1 decreases proliferation and invasion of these cells. CONCLUSION Our studies support the notion that NUSAP1 expression is upregulated by loss of RB1 via the RB1/E2F1 axis in prostate cancer cells. Such upregulation may promote prostate cancer progression by increasing proliferation and invasion of prostate cancer cells. NUSAP1 may thus represent a novel therapeutic target.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
17
|
Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling. Protein Cell 2012; 3:762-8. [PMID: 22983902 DOI: 10.1007/s13238-012-2058-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/27/2012] [Indexed: 01/13/2023] Open
Abstract
We investigate the role of β-catenin signaling in the response of macrophage to lipopolysaccharide (LPS) using RAW264.7 cells. LPS rapidly stimulated cytosolic β-catenin accumulation. β-catenin-mediated transcription was showed to be required for LPS induced gene expression and cell migration. Mechanically, ERK activation-primed GSK3β inactivation by Akt was demonstrated to mediate the LPS induced β-catenin accumulation. Overall, our findings suggest that suppression of GSK3β by ERK stimulates β-catenin signaling therefore contributes to LPS induced cell migration in macrophage activation.
Collapse
|
18
|
Zhou F, Huang H, Zhang L. Bisindoylmaleimide I enhances osteogenic differentiation. Protein Cell 2012; 3:311-20. [PMID: 22549588 DOI: 10.1007/s13238-012-2027-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022] Open
Abstract
The Wnt/β-catenin and bone morphogenetic proteins (BMPs) pathways play important roles in controlling osteogenesis. Using a cell-based kinase inhibitor screening assay, we identified the compound bisindoylmaleimide I (BIM) as a potent agonist of the cytosolic β-catenin accumulation in preosteoblast cells. Through suppressing glycogen synthase kinase 3β enzyme activities, BIM upregulated β-catenin responsive transcription and extended duration of BMP initiated signal. Functional analysis revealed that BIM promoted osteoblast differentiation and bone formation. The treatment of human mesenchymal stem cells with BIM promoted osteoblastogenesis. Our findings provide a new strategy to regulate mesenchymal stem cell differentiation by integration of the cellular signaling pathways.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
19
|
Iyer J, Moghe S, Furukawa M, Tsai MY. What's Nu(SAP) in mitosis and cancer? Cell Signal 2011; 23:991-8. [DOI: 10.1016/j.cellsig.2010.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/17/2010] [Indexed: 12/30/2022]
|