1
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Jiang L, Chen H, Li C. Advances in deciphering the interactions between viral proteins of influenza A virus and host cellular proteins. CELL INSIGHT 2023; 2:100079. [PMID: 37193064 PMCID: PMC10134199 DOI: 10.1016/j.cellin.2023.100079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Influenza A virus (IAV) poses a severe threat to the health of animals and humans. The genome of IAV consists of eight single-stranded negative-sense RNA segments, encoding ten essential proteins as well as certain accessory proteins. In the process of virus replication, amino acid substitutions continuously accumulate, and genetic reassortment between virus strains readily occurs. Due to this high genetic variability, new viruses that threaten animal and human health can emerge at any time. Therefore, the study on IAV has always been a focus of veterinary medicine and public health. The replication, pathogenesis, and transmission of IAV involve intricate interplay between the virus and host. On one hand, the entire replication cycle of IAV relies on numerous proviral host proteins that effectively allow the virus to adapt to its host and support its replication. On the other hand, some host proteins play restricting roles at different stages of the viral replication cycle. The mechanisms of interaction between viral proteins and host cellular proteins are currently receiving particular interest in IAV research. In this review, we briefly summarize the current advances in our understanding of the mechanisms by which host proteins affect virus replication, pathogenesis, or transmission by interacting with viral proteins. Such information about the interplay between IAV and host proteins could provide insights into how IAV causes disease and spreads, and might help support the development of antiviral drugs or therapeutic approaches.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
DNAJA3 Interacts with PEDV S1 Protein and Inhibits Virus Replication by Affecting Virus Adsorption to Host Cells. Viruses 2022; 14:v14112413. [PMID: 36366511 PMCID: PMC9696540 DOI: 10.3390/v14112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.
Collapse
|
4
|
Mao H, Cao L, Xu T, Xia X, Ren P, Han P, Li C, Hui X, Lin X, Huang K, Jin M. YWHAG inhibits influenza a virus replication by suppressing the release of viral M2 protein. Front Microbiol 2022; 13:951009. [PMID: 35928168 PMCID: PMC9343881 DOI: 10.3389/fmicb.2022.951009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) poses a serious threat to human life and property. The IAV matrix protein 2 (M2) is significant in viral budding. Increasing studies have proven the important roles of host factors in IAV replication. In this study, immunoprecipitation combined with mass spectrometry revealed that the host protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), which belongs to the 14-3-3 protein scaffold family, interacts with M2. Their interactions were further confirmed by co-immunoprecipitation (Co-IP), immunofluorescence, and confocal microscopy of virus-infected HeLa cells. Moreover, we constructed YWHAG-KO and YWHAG-overexpressing cells and found that YWHAG knockout significantly increased viral production, whereas its overexpression reduced the titer of virus progeny. Therefore, YWHAG is a negative regulatory factor during IAV infection. Further, YWHAG knockout or overexpression had no effect on the binding, entry, or viral RNA replication in the early stages of the virus life cycle. On the contrary, it impaired the release of virions at the plasma membrane as determined using transmission electron microscopy and suppressed the M2-mediated budding of the influenza virus. Importantly, the H158F mutation of YWHAG was found to affect interaction with M2 and its budding. Collectively, our work demonstrates that YWHAG is a novel cellular regulator that targets and mediates the interaction and release of M2.
Collapse
Affiliation(s)
- Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xiaohan Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Peilei Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Pengfei Han
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xian Lin
- Chinese Academy of Sciences (CAS) Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- *Correspondence: Kun Huang,
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- Meilin Jin,
| |
Collapse
|
5
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
6
|
Park ES, Dezhbord M, Lee AR, Kim KH. The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. Int J Mol Sci 2022; 23:ijms23094593. [PMID: 35562987 PMCID: PMC9105177 DOI: 10.3390/ijms23094593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin system denotes a potent post-translational modification machinery that is capable of activation or deactivation of target proteins through reversible linkage of a single ubiquitin or ubiquitin chains. Ubiquitination regulates major cellular functions such as protein degradation, trafficking and signaling pathways, innate immune response, antiviral defense, and virus replication. The RNA sensor RIG-I ubiquitination is specifically induced by influenza A virus (IAV) to activate type I IFN production. Influenza virus modulates the activity of major antiviral proteins in the host cell to complete its full life cycle. Its structural and non-structural proteins, matrix proteins and the polymerase complex can regulate host immunity and antiviral response. The polymerase PB1-F2 of mutated 1918 IAV, adapts a novel IFN antagonist function by sending the DDX3 into proteasomal degradation. Ultimately the fate of virus is determined by the outcome of interplay between viral components and host antiviral proteins and ubiquitination has a central role in the encounter of virus and its host cell.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
7
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
8
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
9
|
Foot-and-Mouth Disease Virus Structural Protein VP1 Destroys the Stability of TPL2 Trimer by Degradation TPL2 to Evade Host Antiviral Immunity. J Virol 2021; 95:JVI.02149-20. [PMID: 33361430 PMCID: PMC8092693 DOI: 10.1128/jvi.02149-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor progression locus 2 (TPL2) is a serine/threonine kinase that belongs to the mitogen-activated protein 3 kinase (MAP3K) family, and it plays an important role in pathogen infection. The trimer complex of TPL2, p105, and ABIN2 is essential for maintenance of TPL2 steady-state levels and host cell response to pathogens. Foot-and-mouth disease virus (FMDV) is a positive-strand RNA virus of the family Picornaviridae that encodes proteins capable of antagonizing host immune responses to achieve infection. The VP1 protein of FMDV is a multifunctional protein that can bind host cells and induce an immune response as well as cell apoptosis. However, the role and mechanisms of TPL2 in FMDV infection remain unknown. Here, we determined that FMDV infection could inhibit TPL2, p105, and ABIN2 at the transcription and protein levels, while VP1 could only inhibit TPL2, p105 and ABIN2 at protein level. TPL2 inhibited the replication of FMDV in vivo and in vitro, the 268 to 283 amino-acid region in the TPL2 kinase domain was essential for interaction with VP1. Moreover, VP1 promoted K48-linked polyubiquitination of TPL2 and degraded TPL2 by the proteasome pathway. However, VP1-induced degradation of p105 and ABIN2 was independent of proteasome, autophagy, lysosome, and caspase-dependent pathways. Further studies showed that VP1 destroyed the stability of the TPL2-p105-ABIN2 complex. Taken together, these results revealed that VP1 antagonized TPL2-meditated antivirus activity by degrading TPL2 and destroying its complex. These findings may contribute to understand FMDV-host interactions and improve development of a novel vaccine to prevent FMDV infection.Importance Virus-host interactions are critical for virus infection. This study was the first to demonstrate the antiviral effect of host TPL2 during FMDV replication by increasing production of interferons and antiviral cytokines. Both FMDV and VP1 protein can reduce host TPL2, ABIN2 and p105 to destroy TPL2-p105-ABIN2 trimer complex. VP1 interacted with TPL2 and degrade TPL2 via proteasome pathway to repress TPL2-mediated antivirus activity. This study provided new insights into FMDV immune evasion mechanisms, elucidating new informations regarding FMDV counteraction of host antivirus activity.
Collapse
|
10
|
Zhang X, Lin X, Qin C, Huang K, Sun X, Zhao L, Jin M. Avian Chaperonin Containing TCP1 Subunit 5 Supports Influenza A Virus Replication by Interacting With Viral Nucleoprotein, PB1, and PB2 Proteins. Front Microbiol 2020; 11:538355. [PMID: 33178142 PMCID: PMC7593399 DOI: 10.3389/fmicb.2020.538355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Humans and avian species are prone to influenza viral infection, which may cause serious clinical consequences. Many studies have documented the critical role of host factors in the influenza virus life cycle based on human models, but knowledge about their roles in birds is very limited. In this study, using immunoprecipitation coupled with mass spectrometry, a total of 72 potential interacting proteins of influenza nucleoprotein (NP) were identified in DF-1 cells. Among these proteins, avian chaperonin containing TCP1 subunit 5 (CCT5) was demonstrated to interact with influenza A virus (IAV) NP directly, as well as polymerase basic protein 1 (PB1) and polymerase basic protein 2 (PB2) but not with polymerase acidic protein (PA). Further investigation showed that viral infection profoundly elevated the expression level of cellular CCT5, whose expression, in turn, promoted the nuclear export of NP, as well as viral polymerase activity, thereby facilitating the replication of IAV. The obtained results suggested an important role of avian CCT5 in supporting influenza virus replication, which may serve as an anti-influenza target.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenghuang Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
11
|
Hu J, Zhang L, Liu X. Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Front Microbiol 2020; 11:517461. [PMID: 33013775 PMCID: PMC7498822 DOI: 10.3389/fmicb.2020.517461] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Throughout various stages of its life cycle, influenza A virus relies heavily on host cellular machinery, including the post-translational modifications (PTMs) system. During infection, influenza virus interacts extensively with the cellular PTMs system to aid in its successful infection and dissemination. The complex interplay between viruses and the PTMs system induces global changes in PTMs of the host proteome as well as modifications of specific host or viral proteins. The most common PTMs include phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, NEDDylation, and glycosylation. Many PTMs directly support influenza virus infection, whereas others contribute to modulating antiviral responses. In this review, we describe current knowledge regarding the role of PTMs in different stages of the influenza virus replication cycle. We also discuss the concerted role of PTMs in antagonizing host antiviral responses, with an emphasis on their impact on viral pathogenicity and host range.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
13
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
14
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
15
|
Cellular DNAJA3, a Novel VP1-Interacting Protein, Inhibits Foot-and-Mouth Disease Virus Replication by Inducing Lysosomal Degradation of VP1 and Attenuating Its Antagonistic Role in the Beta Interferon Signaling Pathway. J Virol 2019; 93:JVI.00588-19. [PMID: 30996089 DOI: 10.1128/jvi.00588-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
DnaJ heat shock protein family (Hsp40) member A3 (DNAJA3) plays an important role in viral infections. However, the role of DNAJA3 in replication of foot-and-mouth-disease virus (FMDV) remains unknown. In this study, DNAJA3, a novel binding partner of VP1, was identified using yeast two-hybrid screening. The DNAJA3-VP1 interaction was further confirmed by coimmunoprecipitation and colocalization in FMDV-infected cells. The J domain of DNAJA3 (amino acids 1 to 168) and the lysine at position 208 (K208) of VP1 were shown to be critical for the DNAJA3-VP1 interaction. Overexpression of DNAJA3 dramatically dampened FMDV replication, whereas loss of function of DNAJA3 elicited opposing effects against FMDV replication. Mechanistical study demonstrated that K208 of VP1 was critical for reducing virus titer caused by DNAJA3 using K208A mutant virus. DNAJA3 induced lysosomal degradation of VP1 by interacting with LC3 to enhance the activation of lysosomal pathway. Meanwhile, we discovered that VP1 suppressed the beta interferon (IFN-β) signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. This inhibitory effect was considerably boosted in DNAJA3-knockout cells. In contrast, overexpression of DNAJA3 markedly attenuated VP1-mediated suppression on the IFN-β signaling pathway. Poly(I⋅C)-induced phosphorylation of IRF3 was also decreased in DNAJA3-knockout cells compared to that in the DNAJA3-WT cells. In conclusion, our study described a novel role for DNAJA3 in the host's antiviral response by inducing the lysosomal degradation of VP1 and attenuating the VP1-induced suppressive effect on the IFN-β signaling pathway.IMPORTANCE This study pioneeringly determined the antiviral role of DNAJA3 in FMDV. DNAJA3 was found to interact with FMDV VP1 and trigger its degradation via the lysosomal pathway. In addition, this study is also the first to clarify the mechanism by which VP1 suppressed IFN-β signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. Moreover, DNAJA3 significantly abrogated VP1-induced inhibitive effect on the IFN-β signaling pathway. These data suggested that DNAJA3 plays an important antiviral role against FMDV by both degrading VP1 and restoring of IFN-β signaling pathway.
Collapse
|
16
|
Marques M, Ramos B, Soares AR, Ribeiro D. Cellular Proteostasis During Influenza A Virus Infection-Friend or Foe? Cells 2019; 8:cells8030228. [PMID: 30857287 PMCID: PMC6468813 DOI: 10.3390/cells8030228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
In order to efficiently replicate, viruses require precise interactions with host components and often hijack the host cellular machinery for their own benefit. Several mechanisms involved in protein synthesis and processing are strongly affected and manipulated by viral infections. A better understanding of the interplay between viruses and their host-cell machinery will likely contribute to the development of novel antiviral strategies. Here, we discuss the current knowledge on the interactions between influenza A virus (IAV), the causative agent for most of the annual respiratory epidemics in humans, and the host cellular proteostasis machinery during infection. We focus on the manipulative capacity of this virus to usurp the cellular protein processing mechanisms and further review the protein quality control mechanisms in the cytosol and in the endoplasmic reticulum that are affected by this virus.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Raquel Soares
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
18
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
19
|
Fan Y, Mok CKP, Chan MCW, Zhang Y, Nal B, Kien F, Bruzzone R, Sanyal S. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. J Biol Chem 2017; 292:5070-5088. [PMID: 28130444 PMCID: PMC5377818 DOI: 10.1074/jbc.m117.776112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection.
Collapse
Affiliation(s)
- Ying Fan
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | - Chris Ka-Pun Mok
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Béatrice Nal
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Division of Biosciences, College of Health and Life Sciences, Brunel University London, London UB8 3PH, United Kingdom
| | - François Kien
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,Ksilink, French-German Advanced Translational Center, Strasbourg 67000, France, and
| | - Roberto Bruzzone
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Department of Cell Biology and Infection, Institut Pasteur, Paris Cedex 75015, France
| | - Sumana Sanyal
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Host Cellular Protein TRAPPC6AΔ Interacts with Influenza A Virus M2 Protein and Regulates Viral Propagation by Modulating M2 Trafficking. J Virol 2016; 91:JVI.01757-16. [PMID: 27795429 PMCID: PMC5165196 DOI: 10.1128/jvi.01757-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) plays multiple roles in the early and late phases of viral infection. Once synthesized, M2 is translocated to the endoplasmic reticulum (ER), travels to the Golgi apparatus, and is sorted at the trans-Golgi network (TGN) for transport to the apical plasma membrane, where it functions in virus budding. We hypothesized that M2 trafficking along with its secretory pathway must be finely regulated, and host factors could be involved in this process. However, no studies examining the role of host factors in M2 posttranslational transport have been reported. Here, we used a yeast two-hybrid (Y2H) system to screen for host proteins that interact with the M2 protein and identified transport protein particle complex 6A (TRAPPC6A) as a potential binding partner. We found that both TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6A delta (TRAPPC6AΔ), interact with M2. Truncation and mutation analyses showed that the highly conserved leucine residue at position 96 of M2 is critical for mediating this interaction. The role of TRAPPC6AΔ in the viral life cycle was investigated by the knockdown of endogenous TRAPPC6AΔ with small interfering RNA (siRNA) and by generating a recombinant virus that was unable to interact with TRAPPC6A/TRAPPC6AΔ. The results indicated that TRAPPC6AΔ, through its interaction with M2, slows M2 trafficking to the apical plasma membrane, favors viral replication in vitro, and positively modulates virus virulence in mice. IMPORTANCE The influenza A virus M2 protein regulates the trafficking of not only other proteins but also itself along the secretory pathway. However, the host factors involved in the regulation of the posttranslational transport of M2 are largely unknown. In this study, we identified TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6AΔ, as interacting partners of M2. We found that the leucine (L) residue at position 96 of M2 is critical for mediating this interaction, which leads us to propose that the high level of conservation of 96L is a consequence of M2 adaptation to its interacting host factor TRAPPC6A/TRAPPC6AΔ. Importantly, we discovered that TRAPPC6AΔ can positively regulate viral replication in vitro by modulating M2 trafficking to the plasma membrane.
Collapse
|
21
|
Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication. Virology 2016; 498:99-108. [DOI: 10.1016/j.virol.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/03/2023]
|
22
|
Esmagambetov IB, Alekseeva SV, Sayadyan KS, Shmarov MM. CURRENT APPROACHES TO UNIVERSAL VACCINE AGAINST INFLUENZA VIRUS. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2016. [DOI: 10.15789/2220-7619-2016-2-117-132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Zhang H, Yu H, Wang J, Zhang M, Wang X, Ahmad W, Duan M, Guan Z. The BM2 protein of influenza B virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Mol Cell Biochem 2015; 403:187-97. [DOI: 10.1007/s11010-015-2349-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022]
|
24
|
DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. J Virol 2014; 88:14078-89. [PMID: 25253355 DOI: 10.1128/jvi.02475-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED The RNA-dependent RNA polymerase (RdRp) of influenza A virus is a heterotrimeric complex composed of the PB1, PB2, and PA subunits. The interplay between host factors and the three subunits of the RdRp is critical to enable viral RNA synthesis to occur in the nuclei of infected cells. In this study, we newly identified host factor DnaJA1, a member of the type I DnaJ/Hsp40 family, acting as a positive regulator for influenza virus replication. We found that DnaJA1 associates with the bPB2 and PA subunits and enhances viral RNA synthesis both in vivo and in vitro. Moreover, DnaJA1 could be translocated from cytoplasm into the nucleus upon influenza virus infection. The translocation of DnaJA1 is specifically accompanied by PB1-PA nuclear import. Interestingly, we observed that the effect of DnaJA1 on viral RNA synthesis is mainly dependent on its C-terminal substrate-binding domain and not on its typical J domain, while the J domain normally mediates the Hsp70-DnaJ interaction required for regulating Hsp70 ATPase activity. Therefore, we propose that DnaJA1 is co-opted by the influenza A virus to enter the nucleus and to enhance its RNA polymerase activity in an Hsp70 cochaperone-independent manner. IMPORTANCE The interplay between host factors and influenza virus RNA polymerase plays a critical role in determining virus pathogenicity and host adaptation. In this study, we newly identified a host protein, DnaJA1/Hsp40, that is co-opted by influenza A virus RNA polymerase to enhance its viral RNA synthesis in the nuclei of infected cells. We found that DnaJA1 associates with both PB2 and PA subunits and translocates into the nucleus along with the nuclear import of the PB1-PA dimer during influenza virus replication. Interestingly, the effect of DnaJA1 is mainly dependent on its C-terminal substrate-binding domain and not on its typical J domain, which is required for its Hsp70 cochaperone function. To our knowledge, this is the first report on a member of the Hsp40s that is specifically involved in regulating influenza virus RNA polymerase. Targeting the interactions between polymerase subunits and DnaJA1 may provide a novel strategy to develop antiviral drugs.
Collapse
|
25
|
Shao Q, Xu W, Yan L, Liu J, Rui L, Xiao X, Yu X, Lu Y, Li Z. Function of duck RIG-I in induction of antiviral response against IBDV and avian influenza virus on chicken cells. Virus Res 2014; 191:184-91. [PMID: 25128465 DOI: 10.1016/j.virusres.2014.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 01/12/2023]
Abstract
The avian influenza (AI) H9N2 virus and IBDV are two major problems in the poultry industry. They have been prevalent among domestic poultry in Asia for many years and have caused considerable economic losses. Retinoic-acid-induced gene I (RIG-I) is a cytoplasmic sensor of dsRNA and ssRNA. It can detect Encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) in human cells, influenza virus in duck leads to production of IFN-β and IFN-stimulated antiviral genes and reductions in the replication of RNA virus. Chickens, which lack RIG-I, are more sensitive to influenza virus than ducks. However, little is known about the roles of duck RIG-I (dRIG-I) in the detection of IBDV and AI H9N2 in chicken cells DF-1. The purpose of this study was to examine the function of dRIG-I in the recognition of IBDV Ts strain and H9N2 A/Chicken/Shandong/ZB/2007(ZB07) and in the induction of antiviral gene expression to gain an understanding of antiviral ability of dRIG-I in chicken cells against dsRNA virus IBDV and ssRNA virus ZB07. After challenge with the IBDV Ts strain and ZB07 the expression levels of Type I IFN (IFN-β and IFN-α) and IFN-induced antiviral genes (Mx and PKR) were significantly up-regulated in dRIG-I-transfected DF-1cells compared with the empty-vector-transfected control. dRIG-I knockdown experiments further proved that dRIG-I is essential to sensing IBDV and ZB07 in duck embryo fibroblasts (DEF). Growth curves showed that dRIG-I repressed the replication of IBDV and almost blunted the growth of ZB07 in DF-1. Apoptosis analysis revealed that dRIG-I increase the number of the survival cells after IBDV Ts strain or ZB07 infection relative to the empty-vector-transfected control. These results indicate that dRIG-I can up-regulates type I IFN and reduce viral gene expression and viral replication and protect chicken cells from virus-induced apoptosis during ZB07 and IBDV infection.
Collapse
Affiliation(s)
- Qiang Shao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wenpin Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Li Yan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jinhua Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lei Rui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiao Xiao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoxue Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yanan Lu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zandong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
26
|
Roose K, De Baets S, Schepens B, Saelens X. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 2013; 12:183-98. [PMID: 23414409 DOI: 10.1586/erv.12.150] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the first effort to recombinantly express the hepatitis B core protein (HBc) in bacteria, the remarkable virion-like structure has fuelled interest in unraveling the structural and antigenic properties of this protein. Initial studies proved HBc virus-like particles to possess strong immunogenic properties, which can be conveyed to linked antigens. More than 35 years later, numerous studies have been performed using HBc as a carrier protein for antigens derived from over a dozen different pathogens and diseases. In this review, the authors highlight the intriguing features of HBc as carrier and antigen, illustrated by some examples and experimental results that underscore the value of HBc as an antigen-presenting platform. Two of these HBc fusions, targeting influenza A and malaria, have even progressed into clinical testing. In the future, the HBc-based virus-like particles platform will probably continue to be used for the display of poorly immunogenic antigens, mainly because virus-like particle formation by HBc capsomers is compatible with nearly any available recombinant gene expression system.
Collapse
Affiliation(s)
- Kenny Roose
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | | | | | | |
Collapse
|
27
|
Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J Virol 2012; 86:13281-94. [PMID: 23015716 DOI: 10.1128/jvi.01841-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lack of a universal vaccine against all serotypes of influenza A viruses and recent progress on T cell-related vaccines against influenza A virus illuminate the important role of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes (CTLs) in anti-influenza virus immunity. However, the diverse HLA alleles among humans complicate virus-specific cellular immunity research, and elucidation of cross-HLA allele T cell responses to influenza virus specificity requires further detailed work. An ideal CTL epitope-based vaccine would cover a broad spectrum of epitope antigens presented by most, if not all, of the HLAs. Here, we evaluated the 2009 pandemic influenza A (H1N1) virus-specific T cell responses among the HLA-A24(+) population using a rationally designed peptide pool during the 2009 pandemic. Unexpectedly, cross-HLA allele T cell responses against the influenza A virus peptides were detected among both HLA-A11(+) and HLA-A24(+) donors. Furthermore, we found cross-responses in the entire HLA-A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele antigenic peptides within the peptide pool were identified and characterized, and the crystal structures of the major histocompatibility complex (MHC)-peptide complexes were determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the HLA-A11(+) population were shown to mildly bind to the HLA-A*1101 molecule. Together with the structural models, these results partially explain the cross-allele responses. Our findings elucidate the promiscuity of the cross-allele T cell responses against influenza A viruses and are beneficial for the development of a T cell epitope-based vaccine applied in a broader population.
Collapse
|
28
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Mankertz A. Molecular interactions of porcine circoviruses type 1 and type 2 with its host. Virus Res 2012; 164:54-60. [DOI: 10.1016/j.virusres.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/19/2023]
|
30
|
Müller KH, Kakkola L, Nagaraj AS, Cheltsov AV, Anastasina M, Kainov DE. Emerging cellular targets for influenza antiviral agents. Trends Pharmacol Sci 2012; 33:89-99. [DOI: 10.1016/j.tips.2011.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 01/23/2023]
|
31
|
Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection. J Virol 2011; 86:1789-801. [PMID: 22114333 DOI: 10.1128/jvi.06003-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.
Collapse
|
32
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Knox C, Luke GA, Blatch GL, Pesce ER. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 2011; 160:15-24. [DOI: 10.1016/j.virusres.2011.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 01/04/2023]
|
34
|
Sharma K, Tripathi S, Ranjan P, Kumar P, Garten R, Deyde V, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 2011; 6:e20215. [PMID: 21698289 PMCID: PMC3115951 DOI: 10.1371/journal.pone.0020215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 02/08/2023] Open
Abstract
Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.
Collapse
Affiliation(s)
- Kulbhushan Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shashank Tripathi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Purnima Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Varough Deyde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Renu B. Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil K. Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|