1
|
Gong Q, Li Q, Xu Z, Shen X. ERH Impacts Patient Prognosis and Tumor Immune Microenvironment: A Pan-Cancer Analysis. Comb Chem High Throughput Screen 2025; 28:853-871. [PMID: 38584561 DOI: 10.2174/0113862073295696240322084341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The enhancer of rudimentary homolog (ERH) has been shown to play significant roles in tumorigenesis and progression. However, few systematic pan-cancer analyses about ERH have been described. METHODS From the tumor immune estimation resource web server2.0 (TIMER2.0), the Genotype- Tissue Expression database (GTEx) and the Gene Expression Profile Interactive Analysis version 2 (GEPIA2) databases, we explored the expression profiles and prognostic significance of ERH in 33 cancers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (HPA) databases were further used to examine the differential expression of ERH at the protein level. The genetic alteration profile was obtained from the cBioPortal. The correlation between ERH expression and the quantities of immune infiltrating cells was examined by the TIMER tool. Spearman's correlation test was conducted to analyze the association between ERH expression status and a number of prognostic indicators, including immune checkpoints, TMB, MSI, immune neoantigen, MMR genes, and DNA methyltransferases. Protein- Protein Interaction analyses were performed in the String and GeneMANIA databases, and enrichment analysis and predicted signaling pathways were identified through GO and KEGG. To make our results convincing, we validated them in six datasets in the Gene Expression Omnibus (GEO) database. In addition, we verified the expression of ERH between gastric cancer tissues and adjacent normal tissues by RT-qPCR. RESULTS ERH expression was elevated in numerous tumors, and it was associated with the patient's prognosis. Furthermore, the quantities of immune infiltrating cells and immune checkpoint genes were remarkably associated with ERH. TMB and MSI were related to ERH expression in 14 and 15 cancer types, respectively. Moreover, the expression of ERH was strongly associated with MMR defects in multiple cancer types, and almost all tumors showed co-expression of ERH and four DNA methyltransferases. The results of GO and KEGG analysis confirmed that ERH potentially impacts several important signaling pathways. Both the GEO datasets and the RTqPCR experiment validated our previous analysis. CONCLUSION Our pan-cancer analysis demonstrated the characterization of ERH in multiple tumors. ERH may be a valuable novel biological indicator for assessing immunotherapy efficacy and prognosis in various malignancies.
Collapse
Affiliation(s)
- Qianhui Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Huang M, Huang X, Li L. ERH is a prognostic biomarker associated with immune cell infiltration in lung cancer. Biomarkers 2024; 29:466-478. [PMID: 39422755 DOI: 10.1080/1354750x.2024.2418579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION The enhancer of rudimentary homolog (ERH) is significant in cancers, but its role in lung cancer is understudied. METHODS We divided lung cancer patients into high and low ERH expression groups based on tumour tissue levels. Using the log-rank test, we analysed the correlation between ERH expression and patient prognosis. The effects of high ERH expression on lung cancer cell proliferation, migration, and invasion were assessed using CCK8, EDU, transwell, and wound healing assays. RESULTS ERH expression was significantly higher in cancerous versus normal lung tissue (p < 0.05), including lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Patients with high ERH expression had worse overall survival (HR = 1.37, p = 2.5 × 1 0 -7) and first progression survival (HR = 1.38, p = 0.00065) in lung cancer. However, while high ERH expression predicts an unfavourable prognosis in LUAD, it does not hold true for LUSC. Furthermore, knockdown of ERH inhibited lung cancer cell proliferation, migration, and invasion. ERH expression was linked to immune cell infiltration. High ERH expression in LUAD and LUSC samples correlated with higher CD8 T cell, T cells CD4 memory activated, and M1 macrophages abundance, while low ERH expression correlated with higher T cells CD4 memory resting abundance. CONCLUSION Upregulation of ERH in lung cancer tissue is associated with poor prognosis and immune cell infiltration.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Male
- Cell Movement
- Female
- Cell Line, Tumor
- Middle Aged
- Adenocarcinoma of Lung/immunology
- Adenocarcinoma of Lung/pathology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Aged
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Mingfang Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Xiuming Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Liang Li
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
3
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
4
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
5
|
Wang X, Xie H, Zhu Z, Zhang J, Xu C. Molecular basis for the recognition of CIZ1 by ERH. FEBS J 2023; 290:712-723. [PMID: 36047590 DOI: 10.1111/febs.16611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Enhancer of rudimentary homologue (ERH), a small protein conserved in eukaryotes, is involved in a wide spectrum of cellular events, including cell cycle progression, piRNA biogenesis, miRNA maturation and gene expression. Human ERH is recruited to replication foci by CDKN1A-interacting zinc finger protein 1 (CIZ1), and plays an important role in cell growth control. However, the molecular basis for CIZ1 recognition by ERH remains unknown. By using GST pull-down experiment, we found that a fragment within CIZ1, upstream of its first zinc finger, is sufficient for binding to ERH. We solved the structure of CIZ1-bound ERH, in which the ERH dimer binds to two CIZ1 fragments to form a 2 : 2 heterotetramer. CIZ1 forms intermolecular antiparallel β-strands with ERH, and its binding surface on ERH is distinct from those of other known ERH-binding ligands. The ERH-CIZ1 interface was further validated by mutagenesis and binding experiments. Our structural study complemented by biochemistry experiments not only provides insights into a previously unidentified ligand-binding mode for ERH but also sheds light on the understanding of evolutionarily conserved roles for ERH orthologs.
Collapse
Affiliation(s)
- Xiaoyang Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huabin Xie
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Li Q, Xu Z, Fang F, Shen Y, Lei H, Shen X. Identification of key pathways, genes and immune cell infiltration in hypoxia of high-altitude acclimatization via meta-analysis and integrated bioinformatics analysis. Front Genet 2023; 14:1055372. [PMID: 37035734 PMCID: PMC10080023 DOI: 10.3389/fgene.2023.1055372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: For individuals acutely exposed to high-altitude regions, environmental hypobaric hypoxia induces several physiological or pathological responses, especially immune dysfunction. Therefore, hypoxia is a potentially life-threatening factor, which has closely related to high-altitude acclimatization. However, its specific molecular mechanism is still unclear. Methods: The four expression profiles about hypoxia and high altitude were downloaded from the Gene Expression Omnibus database in this study. Meta-analysis of GEO datasets was performed by NetworkAnalyst online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) enrichment analysis, and visualization were performed using R (version 4.1.3) software, respectively. The CIBERSORT analysis was conducted on GSE46480 to examine immune cell infiltration. In addition, we experimentally verified the bioinformatics analysis with qRT-PCR. Results: The meta-analysis identified 358 differentially expressed genes (DEGs), with 209 upregulated and 149 downregulated. DEGs were mostly enriched in biological processes and pathways associated with hypoxia acclimatization at high altitudes, according to both GO and KEGG enrichment analyses. ERH, VBP1, BINP3L, TOMM5, PSMA4, and POLR2K were identified by taking intersections of the DEGs between meta-analysis and GSE46480 and verified by qRT-PCR experiments, which were inextricably linked to hypoxia. Immune infiltration analysis showed significant differences in immune cells between samples at sea level and high altitudes. Conclusion: Identifying the DEGs and pathways will improve our understanding of immune function during high-altitude hypoxia at a molecular level. Targeting hypoxia-sensitive pathways in immune cells is interesting in treating high-altitude sickness. This study provides support for further research on high-altitude acclimatization.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Huan Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
7
|
Pang K, Li ML, Hao L, Shi ZD, Feng H, Chen B, Ma YY, Xu H, Pan D, Chen ZS, Han CH. ERH Gene and Its Role in Cancer Cells. Front Oncol 2022; 12:900496. [PMID: 35677162 PMCID: PMC9169799 DOI: 10.3389/fonc.2022.900496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health problem worldwide. Studies on oncogenes and tumor-targeted therapies have become an important part of cancer treatment development. In this review, we summarize and systematically introduce the gene enhancer of rudimentary homolog (ERH), which encodes a highly conserved small molecule protein. ERH mainly exists as a protein partner in human cells. It is involved in pyrimidine metabolism and protein complexes, acts as a transcriptional repressor, and participates in cell cycle regulation. Moreover, it is involved in DNA damage repair, mRNA splicing, the process of microRNA hairpins as well as erythroid differentiation. There are many related studies on the role of ERH in cancer cells; however, there are none on tumor-targeted therapeutic drugs or related therapies based on the expression of ERH. This study will provide possible directions for oncologists to further their research studies in this field.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mei-Li Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou, China.,Department of Ophthalmology, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Harry Feng
- STEM Academic Department, Wyoming Seminary, Kingston, PA, United States
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Alhayyani S, McLeod L, West AC, Balic JJ, Hodges C, Yu L, Smith JA, Prodanovic Z, Bozinovski S, Kumar B, Ruwanpura SM, Saad MI, Jenkins BJ. Oncogenic dependency on STAT3 serine phosphorylation in KRAS mutant lung cancer. Oncogene 2022; 41:809-823. [PMID: 34857889 DOI: 10.1038/s41388-021-02134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.
Collapse
Affiliation(s)
- Sultan Alhayyani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Julian A Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Department of Cardiothoracic Surgery, Monash Health, Clayton, Victoria, 3168, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia
| | - Beena Kumar
- Department of Anatomical Pathology, Monash Health, Clayton, Victoria, 3168, Australia
| | - Saleela M Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
9
|
Wang X, Zeng C, Liao S, Zhu Z, Zhang J, Tu X, Yao X, Feng X, Guang S, Xu C. Molecular basis for PICS-mediated piRNA biogenesis and cell division. Nat Commun 2021; 12:5595. [PMID: 34552083 PMCID: PMC8458385 DOI: 10.1038/s41467-021-25896-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
By incorporating two mutually exclusive factors, PID-1 and TOST-1, C. elegans PICS complex plays important roles in piRNA biogenesis, chromosome segregation and cell division. We firstly map the interaction network between PICS subunits, then uncover the mechanisms underlying the interactions between PICS subunits by solving several complex structures, including those of TOFU-6/PICS-1, ERH-2/PICS-1, and ERH-2/TOST-1. Our biochemical experiment also demonstrates that PICS exists as an octamer consisting of two copies of each subunit. Combining structural analyses with mutagenesis experiments, we identify interfacial residues of PICS subunits that are critical for maintaining intact PICS complex in vitro. Furthermore, using genetics, cell biology and imaging experiments, we find that those mutants impairing the in vitro interaction network within PICS, also lead to dysfunction of PICS in vivo, including mislocalization of PICS, and reduced levels of piRNAs or aberrant chromosome segregation and cell division. Therefore, our work provides structural insights into understanding the PICS-mediated piRNA biogenesis and cell division.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shanhui Liao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Zhongliang Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xiaoming Tu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Chao Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
10
|
Luo Y, Lin J, Zhang J, Song Z, Zheng D, Chen F, Zhuang X, Li A, Liu X. LncRNA SNHG17 Contributes to Proliferation, Migration, and Poor Prognosis of Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021; 2021:9990338. [PMID: 34557456 PMCID: PMC8455207 DOI: 10.1155/2021/9990338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/20/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear. Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent nontumorous tissues, and cell lines. The effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism. Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17 promoted cell proliferation and migration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.
Collapse
Affiliation(s)
- Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Junhao Lin
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Jiakang Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Zhenghui Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Fengsheng Chen
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Xuefen Zhuang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
11
|
Perez-Borrajero C, Podvalnaya N, Holleis K, Lichtenberger R, Karaulanov E, Simon B, Basquin J, Hennig J, Ketting RF, Falk S. Structural basis of PETISCO complex assembly during piRNA biogenesis in C. elegans. Genes Dev 2021; 35:1304-1323. [PMID: 34413138 PMCID: PMC8415317 DOI: 10.1101/gad.348648.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
In this study, Perez-Borrajero et al. set out to characterize PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. Using biochemical and structural biology approaches, the authors found that PETISCO forms a dimer of tetramers, in which dimerization is mediated by both PID-3 and ERH-2. Crystal structures of the PID- 3/TOFU-6 and ERH-2/PID-3 subcomplexes reveal insights into PETISCO assembly, function, and subcellular localization. Using NMR spectroscopy, the authors also characterize the mutually exclusive interplay of ERH-2 with the two effector proteins TOST-1 and PID-1. Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5′ and 3′ processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.
Collapse
Affiliation(s)
- Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Nadezda Podvalnaya
- Biology of Noncoding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany.,International PhD Programme on Gene Regulation, Epigenetics and Genome Stability, 55099 Mainz, Germany
| | - Kay Holleis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, 55099 Mainz, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - René F Ketting
- Biology of Noncoding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
12
|
Xiao M, Tang N, Yan Y, Li Z, Shi S, He S, Chen Z, Cao K, Chen J, Zhou J, Chen X. Knockdown of enhancer of rudimentary homolog expression attenuates proliferation, cell cycle and apoptosis of melanoma cells. Melanoma Res 2021; 31:309-318. [PMID: 34193803 DOI: 10.1097/cmr.0000000000000747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Early stage or localized melanoma can be surgically resected with satisfactory outcome, whereas advanced malignant melanoma responds to treatment poorly and has a negative prognosis even after surgery, radiotherapy and other comprehensive treatments. Gene therapy targeting various biological signaling pathways has become an increasingly popular area in melanoma research. However, for gene therapy success, it is important to reveal the molecular mechanisms of melanoma tumorigenesis and development. The present study examined the effects of downregulating enhancer of rudimentary homolog (ERH) expression on the proliferation, metastasis and cell cycle of melanoma cells. ERH expression levels in melanoma tissues and cells were determined. Then, ERH gene expression in melanoma cell lines was downregulated or overexpressed by the lentiviral RNA interference technique. Furthermore, we performed cell counting kit-8, clone formation, scratch, transwell migration, subcutaneous tumorigenesis and venous metastasis assays as well as carried out flow cytometry analysis to explore the effects of ERH expression on cell proliferation, cell cycle, apoptosis and metastasis. We found that ERH expression in melanoma tissues and cells was markedly higher than in normal melanin nevus. Suppressing ERH expression by RNA interference in melanoma A375, WM35 and SK28 cell lines inhibited their proliferation and induced cell apoptosis. The cell cycle was also found to be blocked in the G1 phase. However, the metastatic properties of melanoma cells in vitro and in vivo remained largely unaltered by ERH knockdown. Our results show that ERH expression is increased in melanoma. Meanwhile, the proliferation and cell cycle transformation abilities are impaired potentially by downregulating the ERH expression in melanoma cells. Therefore, targeting ERH might serve as a novel therapeutic approach for malignant melanoma.
Collapse
Affiliation(s)
- Muzhang Xiao
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Changsha
- Xiangya Changde Hospital, Changde
| | - Ningning Tang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Changsha
- Xiangya Changde Hospital, Changde
| | - Yu Yan
- Department of Plastic surgery
| | | | | | - Siqi He
- Department of Plastic surgery
| | | | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Changsha
| | | | | | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Changsha, Hunan, People's Republic of China. Changsha, Hunan, China
| |
Collapse
|
13
|
Peng Y, Wang W, Fang Y, Hu H, Chang N, Pang M, Hu YF, Li X, Long H, Xiong JW, Zhang R. Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial-Mesenchymal Transition-Like Response During Ventricle Regeneration. Front Cell Dev Biol 2021; 9:632372. [PMID: 33816481 PMCID: PMC8010688 DOI: 10.3389/fcell.2021.632372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-β/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-β/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-β/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial–mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-β/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyuan Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yunzheng Fang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haichen Hu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Meijun Pang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ye-Fan Hu
- School of Life Sciences, Fudan University, Shanghai, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Han Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Kwon SC, Jang H, Shen S, Baek SC, Kim K, Yang J, Kim J, Kim JS, Wang S, Shi Y, Li F, Kim VN. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Res 2020; 48:11097-11112. [PMID: 33035348 PMCID: PMC7641749 DOI: 10.1093/nar/gkaa827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
The microprocessor complex cleaves the primary transcript of microRNA (pri-miRNA) to initiate miRNA maturation. Microprocessor is known to consist of RNase III DROSHA and dsRNA-binding DGCR8. Here, we identify Enhancer of Rudimentary Homolog (ERH) as a new component of Microprocessor. Through a crystal structure and biochemical experiments, we reveal that ERH uses its hydrophobic groove to bind to a conserved region in the N-terminus of DGCR8, in a 2:2 stoichiometry. Knock-down of ERH or deletion of the DGCR8 N-terminus results in a reduced processing of suboptimal pri-miRNAs in polycistronic miRNA clusters. ERH increases the processing of suboptimal pri-miR-451 in a manner dependent on its neighboring pri-miR-144. Thus, the ERH dimer may mediate 'cluster assistance' in which Microprocessor is loaded onto a poor substrate with help from a high-affinity substrate in the same cluster. Our study reveals a role of ERH in the miRNA biogenesis pathway.
Collapse
Affiliation(s)
- S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Harim Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Siyuan Shen
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihye Yang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Suman Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Guo X, Mu H, Yan S, Wei J. Exploring the molecular disorder and dysfunction mechanism of human dental pulp cells under hypoxia by comprehensive multivariate analysis. Gene 2020; 735:144332. [PMID: 31972310 DOI: 10.1016/j.gene.2020.144332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp cells (DPCs) are multipotent cells, which can differentiate into various tissues and have the potential to treat many diseases. However, little is known about the molecular disorder mechanism. To explore the mechanism of molecular disorders and dysfunction of DPCs under hypoxia, we investigated the molecular effects of two hypoxic time lengths on DPCs. Differential analysis, protein interaction network (PPI), enrichment analysis and coupling analysis were further synthesized to identify human dental pulp cell dysfunction modules under hypoxic conditions. Based on the module aggregation of 579 genes, 13 dental pulp cell dysfunction modules were obtained. Importantly, we found that up to 12 modules were significantly involved in positive regulation of neurogenesis, positive regulation of nervous system development. Based on the predictive analysis of regulators, we identified a series of ncRNAs (including CRNDE, MALAT1, microRNA-140-5p, microRNA-300 and microRNA-30a-5p) and transcription factors (including E2F1). Based on the comprehensive functional module analysis, we identified the dysfunction module of human dental pulp cells (HDPCs) under hypoxia. The results suggest that nerve regulation plays an important role in regulating the dysfunction module of DPCs. These prominent pivotal regulators in the module were used as an important part of the molecular disorders of DPCs, may be an important part of the subnetwork of the manipulation module and affect the molecular dysregulation mechanism of DPCs. This study provides new directions and potential targets for further research.
Collapse
Affiliation(s)
- Xiangjun Guo
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Hong Mu
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Shixia Yan
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Jianming Wei
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| |
Collapse
|
16
|
Fang W, Bartel DP. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Mol Cell 2020; 78:289-302.e6. [PMID: 32302541 PMCID: PMC7243034 DOI: 10.1016/j.molcel.2020.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Microprocessor initiates the processing of microRNAs (miRNAs) from the hairpin regions of primary transcripts (pri-miRNAs). Pri-miRNAs often contain multiple miRNA hairpins, and this clustered arrangement can assist in the processing of otherwise defective hairpins. We find that miR-451, which derives from a hairpin with a suboptimal terminal loop and a suboptimal stem length, accumulates to 40-fold higher levels when clustered with a helper hairpin. This phenomenon tolerates changes in hairpin order, linker lengths, and the identities of the helper hairpin, the recipient hairpin, the linker-sequence, and the RNA polymerase that transcribes the hairpins. It can act reciprocally and need not occur co-transcriptionally. It requires Microprocessor recognition of the helper hairpin and linkage of the two hairpins, yet predominantly manifests after helper-hairpin processing. It also requires enhancer of rudimentary homolog (ERH), which copurifies with Microprocessor and can dimerize and interact with other proteins that can dimerize, suggesting a model in which one Microprocessor recruits another Microprocessor.
Collapse
Affiliation(s)
- Wenwen Fang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
ERH proteins: connecting RNA processing to tumorigenesis? Curr Genet 2020; 66:689-692. [DOI: 10.1007/s00294-020-01065-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022]
|
18
|
Zhang D, Chu YJ, Song KJ, Chen YL, Liu W, Lv T, Wang J, Zhao H, Ren YZ, Xu JX, Xia NN, Li HX, Yao Q. Knockdown of enhancer of rudimentary homolog inhibits proliferation and metastasis in ovarian cancer by regulating epithelial-mesenchymal transition. Biomed Pharmacother 2020; 125:109974. [PMID: 32036222 DOI: 10.1016/j.biopha.2020.109974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy. The pathogenesis of molecular in epithelial ovarian cancer (EOC), main histological type of OC, has not been completely defined. Enhancer of rudimentary homolog (ERH) had been reported to participate in transcriptional regulation, mRNA splicing, DNA repair and DNA synthesis by binding a variety of proteins. In this study, immunohistochemical staining revealed that the protein expression of ERH was associated with histological type, lymph node metastasis and pathological grade in EOC patients. To verify the association of ERH with the prognosis of OC, a GSE microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. Survival analysis suggested that ERH may be associated with poor prognosis of OC. In addition, shRNA was used to knockdown the protein and mRNA expression levels of ERH in the OC cell line SKOV3. Inhibition of ERH expression slowed proliferation, promoted apoptosis and inhibited metastasis and invasion by regulating epithelial-mesenchymal transition (EMT) in SKOV3 cells. These results indicate that ERH protein promotes the development of OC and provides an experimental basis for ERH as the potential target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Yi-Jing Chu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Ke-Juan Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yu-Long Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Liu
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Wang
- Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yuan-Zhong Ren
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Jin-Xang Xu
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Nan-Nan Xia
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Hong-Xuan Li
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Formation of S. pombe Erh1 homodimer mediates gametogenic gene silencing and meiosis progression. Sci Rep 2020; 10:1034. [PMID: 31974447 PMCID: PMC6978305 DOI: 10.1038/s41598-020-57872-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
Timely and accurate expression of the genetic information relies on the integration of environmental cues and the activation of regulatory networks involving transcriptional and post-transcriptional mechanisms. In fission yeast, meiosis-specific transcripts are selectively targeted for degradation during mitosis by the EMC complex, composed of Erh1, the ortholog of human ERH, and the YTH family RNA-binding protein Mmi1. Here, we present the crystal structure of Erh1 and show that it assembles as a homodimer. Mutations of amino acid residues to disrupt Erh1 homodimer formation result in loss-of-function phenotypes, similar to erh1∆ cells: expression of meiotic genes is derepressed in mitotic cells and meiosis progression is severely compromised. Interestingly, formation of Erh1 homodimer is dispensable for interaction with Mmi1, suggesting that only fully assembled EMC complexes consisting of two Mmi1 molecules bridged by an Erh1 dimer are functionally competent. We also show that Erh1 does not contribute to Mmi1-dependent down-regulation of the meiosis regulator Mei2, supporting the notion that Mmi1 performs additional functions beyond EMC. Overall, our results provide a structural basis for the assembly of the EMC complex and highlight its biological relevance in gametogenic gene silencing and meiosis progression.
Collapse
|
20
|
Balic JJ, Garama DJ, Saad MI, Yu L, West AC, West AJ, Livis T, Bhathal PS, Gough DJ, Jenkins BJ. Serine-Phosphorylated STAT3 Promotes Tumorigenesis via Modulation of RNA Polymerase Transcriptional Activity. Cancer Res 2019; 79:5272-5287. [PMID: 31481496 DOI: 10.1158/0008-5472.can-19-0974] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
Deregulated activation of the latent oncogenic transcription factor STAT3 in many human epithelial malignancies, including gastric cancer, has invariably been associated with its canonical tyrosine phosphorylation and enhanced transcriptional activity. By contrast, serine phosphorylation (pS) of STAT3 can augment its nuclear transcriptional activity and promote essential mitochondrial functions, yet the role of pS-STAT3 among epithelial cancers is ill-defined. Here, we reveal that genetic ablation of pS-STAT3 in the gp130 F/F spontaneous gastric cancer mouse model and human gastric cancer cell line xenografts abrogated tumor growth that coincided with reduced proliferative potential of the tumor epithelium. Microarray gene expression profiling demonstrated that the suppressed gastric tumorigenesis in pS-STAT3-deficient gp130 F/F mice associated with reduced transcriptional activity of STAT3-regulated gene networks implicated in cell proliferation and migration, inflammation, and angiogenesis, but not mitochondrial function or metabolism. Notably, the protumorigenic activity of pS-STAT3 aligned with its capacity to primarily augment RNA polymerase II-mediated transcriptional elongation, but not initiation, of STAT3 target genes. Furthermore, by using a combinatorial in vitro and in vivo proteomics approach based on the rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) assay, we identified RuvB-like AAA ATPase 1 (RUVBL1/Pontin) and enhancer of rudimentary homolog (ERH) as interacting partners of pS-STAT3 that are pivotal for its transcriptional activity on STAT3 target genes. Collectively, these findings uncover a hitherto unknown transcriptional role and obligate requirement for pS-STAT3 in gastric cancer that could be extrapolated to other STAT3-driven cancers. SIGNIFICANCE: These findings reveal a new transcriptional role and mandatory requirement for constitutive STAT3 serine phosphorylation in gastric cancer.
Collapse
Affiliation(s)
- Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel J Garama
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Prithi S Bhathal
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel J Gough
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia. .,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Xu X, Yanagida M. Suppressor screening reveals common kleisin-hinge interaction in condensin and cohesin, but different modes of regulation. Proc Natl Acad Sci U S A 2019; 116:10889-10898. [PMID: 31072933 PMCID: PMC6561158 DOI: 10.1073/pnas.1902699116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cohesin and condensin play fundamental roles in sister chromatid cohesion and chromosome segregation, respectively. Both consist of heterodimeric structural maintenance of chromosomes (SMC) subunits, which possess a head (containing ATPase) and a hinge, intervened by long coiled coils. Non-SMC subunits (Cnd1, Cnd2, and Cnd3 for condensin; Rad21, Psc3, and Mis4 for cohesin) bind to the SMC heads. Here, we report a large number of spontaneous extragenic suppressors for fission yeast condensin and cohesin mutants, and their sites were determined by whole-genome sequencing. Mutants of condensin's non-SMC subunits were rescued by impairing the SUMOylation pathway. Indeed, SUMOylation of Cnd2, Cnd3, and Cut3 occurs in midmitosis, and Cnd3 K870 SUMOylation functionally opposes Cnd subunits. In contrast, cohesin mutants rad21 and psc3 were rescued by loss of the RNA elimination pathway (Erh1, Mmi1, and Red1), and loader mutant mis4 was rescued by loss of Hrp1-mediated chromatin remodeling. In addition, distinct regulations were discovered for condensin and cohesin hinge mutants. Mutations in the N-terminal helix bundle [containing a helix-turn-helix (HTH) motif] of kleisin subunits (Cnd2 and Rad21) rescue virtually identical hinge interface mutations in cohesin and condensin, respectively. These mutations may regulate kleisin's interaction with the coiled coil at the SMC head, thereby revealing a common, but previously unknown, suppression mechanism between the hinge and the kleisin N domain, which is required for successful chromosome segregation. We propose that in both condensin and cohesin, the head (or kleisin) and hinge may interact and collaboratively regulate the resulting coiled coils to hold and release chromosomal DNAs.
Collapse
Affiliation(s)
- Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| |
Collapse
|
22
|
Pang K, Zhang Z, Hao L, Shi Z, Chen B, Zang G, Dong Y, Li R, Liu Y, Wang J, Zhang J, Cai L, Han X, Han C. The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells. BMC Cancer 2019; 19:225. [PMID: 30866868 PMCID: PMC6417071 DOI: 10.1186/s12885-019-5423-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to determine whether the enhancer of the rudimentary homolog (ERH) gene regulates cell migration and invasion in human bladder urothelial carcinoma (BUC) T24 cells and the underlying mechanism. Methods First, we knocked down ERH in BUC T24 and 5637 cells by shRNA and then used wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays to determine the migration and invasion ability after ERH was knocked down. Moreover, we used gene expression profiling chip analysis and further functional experiments to explore the possible mechanism through which ERH knockdown downregulated metastasis ability in T24 cells. Results Wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays all showed that the metastasis ability was significantly inhibited in human BUC T24 and 5637 cells with ERH knockdown. A gene expression profiling chip analysis in T24 cells showed that the MYC gene may be an important downstream target of the ERH gene, and the functional experiments showed that MYC is a functional target of ERH in BUC T24 cells. Conclusion ERH knockdown could inhibit the metastasis of BUC T24 cells in vitro and in vivo. This study further explored the mechanism of the ERH gene in the metastasis of the T24 human bladder cancer cell line and found that ERH may regulate MYC gene expression. The results of this research provide a basis for the clinical application of ERH as a potential target for BUC treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5423-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Zhiguo Zhang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Rui Li
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Ying Liu
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jie Wang
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jianjun Zhang
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Longjun Cai
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Xiaoxiao Han
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, No. 2699 Gaoke West Road, Pudong District, Shanghai, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China. .,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China. .,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
23
|
Xie G, Vo TV, Thillainadesan G, Holla S, Zhang B, Jiang Y, Lv M, Xu Z, Wang C, Balachandran V, Shi Y, Li F, Grewal SIS. A conserved dimer interface connects ERH and YTH family proteins to promote gene silencing. Nat Commun 2019; 10:251. [PMID: 30651569 PMCID: PMC6335422 DOI: 10.1038/s41467-018-08273-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Gene regulatory mechanisms rely on a complex network of RNA processing factors to prevent untimely gene expression. In fission yeast, the highly conserved ortholog of human ERH, called Erh1, interacts with the YTH family RNA binding protein Mmi1 to form the Erh1-Mmi1 complex (EMC) implicated in gametogenic gene silencing. However, the structural basis of EMC assembly and its functions are poorly understood. Here, we present the co-crystal structure of the EMC that consists of Erh1 homodimers interacting with Mmi1 in a 2:2 stoichiometry via a conserved molecular interface. Structure-guided mutation of the Mmi1Trp112 residue, which is required for Erh1 binding, causes defects in facultative heterochromatin assembly and gene silencing while leaving Mmi1-mediated transcription termination intact. Indeed, EMC targets masked in mmi1∆ due to termination defects are revealed in mmi1W112A. Our study delineates EMC requirements in gene silencing and identifies an ERH interface required for interaction with an RNA binding protein.
Collapse
Affiliation(s)
- Guodong Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Tommy V Vo
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beibei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Mengqi Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China.
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Peterson SM, Turner JE, Harrington A, Davis-Knowlton J, Lindner V, Gridley T, Vary CPH, Liaw L. Notch2 and Proteomic Signatures in Mouse Neointimal Lesion Formation. Arterioscler Thromb Vasc Biol 2018; 38:1576-1593. [PMID: 29853569 PMCID: PMC6023756 DOI: 10.1161/atvbaha.118.311092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. Approach and Results— Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. Conclusions— We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.
Collapse
Affiliation(s)
- Sarah M Peterson
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.)
| | - Jacqueline E Turner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Anne Harrington
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Jessica Davis-Knowlton
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Volkhard Lindner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Thomas Gridley
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Calvin P H Vary
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Lucy Liaw
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.) .,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| |
Collapse
|
25
|
Flentje A, Kober KM, Carrico AW, Neilands TB, Flowers E, Heck NC, Aouizerat BE. Minority stress and leukocyte gene expression in sexual minority men living with treated HIV infection. Brain Behav Immun 2018; 70:335-345. [PMID: 29548994 PMCID: PMC5953835 DOI: 10.1016/j.bbi.2018.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Sexual minority (i.e., non-heterosexual) individuals experience poorer mental and physical health, accounted for in part by the additional burden of sexual minority stress occurring from being situated in a culture favoring heteronormativity. Informed by previous research, the purpose of this study was to identify the relationship between sexual minority stress and leukocyte gene expression related to inflammation, cancer, immune function, and cardiovascular function. Sexual minority men living with HIV who were on anti-retroviral medication, had viral load < 200 copies/mL, and had biologically confirmed, recent methamphetamine use completed minority stress measures and submitted blood samples for RNA sequencing on leukocytes. Differential gene expression and pathway analyses were conducted comparing those with clinically elevated minority stress (n = 18) and those who did not meet the clinical cutoff (n = 20), covarying reactive urine toxicology results for very recent stimulant use. In total, 90 differentially expressed genes and 138 gene set pathways evidencing 2-directional perturbation were observed at false discovery rate (FDR) < 0.10. Of these, 41 of the differentially expressed genes and 35 of the 2-directionally perturbed pathways were identified as functionally related to hypothesized mechanisms of inflammation, cancer, immune function, and cardiovascular function. The neuroactive-ligand receptor pathway (implicated in cancer development) was identified using signaling pathway impact analysis. Our results suggest several potential biological pathways for future work investigating the relationship between sexual minority stress and health.
Collapse
Affiliation(s)
- Annesa Flentje
- Community Health Systems, School of Nursing, University of California, San Francisco, United States.
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Computational Health Sciences, University of California, San Francisco, United States
| | | | - Torsten B Neilands
- Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco, United States
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States
| | - Nicholas C Heck
- Department of Psychology, Marquette University, United States
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| |
Collapse
|
26
|
Shichino Y, Otsubo Y, Kimori Y, Yamamoto M, Yamashita A. YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci. eLife 2018; 7:32155. [PMID: 29424342 PMCID: PMC5807050 DOI: 10.7554/elife.32155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
Accurate and extensive regulation of meiotic gene expression is crucial to distinguish germ cells from somatic cells. In the fission yeast Schizosaccharomyces pombe, a YTH family RNA-binding protein, Mmi1, directs the nuclear exosome-mediated elimination of meiotic transcripts during vegetative proliferation. Mmi1 also induces the formation of facultative heterochromatin at a subset of its target genes. Here, we show that Mmi1 prevents the mistimed expression of meiotic proteins by tethering their mRNAs to the nuclear foci. Mmi1 interacts with itself with the assistance of a homolog of Enhancer of Rudimentary, Erh1. Mmi1 self-interaction is required for foci formation, target transcript elimination, their nuclear retention, and protein expression inhibition. We propose that nuclear foci formed by Mmi1 are not only the site of RNA degradation, but also of sequestration of meiotic transcripts from the translation machinery.
Collapse
Affiliation(s)
- Yuichi Shichino
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan.,Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
27
|
Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S, Tanaka H, Yang W, Giuliano AE, Cui X. FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene 2017; 37:1399-1408. [PMID: 29249801 PMCID: PMC5844802 DOI: 10.1038/s41388-017-0021-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) has high rates of local recurrence and distant metastasis, partially due to its high invasiveness. The Forkhead box C1 (FOXC1) transcription factor has been shown to be specifically overexpressed in TNBC and associated with poor clinical outcome. How TNBC’s high invasiveness is driven by FOXC1 and its downstream targets remains poorly understood. In the present study, pathway-specific PCR array assays revealed that WNT5A and matrix metalloproteinase-7 (MMP7) were upregulated by FOXC1 in TNBC cells. Interestingly, WNT5A mediates the upregulation of MMP7 by FOXC1 and the WNT5A-MMP7 axis is essential for FOXC1-induced invasiveness of TNBC cells in vitro. Xenograft models showed that the lung extravasation and metastasis of FOXC1-overexpressing TNBC cells were attenuated by knocking out WNT5A, but could be restored by MMP7 overexpression. Mechanistically, FOXC1 can bind directly to the WNT5A promoter region to activate its expression. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), coupled with mass spectrometry, identified FOXC1-interacting proteins including a group of heterogeneous nuclear ribonucleoproteins involved in WNT5A transcription induction. Finally, we found that WNT5A activates NF-κB signaling to induce MMP7 expression. Collectively, these data demonstrate a FOXC1-elicited non-canonical WNT5A signaling mechanism comprising NF-κB and MMP7 that is essential for TNBC cell invasiveness, thereby providing implications toward developing an effective therapy for TNBC.
Collapse
Affiliation(s)
- Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Stacey Chung
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hisashi Tanaka
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
29
|
Martínez-Rivera FJ, Pérez-Laspiur J, Santiago-Gascot ME, Alemán-Reyes AG, García-Santiago E, Rodríguez-Pérez Y, Calo-Guadalupe C, Otero-Pagán I, Ayala-Pagán RN, Martínez M, Cantres-Rosario YM, Meléndez LM, Barreto-Estrada JL. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids. PLoS One 2017; 12:e0180409. [PMID: 28719635 PMCID: PMC5515402 DOI: 10.1371/journal.pone.0180409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
The abuse of anabolic androgenic steroids (AAS) has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG) axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH). In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM). These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE) and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.
Collapse
Affiliation(s)
- Freddyson J. Martínez-Rivera
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Juliana Pérez-Laspiur
- Translational Proteomics Center-RCMI, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - María E. Santiago-Gascot
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Abner G. Alemán-Reyes
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Emanuel García-Santiago
- Department of Biotechnology, Universidad del Este, Carolina, Puerto Rico, United States of America
| | - Yolanda Rodríguez-Pérez
- Translational Proteomics Center-RCMI, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Cristhian Calo-Guadalupe
- Department of Biotechnology, Universidad del Este, Carolina, Puerto Rico, United States of America
| | - Inelia Otero-Pagán
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Roxsana N. Ayala-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Magdiel Martínez
- Department of Physiology and Biophysics, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Yisel M. Cantres-Rosario
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Loyda M. Meléndez
- Translational Proteomics Center-RCMI, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Jennifer L. Barreto-Estrada
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| |
Collapse
|
30
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
31
|
Wang X, Zhang S, Zheng R, Yue F, Lin SHS, Rahmeh AA, Lee EYC, Zhang Z, Lee MYWT. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ. Oncotarget 2017; 7:6294-313. [PMID: 26819372 PMCID: PMC4868757 DOI: 10.18632/oncotarget.7034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Rong Zheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Fu Yue
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Amal A Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
32
|
Sugiyama T, Thillainadesan G, Chalamcharla VR, Meng Z, Balachandran V, Dhakshnamoorthy J, Zhou M, Grewal SIS. Enhancer of Rudimentary Cooperates with Conserved RNA-Processing Factors to Promote Meiotic mRNA Decay and Facultative Heterochromatin Assembly. Mol Cell 2016; 61:747-759. [PMID: 26942678 DOI: 10.1016/j.molcel.2016.01.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/22/2015] [Accepted: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Venkata R Chalamcharla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Pankow S, Bamberger C, Calzolari D, Martínez-Bartolomé S, Lavallée-Adam M, Balch WE, Yates JR. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 2015; 528:510-6. [PMID: 26618866 PMCID: PMC4826614 DOI: 10.1038/nature15729] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Deletion of phenylalanine 508 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the major cause of Cystic Fibrosis (CF), one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of CF patients. Low temperature or inhibition of histone deacetylases (HDACi) can partially rescue ΔF508 CFTR cellular processing defects and function. A favorable change of ΔF508 CFTR protein-protein interactions was proposed as mechanism of rescue, however CFTR interactome dynamics during temperature-shift and HDACi rescue are unknown. Here, we report the first comprehensive analysis of the wt and ΔF508 CFTR interactome and its dynamics during temperature shift and HDACi. By using a novel deep proteomic analysis method (CoPIT), we identified 638 individual high-confidence CFTR interactors and discovered a mutation-specific interactome, which is extensively remodeled upon rescue. Detailed analysis of the interactome remodeling identified key novel interactors, whose loss promoted enhanced CFTR channel function in primary CF epithelia or which were critical for normal CFTR biogenesis. Our results demonstrate that global remodeling of ΔF508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of CF caused by deletion of F508.
Collapse
Affiliation(s)
- Sandra Pankow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Casimir Bamberger
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Diego Calzolari
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Salvador Martínez-Bartolomé
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - William E Balch
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
34
|
Wu D, Zhu X, Jimenez-Cowell K, Mold AJ, Sollecito CC, Lombana N, Jiao M, Wei Q. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2. Exp Cell Res 2015; 333:80-92. [PMID: 25704760 PMCID: PMC4387072 DOI: 10.1016/j.yexcr.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 10/25/2022]
Abstract
Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), a Cooperation between Max Delbrück Center and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Kevin Jimenez-Cowell
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Alexander J Mold
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | | | - Nicholas Lombana
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States.
| |
Collapse
|
35
|
Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Davidson TL, Siddall NA, Koopman P, Hime GR, McLaughlin EA. RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB J 2015; 29:2759-68. [PMID: 25782991 DOI: 10.1096/fj.14-265868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the process of gamete development, male germ cells experience extended periods of inactive transcription despite requirements for continued growth and differentiation. Spermatogenesis therefore provides an ideal model to study the effects of posttranscriptional control on gene regulation. During spermatogenesis posttranscriptional regulation is orchestrated by abundantly expressed RNA-binding proteins. One such group of RNA-binding proteins is the Musashi family, previously identified as a critical regulator of testis germ cell development and meiosis in Drosophila and also shown to be vital to sperm development and reproductive potential in the mouse. We focus in depth on the role and function of the vertebrate Musashi ortholog Musashi-1 (MSI1). Through detailed expression studies and utilizing our novel transgenic Msi1 testis-specific overexpression model, we have identified 2 unique RNA-binding targets of MSI1 in spermatogonia, Msi2 and Erh, and have demonstrated a role for MSI1 in translational regulation. We have also provided evidence to suggest that nuclear import protein, IPO5, facilitates the nuclear translocation of MSI1 to the transcriptionally silenced XY chromatin domain in meiotic pachytene spermatocytes, resulting in the release of MSI1 RNA-binding targets. This firmly establishes MSI1 as a master regulator of posttranscriptional control during early spermatogenesis and highlights the significance of the subcellular localization of RNA binding proteins in relation to their function.
Collapse
Affiliation(s)
- Jessie M Sutherland
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander P Sobinoff
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Barbara A Fraser
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Kate A Redgrove
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Tara-Lynne Davidson
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Nicole A Siddall
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Koopman
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Gary R Hime
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Eileen A McLaughlin
- *School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|