1
|
Lu Y, Li T, Song L, Fan Q, Wang D, Wang P, Han Y, Zhou X. MDSCs in Chronic Liver Disease: Updates and Future Challenges. J Gastroenterol Hepatol 2025. [PMID: 40405825 DOI: 10.1111/jgh.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of pathologically expanded immature myeloid cells originating from bone marrow precursors, characterized by their potent immunosuppressive activity through mechanisms such as T cell inhibition, cytokine dysregulation, and metabolic interference. These cells are critically implicated in diverse pathological contexts, including cancer progression, chronic infections, and inflammatory disorders. In chronic liver diseases, MDSCs contribute to the pathogenesis of multiple conditions, such as chronic viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver diseases (AILD). Emerging evidence highlights their dual roles in both exacerbating tissue injury and modulating immune responses, positioning MDSCs as pivotal regulators of disease progression and potential therapeutic targets. In this review, we summarize the biological roles of MDSCs in a variety of chronic inflammatory liver diseases and explore the therapeutic potential of targeting these diseases to provide new insight for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Yi Lu
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ting Li
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Liang Song
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qingling Fan
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Danlin Wang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Punan Wang
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ying Han
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xinmin Zhou
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Yang F, Men R, Lv L, Zhou L, Deng Q, Wang X, Liu J, Yang L. Engaging natural regulatory myeloid cells to restrict T-cell hyperactivation-induced liver inflammation via extracellular vesicle-mediated purine metabolism regulation. Theranostics 2024; 14:4874-4893. [PMID: 39239508 PMCID: PMC11373623 DOI: 10.7150/thno.97427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Dysregulated T-cell immune response-mediated inflammation plays critical roles in the pathology of diverse liver diseases, but the underlying mechanism of liver immune homeostasis control and the specific therapies for limiting T-cell overactivation remain unclear. Methods: The metabolic changes in concanavalin A (ConA) mice and autoimmune hepatitis (AIH) patients and their associations with liver injury were analyzed. The expression of purine catabolism nucleases (e.g., CD39 and CD73) on liver cells and immune cells was assessed. The effects of MCregs and their extracellular vesicles (EVs) on CD4+ T-cell overactivation and the underlying mechanism were also explored. Results: Our findings revealed significant alterations in purine metabolism in ConA mice and AIH patients, which correlated with liver injury severity and therapeutic response. CD39 and CD73 were markedly upregulated on CD11b+Gr-1+ MCs under liver injury conditions. The naturally expanded CD39+CD73+Gr-1highCD11b+ MCreg subset during early liver injury effectively suppressed CD4+ T-cell hyperactivation and liver injury both in vitro and in vivo. Mechanistically, MCregs released CD73high EVs, which converted extracellular AMP to immunosuppressive metabolites (e.g., adenosine and inosine), activating the cAMP pathway and inhibiting glycolysis and cytokine secretion in activated CD4+ T cells. Conclusions: This study provides insights into the mechanism controlling immune homeostasis during the early liver injury phase and highlights that MCreg or MCreg-EV therapy may be a specific strategy for preventing diverse liver diseases induced by T-cell overactivation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Linling Lv
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Leyu Zhou
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xianglin Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Liu Z, Bao Z, Yu B, Chen L, Yang G. Pemetrexed ameliorates Con A-induced hepatic injury by restricting M1 macrophage activation. Int Immunopharmacol 2023; 125:111158. [PMID: 37925950 DOI: 10.1016/j.intimp.2023.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Autoimmune hepatitis (AIH), characterized by immune-driven liver destruction and cytokine production, is a progressive inflammatory liver condition that may progress to hepatic cirrhosis or tumors. However, the underlying mechanism is not well understood, and the treatment options for this disease are limited. Pemetrexed (PEM), a clinically used anti-folate drug for treating various tumors, was found to inhibit the nuclear factor (NF)-κB signaling pathways that exert an important role in the development of AIH. Here, we investigated the impact of PEM on immune-mediated hepatic injuries using a murine model of Concanavalin A (Con A)-induced hepatitis, a well-established model for AIH. Mice received intraperitoneal PEM injections 3 times at 12-hour intervals, and two hours later, they were challenged with Con A. Liver samples and serum were collected after 10 h. The results indicate that PEM significantly improved mouse survival rates and lowered serum transaminase levels. Moreover, PEM effectively alleviated oxidative stress, reduced histopathological liver damage, and mitigated hepatocyte apoptosis. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-12, IL-1β, and inducible nitric oxide synthase (iNOS), was also decreased. Finally, the results indicated that PEM regulates M1 macrophage activation by modulating the NF-κB signaling pathways. Overall, these results demonstrate that PEM effectively guards against immune-mediated hepatic injuries induced by Con A by inhibiting M1 macrophage activation through the NF-κB signaling pathways and indicate the potential of PEM as a practical treatment option for AIH in clinical settings.
Collapse
Affiliation(s)
- Zhaiyi Liu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhiyue Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
4
|
Wang L, Yan F, Zhang J, Xiao Y, Wang C, Zhu Y, Li C, Liu Z, Li W, Wang C, Liu J, Zhang H, Xiong H, Shi D. Cornuside improves murine autoimmune hepatitis through inhibition of inflammatory responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155077. [PMID: 37716032 DOI: 10.1016/j.phymed.2023.155077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) poses an important public health concern worldwide, with few therapeutic options available. Cornuside, a primary cornel iridoid glycoside present in Cornus officinalis Sieb. et Zucc., is a well-known traditional Chinese medicine that possesses anti-inflammatory, antioxidant and anti-apoptotic properties. However, the effects of cornuside on autoimmune diseases including AIH is still not defined, neither is clear on the mechanisms of cornuside in the suppression of inflammatory responses. PURPOSE The study was aimed to investigate the therapeutic effects of cornuside on AIH using murine models. STUDY DESIGN A murine model of AIH induced by concanavalin A (Con A) was used to examine the pharmacological activity of cornuside in suppressing the inflammatory responses in vivo. METHODS C57BL/6J mice were intravenously with different doses of cornuside and challenged with 18 mg/kg Con A 3 h later. Network pharmacological analysis was performed to identify the potential target genes and signaling pathways by cornuside in AIH. Next serum and liver tissues were collected 12 h after Con A injection to analyze the levels of markers for hepatic injury, apoptosis, oxidative stress, immune responses, and inflammation. RESULTS Network pharmacological analysis revealed that cornuside may modulate oxidative stress and apoptosis in AIH. Compared with the Con A group, cornuside pretreatment significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase, improving histopathological damage and apoptosis in the livers. In addition, cornuside decreased the levels of malondialdehyde, myeloperoxidase, but increased superoxide dismutase levels, suggesting the relieving of oxidative stress. Furthermore, cornuside suppressed the activation of T and natural killer T cells, whereas the proportion of myeloid-derived suppressor cells was significantly increased. The production of proinflammatory cytokines, including interleukin (IL)-6, IL-12, IL-1β, and tumor necrosis factor-alpha (TNF-α), was also clearly decreased. Finally, western blot analysis displayed that cornuside inhibited the phosphorylation of extracellular receptor kinase (ERK) and c-Jun N-terminal kinase (JNK). CONCLUSIONS We demonstrated that cornuside has protective effects for Con A-induced immune-mediated hepatitis by suppressing the oxidative stress, apoptosis, and the inflammatory responses through the ERK and JNK signaling pathways, as well as by modulating the activation and recruitment of immune cells.
Collapse
Affiliation(s)
- Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chengduo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jie Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Dongmei Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China; Laboratory of Medical Mycology, Department of Dermatology, Jining No.1 People's Hospital, Jining, China.
| |
Collapse
|
5
|
Ming B, Zhu Y, Zhong J, Dong L. Regulatory T cells: a new therapeutic link for Sjögren syndrome? Rheumatology (Oxford) 2023; 62:2963-2970. [PMID: 36790059 DOI: 10.1093/rheumatology/kead070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Great advancements have been made in understanding the pathogenesis of SS, but there remain unmet needs for effective and targeted treatments. Glandular and extraglandular dysfunction in SS is associated with autoimmune lymphocytic infiltration that invades the epithelial structures of affected organs. Regulatory T (Treg) cells are a subset of CD4+ T lymphocytes that maintain self-tolerance during physiological conditions. Besides inhibiting excessive inflammation and autoimmune response by targeting various immune cell subsets and tissues, Treg cells have also been shown to promote tissue repair and regeneration in pathogenic milieus. The changes of quantity and function of Treg cells in various autoimmune and chronic inflammatory disorders have been reported, owing to their effects on immune regulation. Here we summarize the recent findings from murine models and clinical data about the dysfunction of Treg cells in SS pathogenesis and discuss the therapeutic strategies of direct or indirect targeting of Treg cells in SS. Understanding the current knowledge of Treg cells in the development of SS will be important to elucidate disease pathogenesis and may guide research for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Mo W, Liu S, Zhao X, Wei F, Li Y, Sheng X, Cao W, Ding M, Zhang W, Chen X, Meng L, Yao S, Diao W, Wei H, Guo H. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300191. [PMID: 37031357 DOI: 10.1002/adhm.202300191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), two immunosuppressive myeloid components within the tumor microenvironment (TME), represent fundamental barriers in cancer immunotherapy, whereas current nanomedicines rarely exert dual modulatory roles on these cell types simultaneously. Reactive oxygen species (ROS) not only mediates MDSC-induced immunosuppression but also triggers differentiation and polarization of M2-TAMs. Herein, an ROS scavenging nanozyme, Zr-CeO, with enhanced superoxide dismutase- and catalase-like activities for renal tumor growth inhibition is reported. Mechanistically, intracellular ROS scavenging by Zr-CeO significantly attenuates MDSC immunosuppression via dampening the unfolded protein response, hinders M2-TAM polarization through the ERK and STAT3 pathways, but barely affects neoplastic cells and cancer-associated fibroblasts. Furthermore, Zr-CeO enhances the antitumor effect of PD-1 inhibition in murine renal and breast tumor models, accompanied with substantially decreased MDSC recruitment and reprogrammed phenotype of TAMs in the tumor mass. Upon cell isolation, reversed immunosuppressive phenotypes of MDSCs and TAMs are identified. In addition, Zr-CeO alone or combination therapy enhances T lymphocyte infiltration and IFN-γ production within the TME. Collectively, a promising strategy to impair the quantity and function of immunosuppressive myeloid cells and sensitize immunotherapy in both renal and breast cancers is provided.
Collapse
Affiliation(s)
- Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Fayun Wei
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Yuhang Li
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Wenlong Zhang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xiaoqing Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Sheng Yao
- Shanghai Junshi Biosciences Co., Ltd., 200126, Shanghai, China
- TopAlliance Biosciences, Inc., Rockville, MD, 20850, USA
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
7
|
Lyu Z, Huang B, Zhang J, Qian Q, Pu X, Cui N, Ou Y, Li B, You Z, Lian M, Tang R, Chen W, Zhao Z, Hou J, Gershwin ME, Zhang H, Xia Q, Ma X. Suppression of YTHDF2 attenuates autoimmune hepatitis by expansion of myeloid-derived suppressor cells. J Autoimmun 2023; 135:102993. [PMID: 36642058 DOI: 10.1016/j.jaut.2023.102993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.
Collapse
Affiliation(s)
- Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yiyan Ou
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Weihua Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Jiajie Hou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
8
|
Shen M, Fan X, Shen Y, Wang X, Wu R, Wang Y, Huang C, Zhao S, Zheng Y, Men R, Luo X, Yang L. Myeloid-derived suppressor cells ameliorate liver mitochondrial damage to protect against autoimmune hepatitis by releasing small extracellular vesicles. Int Immunopharmacol 2023; 114:109540. [PMID: 36516541 DOI: 10.1016/j.intimp.2022.109540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an inflammatory liver disease that is associated with impaired self-tolerance. Myeloid-derived supprfessor cells (MDSCs) have been considered to exert counterregulatory effects on AIH. However, the specific mechanism underlying these effects is unclear. Herein, we investigated the efficacy and safety of MDSCs in protecting against AIH and explored the underlying mechanism. METHODS Circulating and liver MDSC expression levels in 71 AIH patients and 47 healthy control (HC) individuals were detected by flow cytometry and immunohistochemistry. The adoptive transfer of induced bone marrow-derived MDSCs (BM MDSCs) to AIH mice was used to explore the function of MDSCs. Hepatic injury and mitochondrial damage were evaluated by transaminase levels, histopathology, immunohistochemistry, transmission electron microscopy and western blotting. MDSCs were pretreated with the small extracellular vesicle (sEV) generation inhibitor GW4869 to explore the mechanism. Importantly, sEVs derived from MDSCs and MDSCs-GW4869 were injected into model mice to monitor mitochondrial function and biogenesis. RESULTS Circulating and liver MDSCs were expanded in AIH patients and mouse model. Furthermore, the follow-up data of AIH patients showed that immunosuppressive therapy further promoted the expansion of MDSCs. More importantly, the adoptive transfer of BM MDSCs to AIH mice effectively ameliorated liver injury and regulated the imbalance of the immune microenvironment. Additionally, BM MDSCs reduced liver mitochondrial damage and improved mitochondrial biogenesis. Mechanistically, sEVs derived from BM MDSCs showed the same biological effects as cells, and blocking sEV production weakened the function of BM MDSCs. Finally, multiple long-term administrations of BM MDSCs were proven to be safe in general. CONCLUSION In conclusion, MDSCs ameliorate liver mitochondrial damage to protect against autoimmune hepatitis by releasing small extracellular vesicles.
Collapse
Affiliation(s)
- Mengyi Shen
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoli Fan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shen
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoze Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruiqi Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen Huang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shenglan Zhao
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyi Zheng
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruoting Men
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Luo
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Li Yang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
10
|
Pandey SP, Bender MJ, McPherson AC, Phelps CM, Sanchez LM, Rana M, Hedden L, Sangani KA, Chen L, Shapira JH, Siller M, Goel C, Verdú EF, Jabri B, Chang A, Chandran UR, Mullett SJ, Wendell SG, Singhi AD, Tilstra JS, Pierre JF, Arteel GE, Hinterleitner R, Meisel M. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis. Cell Host Microbe 2022; 30:1003-1019.e10. [PMID: 35658976 PMCID: PMC9841318 DOI: 10.1016/j.chom.2022.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 01/19/2023]
Abstract
The triggers that drive interferon-γ (IFNγ)-producing CD8 T cell (Tc1 cell)-mediated autoimmune hepatitis (AIH) remain obscure. Here, we show that lack of hematopoietic Tet methylcytosine dioxygenase 2 (Tet2), an epigenetic regulator associated with autoimmunity, results in the development of microbiota-dependent AIH-like pathology, accompanied by hepatic enrichment of aryl hydrocarbon receptor (AhR) ligand-producing pathobionts and rampant Tc1 cell immunity. We report that AIH-like disease development is dependent on both IFNγ and AhR signaling, as blocking either reverts ongoing AIH-like pathology. Illustrating the critical role of AhR-ligand-producing pathobionts in this condition, hepatic translocation of the AhR ligand indole-3-aldehyde (I3A)-releasing Lactobacillus reuteri is sufficient to trigger AIH-like pathology. Finally, we demonstrate that I3A is required for L. reuteri-induced Tc1 cell differentiation in vitro and AIH-like pathology in vivo, both of which are restrained by Tet2 within CD8 T cells. This AIH-disease model may contribute to the development of therapeutics to alleviate AIH.
Collapse
Affiliation(s)
- Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex C McPherson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Catherine M Phelps
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Mohit Rana
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Hedden
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kishan A Sangani
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Li Chen
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Jake H Shapira
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magdalena Siller
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chhavi Goel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena F Verdú
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy S Tilstra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Yan F, Cheng D, Wang H, Gao M, Zhang J, Cheng H, Wang C, Zhang H, Xiong H. Corilagin Ameliorates Con A-Induced Hepatic Injury by Restricting M1 Macrophage Polarization. Front Immunol 2022; 12:807509. [PMID: 35095894 PMCID: PMC8792905 DOI: 10.3389/fimmu.2021.807509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hongyan Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Liu M, Zhang H, Zhang L, Liu X, Zhou S, Wang X, Zhong W, Zhang J, Wang B, Zhao J, Zhou L. RIP3 blockade prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int J Biol Sci 2022; 18:199-213. [PMID: 34975327 PMCID: PMC8692153 DOI: 10.7150/ijbs.65402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated chronic inflammatory liver disease, and its pathogenesis is not fully understood. Our previous study discovered that receptor interacting protein kinase 3 (RIP3) is correlated with serum transaminase levels in AIH patients. However, its role and underlying mechanism in AIH are poorly understood. Here, we detected the increased expression and activation of RIP3 in livers of patients and animal models with AIH. The inhibition of RIP3 kinase by GSK872 prevented concanavalin A (ConA)-induced immune-mediated hepatitis (IMH) by reduced hepatic proinflammatory cytokines and immune cells including Th17 cells and macrophages. Further experiments revealed that RIP3 inhibition resulted in an increase in CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) with immunoregulatory properties in the liver, spleen, and peripheral blood. Moreover, the depletion of Gr-1+ MDSCs abrogated the protective effect and immune suppression function of GSK872 in ConA-induced IMH. Altogether, our data demonstrate that RIP3 blockade prevents ConA-induced IMH through promoting MDSCs infiltration. Inhibition of RIP3 kinase may be a novel therapeutic avenue for AIH treatment.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
13
|
Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, Tang R, Ma X. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol 2021; 12:732102. [PMID: 34512667 PMCID: PMC8427166 DOI: 10.3389/fimmu.2021.732102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) emerge as a promising candidate for the immunotherapy of autoimmune hepatitis (AIH). However, targets for modulating MDSC in AIH are still being searched. Liver X receptors (LXRs) are important nuclear receptors linking lipid metabolism and immune responses. Despite the extensive studies of LXR in myeloid compartment, its role in MDSCs is currently less understood. Herein, expression of LXRα was found to be upregulated in AIH patients and colocalized with hepatic MDSCs. In ConA-induced hepatitis, deletion of LXRα led to increased expansion of MDSCs in the liver and alleviated the hepatic injury. MDSCs in LXRα-/- mice exhibited enhanced proliferation and survival comparing with WT mice. T-cell proliferation assay and adoptive cell transfer experiment validated the potent immunoregulatory role of MDSCs in vitro and in vivo. Mechanistically, MDSCs from LXRα-/- mice possessed significantly lower expression of interferon regulatory factor 8 (IRF-8), a key negative regulator of MDSC differentiation. Transcriptional activation of IRF-8 by LXRα was further demonstrated. Conclusion We reported that abrogation of LXRα facilitated the expansion of MDSCs via downregulating IRF-8, and thereby ameliorated hepatic immune injury profoundly. Our work highlights the therapeutic potential of targeting LXRα in AIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiong Ma
- *Correspondence: Xiong Ma, ; Ruqi Tang,
| |
Collapse
|
14
|
Sehgal R, Kaur N, Ramakrishna G, Trehanpati N. Immune Surveillance by Myeloid-Derived Suppressor Cells in Liver Diseases. Dig Dis 2021; 40:301-312. [PMID: 34157708 DOI: 10.1159/000517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are immunosuppressive in nature, originate in the bone marrow, and are mainly found in the blood, spleen, and liver. In fact, liver acts as an important organ for induction and accumulation of MDSCs, especially during infection, inflammation, and cancer. In humans and rodents, models of liver diseases revealed that MDSCs promote regeneration and drive the inflammatory processes, leading to hepatitis, fibrogenesis, and cirrhosis, ultimately resulting in hepatocellular carcinoma. SUMMARY This brief review is focused on the in-depth understanding of the key molecules involved in the expansion and regulation of MDSCs and their underlying immunosuppressive mechanisms in liver diseases. KEY MESSAGE Modulated MDSCs can be used for therapeutic purposes in inflammation, cancer, and sepsis.
Collapse
Affiliation(s)
- Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
15
|
Inhibition of Dot1L Alleviates Fulminant Hepatitis Through Myeloid-Derived Suppressor Cells. Cell Mol Gastroenterol Hepatol 2021; 12:81-98. [PMID: 33497867 PMCID: PMC8081916 DOI: 10.1016/j.jcmgh.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Fulminant hepatitis (FH) is a clinical syndrome characterized by sudden and severe liver dysfunction. Dot1L, a histone methyltransferase, is implicated in various physiologic and pathologic processes, including transcription regulation and leukemia. However, the role of Dot1L in regulating inflammatory responses during FH remains elusive. METHODS Propionibacterium acnes (P. acnes)-primed, lipopolysaccharides (LPS)-induced FH was established in C57BL/6 mice and was treated with the Dot1L inhibitor EPZ-5676. Myeloid derived suppressor cells (MDSCs) were depleted by anti-Gr-1 antibody to evaluate their therapeutic roles in Dot1L treatment of FH. Moreover, peripheral blood of patients suffered with FH and healthy controls was collected to determine the expression profile of Dot1L-SOCS1-iNOS axis in their MDSCs. RESULTS Here we identified that EPZ-5676, pharmacological inhibitor of Dot1L, attenuated the liver injury of mice subjected to FH. Dot1L inhibition led to decreased T helper 1 cell response and expansion of regulatory T cells (Tregs) during FH. Interestingly, Dot1L inhibition didn't directly target T cells, but dramatically enhanced the immunosuppressive function of MDSCs. Mechanistically, Dot1L inhibition epigenetically suppressed SOCS1 expression, thus inducing inducible nitric oxide synthase (iNOS) expression in a STAT1-dependent manner. Moreover, in human samples, the levels of Dot1L and SOCS1 expression were upregulated in MDSCs, accompanied by decreased expression of iNOS in patients with FH, compared with healthy controls. CONCLUSIONS Altogether, our findings established Dot1L as a critical regulator of MDSC immunosuppressive function for the first time, and highlighted the therapeutic potential of Dot1L inhibitor for FH treatment.
Collapse
|
16
|
Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, Feng Y. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease. Clin Transl Med 2020; 10:e112. [PMID: 32790968 PMCID: PMC7438809 DOI: 10.1002/ctm2.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Berberine is an isoquinoline alkaloid compound derived from many herbs, which has been used extensively to improve liver function. But action mechanism of its hepatoprotection in alcoholic liver disease (ALD) is far from being clear. Aim To investigate the underlying mechanism of berberine's therapeutic effect on ALD associated with gut microbiota‐immune system axis. Method An animal model fed with ethanol that mimics drinking pattern ideally in ALD patients was established. Liver function was evaluated by biochemical test and histological examination. Immune cells were detected by flow cytometry and feces samples were collected for 16S rRNA gene amplicon sequencing. Results We first reported the promising beneficial effect of berberine on ameliorating acute‐on‐chronic alcoholic hepatic damage and explored the underlying mechanism involving gut microbiota‐immune system axis. Notably, berberine activated a population with immune suppressive function, defined as granulocytic‐ myeloid‐derived suppressor cell (G‐MDSC)‐like population, in the liver of mice with alleviating alcohol‐induced hepatic injury. Berberine remarkably enhanced the increase of G‐MDSC‐like cells in blood and liver and decreased cytotoxic T cells correspondingly. Suppression of G‐MDSC‐like population significantly attenuated the protective effect of berberine against alcohol. Berberine activated IL6/STAT3 signaling in in vitro culture of G‐MSDCs‐like population, while inhibition of STAT3 activity attenuated the activation of this population by berberine. Moreover, berberine changed the overall gut microbial community, primarily increased the abundance of Akkermansia muciniphila. Of note, depletion of gut microbiota abolished the inducing effect of berberine on G‐MDSC‐like population, and attenuated its hepatoprotective effect against alcohol in mice, suggesting intestinal flora might be involved in mediating the expansion of this protective population. Conclusion Collectively, this study delivered insight into the role of immunosuppressive response in ALD, and facilitated the understanding of the pharmacological effects and action mechanisms of berberine.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Fan Chueng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| |
Collapse
|
17
|
Preclinical studies of a death receptor 5 fusion protein that ameliorates acute liver failure. J Mol Med (Berl) 2019; 97:1247-1261. [PMID: 31230087 DOI: 10.1007/s00109-019-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease with a high mortality rate. There is an urgent need to develop new drugs with high efficacy and low toxicity. In this study, we produced a pharmaceutical-grade soluble death receptor 5 (sDR5)-Fc fusion protein for treating ALF and evaluated the pharmacology, safety, pharmacokinetics, efficacy, and mechanisms of sDR5-Fc in mice, rats, and cynomolgus monkeys. sDR5-Fc bound with high affinity to both human and monkey tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively blocked TRAIL-induced apoptosis in vitro and significantly ameliorated ALF induced by concanavalin A (Con A) in mice. Mechanistically, sDR5-Fc inhibited hepatocyte death and reduced inflammation in vivo. Furthermore, sDR5-Fc attenuated the production of inflammatory cytokines by splenocytes activated with Con A or an anti-CD3 antibody in vitro. Consistent with these results, splenocytes from TRAIL-/- mice produced much lower levels of inflammatory cytokines than those from TRAIL+/+ mice. In cynomolgus monkeys, sDR5-Fc was safe and well tolerated when intravenously administered as a single dose of up to 1200 mg/kg or multiple doses of 100 mg/kg. After treatment with a single dose, linear pharmacokinetics with a mean half-life of > 1.9 days were observed. After 12 weekly doses, sDR5-Fc exposure increased in an approximately dose-proportional manner, and the mean accumulation ratio ranged from 1.82- to 2.11-fold. These results support further clinical development of our sDR5-Fc protein as the first TRAIL-targeting drug for ALF treatment. KEY MESSAGES: sDR5-Fc binds with high affinity to TRAIL to effectively block TRAIL-induced apoptosis. sDR5-Fc ameliorates Con A-induced acute liver failure in mice by inhibiting hepatocyte death and inflammation. sDR5-Fc or TRAIL knockout attenuates the production of inflammatory cytokines by activated splenocytes in vitro. sDR5-Fc is safe and well tolerated in acute or long-term toxicity study.
Collapse
|
18
|
Wang Y, Liang H, Jin F, Yan X, Xu G, Hu H, Liang G, Zhan S, Hu X, Zhao Q, Liu Y, Jiang ZY, Zhang CY, Chen X, Zen K. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci U S A 2019; 116:6162-6171. [PMID: 30867286 PMCID: PMC6442592 DOI: 10.1073/pnas.1814139116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatic injury is often accompanied by pulmonary inflammation and tissue damage, but the underlying mechanism is not fully elucidated. Here we identify hepatic miR-122 as a mediator of pulmonary inflammation induced by various liver injuries. Analyses of acute and chronic liver injury mouse models confirm that liver dysfunction can cause pulmonary inflammation and tissue damage. Injured livers release large amounts of miR-122 in an exosome-independent manner into the circulation compared with normal livers. Circulating miR-122 is then preferentially transported to mouse lungs and taken up by alveolar macrophages, in which it binds Toll-like receptor 7 (TLR7) and activates inflammatory responses. Depleting miR-122 in mouse liver or plasma largely abolishes liver injury-induced pulmonary inflammation and tissue damage. Furthermore, alveolar macrophage activation by miR-122 is blocked by mutating the TLR7-binding GU-rich sequence on miR-122 or knocking out macrophage TLR7. Our findings reveal a causative role of hepatic miR-122 in liver injury-induced pulmonary dysfunction.
Collapse
Affiliation(s)
- Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
- Center for Inflammation, Immunity and Infectious Diseases, Georgia State University, Atlanta, GA 30032
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Xin Yan
- Department of Respiratory Medicine, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 210008 Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, China
| | - Huanhuan Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Gaoli Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Shoubin Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Xiuting Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China
| | - Yuan Liu
- Center for Inflammation, Immunity and Infectious Diseases, Georgia State University, Atlanta, GA 30032
| | - Zhen-You Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, 510632 Guangzhou, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China;
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China;
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210093 Nanjing, China;
| |
Collapse
|
19
|
Overexpression of KLF14 protects against immune-mediated hepatic injury in mice. J Transl Med 2019; 99:37-47. [PMID: 30254317 DOI: 10.1038/s41374-018-0134-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
The underlying immunopathogenic mechanisms of autoimmune hepatitis (AIH) have not yet been well elucidated. An impairment in regulatory T cells (Tregs) is key to the development of AIH. Krüppel-like factors (KLFs) regulate a broad of cellular processes including immunocyte maturation. KLF14 may regulate Treg differentiation, but the biological functions remain far from elucidated. In this study, we identified the hepatic expression of KLF14 in human and murine liver diseases. Immune-mediated hepatitis was induced by concanavalin A (Con A). A KLF14 recombinant adenoviruses plasmid (Ad-KLF14) was constructed and injected into mice. Tregs were assessed by flow cytometry analysis; inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), were tested by enzyme-linked immunosorbent assay (ELISA). The expression of KLF14 was suppressed in a time-and dose-dependent manner. Changes in cytokine levels were consistent with the degree of hepatic injury. Overexpression of KLF14 protected the liver from immune-mediated damage in vivo. Ad-KLF14 transfection before Con A challenge increased the frequency of Tregs in liver mononuclear cells (MNCs), and suppressed the expression of cytokines. All of these improvements were completely abrogated after Treg deletion in vivo by intraperitoneal injection of a CD25 antibody. In conclusion, these data suggest that KLF14 plays an as-yet unrecognized role in immune-mediated hepatitis mainly via induced Treg differentiation. Our findings extend the knowledge of the biological function of KLF14 to the autoimmune disease field, and indicate the possibility of KLF14 as a therapeutic target in AIH patients.
Collapse
|
20
|
Lepidium meyenii Walp Exhibits Anti-Inflammatory Activity against ConA-Induced Acute Hepatitis. Mediators Inflamm 2018; 2018:8982756. [PMID: 30647537 PMCID: PMC6311815 DOI: 10.1155/2018/8982756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Strong inflammation is a prominent pathogenesis of acute hepatitis, which can induce hepatocyte death and lead to liver failure. Lepidium meyenii Walp (Maca) is a traditional herbal medicine mostly used in improving sperm motility and serum hormone levels, etc. However, there are no reports that showed Maca was designed for treating hepatitis so far. Therefore, the protective effects and pharmacological mechanisms of Maca are unknown in hepatitis. In this study, we found that the protective effects of Maca extract ameliorate ConA-induced acute hepatitis (CIH) and underlying mechanisms. We determined that pretreatment with Maca extract significantly suppressed the production of aminotransferases and inflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-2, IL-6, IL-12, and IL-17a, and moderated acute liver injury in CIH. Maca recruited more myeloid-derived suppressor cells (MDSCs) to the liver and suppressed infiltration of natural killer T cells (NKT cells) and macrophages in the liver. Furthermore, our data indicated the molecular mechanism of the inhibitory inflammatory effects of Maca, which should suppress the activation of NF-κB, IFN-γ/STAT1, and IL-6/STAT3 signalings. Collectively, this present research explores Maca as an effective hepatoprotective medicine to inhibit inflammation and liver injury caused by acute hepatitis.
Collapse
|
21
|
Jin F, Hu H, Xu M, Zhan S, Wang Y, Zhang H, Chen X. Serum microRNA Profiles Serve as Novel Biomarkers for Autoimmune Diseases. Front Immunol 2018; 9:2381. [PMID: 30459760 PMCID: PMC6232775 DOI: 10.3389/fimmu.2018.02381] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023] Open
Abstract
Autoimmune diseases involve a complex dysregulation of immunity. Autoimmune diseases include many members [e.g., rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE)], and most of them are classified according to what organs and tissues are targeted by the damaging immune response. Many studies have focused on finding specific biomarkers for single autoimmune diseases, but so far, there are no universal biomarkers for detecting almost all autoimmune diseases. Serum miRNAs have served as potential biomarkers for detecting various diseases. The purpose of this study was to find a universal biomarker for diagnosing autoimmune diseases. Regulatory T cells (Tregs) play a crucial role in protecting an individual from autoimmunity, and depletion of Tregs in mice is considered a representative animal model of autoimmune disease. Two mouse models for Treg depletion, in which Treg was depleted by CD25mAb (in C57 mice) or by diphtheria toxin (DT) (in Foxp3DTR mice), were investigated, and 381 miRNAs were identified in the serum of mice with Treg depletion. A distinctive circulating miRNA profile was identified in Treg-depleted mice and in patients with autoimmune disease. QRT-PCR confirmation and ROC curve analysis determined that six miRNAs (miR-551b, miR-448, miR-9, miR-124, miR-148, and miR-34c) in the Treg-depleted mouse models and three miRNAs [miR-551b (specificity 73.5%, sensitivity 88.4%), miR-448 (specificity 82.4%, sensitivity 91.3%), and miR-124 (specificity 76.5%, sensitivity 91.3%)] in patients with RA, SLE, Sjogren's syndrome (SS), and ulcerative colitis (UC) could serve as valuable specific biomarkers. These circulating miRNAs may represent potential universal biomarkers for autoimmune diseases diagnosis and prognosis.
Collapse
Affiliation(s)
- Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Huanhuan Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Lian M, Selmi C, Gershwin ME, Ma X. Myeloid Cells and Chronic Liver Disease: a Comprehensive Review. Clin Rev Allergy Immunol 2018; 54:307-317. [PMID: 29313221 DOI: 10.1007/s12016-017-8664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myeloid cells play a major role in the sensitization to liver injury, particularly in chronic inflammatory liver diseases with a biliary or hepatocellular origin, and the interplay between myeloid cells and the liver may explain the increased incidence of hepatic osteodystrophy. The myeloid cell-liver axis involves several mature myeloid cells as well as immature or progenitor cells with the complexity of the liver immune microenvironment aggravating the mist of cell differentiation. The unique positioning of the liver at the junction of the peripheral and portal circulation systems underlines the interaction of myeloid cells and hepatic cells and leads to immune tolerance breakdown. We herein discuss the scenarios of different chronic liver diseases closely modulated by myeloid cells and illustrate the numerous potential targets, the understanding of which will ultimately steer the development of solid immunotherapeutic regimens. Ultimately, we are convinced that an adequate modulation of the liver microenvironment to modify the functional and quantitative characteristics of myeloid cells will be a successful approach to treating chronic liver diseases of different etiologies.
Collapse
Affiliation(s)
- Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
23
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
24
|
Li S, Wang N, Tan HY, Hong M, Yuen MF, Li H, Feng Y. Expansion of Granulocytic, Myeloid-Derived Suppressor Cells in Response to Ethanol-Induced Acute Liver Damage. Front Immunol 2018; 9:1524. [PMID: 30072984 PMCID: PMC6060237 DOI: 10.3389/fimmu.2018.01524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
The dual role of ethanol in regulating both pro-inflammatory and anti-inflammatory response has recently been reported. Myeloid-derived suppressor cells (MDSCs) are one of the major components in the immune suppressive network in both innate and adaptive immune responses. In this study, we aim to define the role of a population expressing CD11b+Ly6GhighLy6Cint with immunosuppressive function in response to ethanol-induced acute liver damage. We find this increased granulocytic-MDSCs (G-MDSCs) population in the blood, spleen, and liver of mice treated with ethanol. Depletion of these cells increases serum alanine aminotransferase and aspartate aminotransferase levels, while G-MDSCs population adoptive transfer can ameliorate liver damage induced by ethanol, indicating the protective role in the early stage of alcoholic liver disease. The significant changes of T-cell profiles after G-MDSCs populations adoptive transfer and anti-Gr1 injection signify that both cytotoxic T and T helper cells might be the targeted cells of G-MDSCs. In the in vitro study, we find that myeloid precursors preferentially generate G-MDSCs and improve their suppressive capacity via chemokine interaction and YAP signaling when exposed to ethanol. Furthermore, IL-6 serves as an important indirect factor in mediating the expansion of G-MDSCs populations after acute ethanol exposure. Collectively, we show that expansion of G-MDSCs in response to ethanol consumption plays a protective role in acute alcoholic liver damage. Our study provides novel evidence of the immune response to acute ethanol consumption.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
25
|
Nakao T, Nakamura T, Masuda K, Matsuyama T, Ushigome H, Ashihara E, Yoshimura N. Dexamethasone Prolongs Cardiac Allograft Survival in a Murine Model Through Myeloid-derived Suppressor Cells. Transplant Proc 2018; 50:299-304. [DOI: 10.1016/j.transproceed.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
|
26
|
Xu S, Wu L, Zhang Q, Feng J, Li S, Li J, Liu T, Mo W, Wang W, Lu X, Yu Q, Chen K, Xia Y, Lu J, Xu L, Zhou Y, Fan X, Guo C. Pretreatment with propylene glycol alginate sodium sulfate ameliorated concanavalin A-induced liver injury by regulating the PI3K/Akt pathway in mice. Life Sci 2017; 185:103-113. [PMID: 28774703 DOI: 10.1016/j.lfs.2017.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
AIMS Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide possesses anti-inflammatory effects. Here, we investigated the effect of PSS on concanavalin A (Con A)-induced liver injury in mice and examined the underlying mechanisms. MAIN METHODS Balb/C mice were injected intravenously with Con A (25mg/kg) to generate a model of acute liver injury. PSS (25 or 50mg/kg) was injected intraperitoneally 1h before the Con A administration. The levels of serum liver enzymes, inflammatory cytokines, and other marker proteins were determined, and liver injury was assessed histopathologically 2, 8, and 24h after Con A injection. KEY FINDINGS Pretreatment with PSS reduced the levels of serum liver enzymes, inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and attenuated histopathological damage in Con A-induced liver injury in mice. The effects of Con A were mediated by apoptosis and autophagy, as indicated by changes in protein and gene expression of related factors after Con A injection. PSS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and showed a protective function against apoptosis and autophagy. SIGNIFICANCE PSS ameliorated Con A-induced liver injury by downregulating inflammatory cytokines including TNF-α and IL-1β and regulating apoptosis and autophagy via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, 215300 Kunshan, JiangSu, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
27
|
Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol Immunol 2017; 15:618-629. [PMID: 28287112 PMCID: PMC6079089 DOI: 10.1038/cmi.2017.5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory signaling imposes tight regulations on metabolic programs within immune cells and consequentially determines immune response outcomes. Although the glucocorticoid receptor (GR) has been recently implicated in regulating the function of myeloid-derived suppressor cells (MDSCs), whether the dysregulation of GR in MDSCs is involved in immune-mediated hepatic diseases and how GR regulates the function of MDSCs in such a context remains unknown. Here, we revealed the dysregulation of GR expression in MDSCs during innate immunological hepatic injury (IMH) and found that GR regulates the function of MDSCs through modulating HIF1α-dependent glycolysis. Pharmacological modulation of GR by its agonist (dexamethasone, Dex) protects IMH mice against inflammatory injury. Mechanistically, GR signaling suppresses HIF1α and HIF1α-dependent glycolysis in MDSCs and thus promotes the immune suppressive activity of MDSCs. Our studies reveal a role of GR-HIF1α in regulating the metabolism and function of MDSCs and further implicate MDSC GR signaling as a potential therapeutic target in hepatic diseases that are driven by innate immune cell-mediated systemic inflammation.
Collapse
|
28
|
Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
29
|
Kapanadze T, Medina-Echeverz J, Gamrekelashvili J, Weiss JM, Wiltrout RH, Kapoor V, Hawk N, Terabe M, Berzofsky JA, Manns MP, Wang E, Marincola FM, Korangy F, Greten TF. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner. Eur J Immunol 2015; 45:1148-58. [PMID: 25616156 DOI: 10.1002/eji.201445093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|