1
|
Zhang S, Gao Z, Ghonaim AH, Xing W, Zhao W, Zhang J, Yang X. Cystatin antibodies interfere with ovary development in Haemaphysalis doenitzi (Acari: Ixodidae). PLoS Negl Trop Dis 2025; 19:e0013064. [PMID: 40333887 PMCID: PMC12057904 DOI: 10.1371/journal.pntd.0013064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Anti-tick vaccines are gaining attention as a strategy to prevent tick infestations by activating the immune response of the host. Antibodies produced by the host inhibit tick growth and reproduction, but the molecular mechanism remains to be clarified. In this study, we investigated the effects of cystatin antibodies on the ovarian function of Haemaphysalis doenitzi. Histological analysis revealed that exposure to cystatin antibodies resulted in a significant reduction in the number of eggs produced and caused severe damage to the ovarian tissue structure. Immunofluorescence experiments confirmed the significant expression of cystatin within the ovary. Proteomics and phosphoproteomics identified 31 and 10 differentially expressed proteins in the relevant pathways, respectively. These changes in protein levels were found to be regulated by various mechanisms, including ribosomes activity, regulation of actin cytoskeleton, RNA transport, the TCA cycle, drug metabolism, and mTOR signaling pathways. Notably, there was high expression of tropomyosin and low expression of glutathione S-transferase (GST) during ovarian detoxification. Enzyme activity assays indicated a significant down-regulation of GST enzyme activity in the immunized group, suggesting that cystatin antibodies impaired the detoxification capacity of the ticks. Both tropomyosin and GST were successfully cloned and designated as HD-TPMa and HD-GSTa, respectively. RNA interference (RNAi) successfully knocked down the target gene. Ticks subjected to immersion in cystatin antibodies exhibited a significantly increased mortality rate after 72 hours. This study elucidated the molecular mechanism by which cystatin antibodies inhibit the growth and development of tick ovaries, providing an important scientific basis for the development of effective tick ovary control strategies.
Collapse
Affiliation(s)
- Songbo Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhihua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ahmed H. Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Desert Research Center, Cairo, Egypt
| | - Weijia Xing
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Weikang Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiayi Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
3
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Kida J, Chlon TM. Germline DDX41 mutations in myeloid neoplasms: the current clinical and molecular understanding. Curr Opin Hematol 2025; 32:67-76. [PMID: 39564659 PMCID: PMC11781971 DOI: 10.1097/moh.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW DDX41 mutations are the most common cause of germline predisposition to adult-onset myeloid neoplasms. The unique mutational landscape and clinical features indicate a distinct molecular pathogenesis, but the precise mechanism by which DDX41 mutations cause disease is poorly understood, owing to the multitude of DDX41 functions. In this review, we will update DDX41's known functions, present unique clinical features and treatment considerations, and summarize the current understanding of the molecular pathogenesis of the disease. RECENT FINDINGS Large cohort studies have revealed that germline DDX41 variants are heterozygous and predominantly loss-of-function. Acquired mutation of the contralateral DDX41 allele, typically R525H, is present in more than half of patients at disease onset, which occurs after age 50. DDX41 is essential for hematopoiesis and has versatile functions in RNA metabolism and innate immune sensing. Experimental models have suggested that innate immune activation downstream of defects in R-loop resolution and ribosome biogenesis plays a key role in the pathogenesis. SUMMARY While intensive investigations unveiled a strong genotype-phenotype relationship, the optimal therapeutic approach and long-term outcome are undefined. There is an urgent need to scrutinize the patients at single cell and multiomics level and to advance experimental animal and human models to fully elucidate the molecular pathogenesis.
Collapse
Affiliation(s)
- Junichiro Kida
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Wong PY, Chan CYK, Xue HDG, Goh CC, Cheu JWS, Tse APW, Zhang MS, Zhang Y, Wong CCL. Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer. JCI Insight 2024; 9:e170532. [PMID: 39388278 PMCID: PMC11601891 DOI: 10.1172/jci.insight.170532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cell cycle inhibitors have a long history as cancer treatment. Here, we report that these inhibitors combated cancer partially via the stimulator of IFN genes (STING) signaling pathway. We demonstrated that paclitaxel (microtubule stabilizer), palbociclib (cyclin-dependent kinase 4/6 inhibitor), and AZD1152 and GSK1070916 (aurora kinase B inhibitors) have anticancer functions beyond arresting the cell cycle. They consistently caused cytosolic DNA accumulation and DNA damage, which inadvertently triggered the cytosolic DNA sensor DEAD-box helicase 41 (DDX41) and activated STING to secrete pro-inflammatory senescence-associated secretory phenotype factors (SASPs). Interestingly, we found that DDX41 was a transcriptional target of HIF. Hypoxia induced expression of DDX41 through HIF-1, making hypoxic hepatocellular carcinoma (HCC) cells more sensitive to the antimitotic agents in STING activation and SASP production. The SASPs triggered immune cell infiltration in tumors for cancer clearance. The treatment with cell cycle inhibitors, especially paclitaxel, extended survival by perturbing mouse HCC growth when used in combination with anti-PD-1. We observed a trend that paclitaxel suppressed Sting wild-type HCC more effectively than Sting-KO HCC, suggesting that STING might contribute to the antitumor effects of paclitaxel. Our study revealed the immune-mediated tumor-suppressing properties of cell cycle inhibitors and suggested combined treatment with immunotherapy as a potential therapeutic approach.
Collapse
Affiliation(s)
- Po Yee Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cerise Yuen Ki Chan
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Helen Do Gai Xue
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chi Ching Goh
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jacinth Wing Sum Cheu
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Aki Pui Wah Tse
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Misty Shuo Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Carmen Chak Lui Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Bi H, Ren K, Wang P, Li E, Han X, Wang W, Yang J, Aydemir I, Tao K, Godley L, Liu Y, Shukla V, Bartom ET, Tang Y, Blanc L, Sukhanova M, Ji P. DDX41 dissolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617891. [PMID: 39464073 PMCID: PMC11507670 DOI: 10.1101/2024.10.14.617891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
Collapse
|
7
|
Bruehl FK, Elbaz Younes I, Bosler DS, Kelemen K, Jiang L, Reichard KK. Peripheral Blood and Bone Marrow Findings in Treatment-Naive Patients With Cytopenia(s)/Myeloid Neoplasms Harboring Both a Germline and a Somatic DDX41 Mutation. Appl Immunohistochem Mol Morphol 2024; 32:371-381. [PMID: 39046192 DOI: 10.1097/pai.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
DDX41 -associated cytopenia(s)/myeloid neoplasms ( DDX41 -C/MNs) are an emerging pathologic entity. We examined the hematopathologic findings in DDX41 -C/MNs with both a germline and somatic DDX41 mutation ( DDX41 -C/MNs-GS). We reviewed the peripheral blood and bone marrow (BM) findings from treatment-naive patients with DDX41 -C/MNs-GS. Thirty cases were identified: 10% (3/30) were classified as clonal cytopenia(s) of unknown significance (CCUS), 17% (5/30) as myelodysplastic neoplasm/syndrome (MDS) with <5% blasts, 20% (6/30) as MDS with 5% to 9% blasts, 20% (6/30) as MDS with 10% to 19% blasts, and 33% (10/30) as acute myeloid leukemia (AML). All patients were cytopenic; circulating blasts were rare (23%, 7/30). 63% (19/30) showed dysmegakaryopoiesis. Dyserythropoiesis and dysgranulopoiesis were uncommon; seen in 20% (6/30) and 7% (2/30), respectively. Sixty-six percent (19/29) of cases were normocellular; 43% (13/30) showed erythroid predominance. Flow cytometry revealed an unremarkable blast myeloid phenotype. Blasts were intermediate sized with round nuclei, distinct nucleoli, and light blue cytoplasm with azurophilic granules. The karyotype was predominantly normal (93%, 26/28). All germline mutations were deleterious: 53% (16/30) truncating and 47% (14/30) missense. The most common somatic variant was the R525H mutation in 70% (21/30). The BM diagnostic spectrum in DDX41- C/MNs that harbor both a germline and somatic DDX41 mutation is broad-ranging from CCUS to AML. We describe consistent hematopathologic findings that pathologists may expect in these cases.
Collapse
Affiliation(s)
- Frido K Bruehl
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic Rochester, Rochester, MN
- Department of Laboratory Medicine and Pathology, OhioHealth, Columbus, OH
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, OH
- Department of Laboratory Medicine and Pathology,University of Minnesota, Minneapolis, MN
| | - David S Bosler
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, OH
| | - Katalin Kelemen
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, FL
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic Rochester, Rochester, MN
| |
Collapse
|
8
|
Wang L, Zeng Y, Zhang Y, Zhu Y, Xu S, Liang Z. Acetylcytidine modification of DDX41 and ZNF746 by N-acetyltransferase 10 contributes to chemoresistance of melanoma. Front Oncol 2024; 14:1448890. [PMID: 39246323 PMCID: PMC11377236 DOI: 10.3389/fonc.2024.1448890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Background Rapidly developed chemoresistance to dacarbazine (DTIC) is a major obstacle in the clinical management of melanoma; however, the roles and mechanisms of epi-transcriptomic RNA modification in this process have not been investigated. Method DTIC-resistant (DR) melanoma cells were established for bulk RNA sequencing. The expressions of mRNAs were detected using qRT-PCR, and protein levels were determined using Western blotting and immunohistochemistry. Acetylated RNAs were detected by dot blotting and immunoprecipitation sequencing (acRIP-seq). A lung metastasis mouse model of melanoma was established to evaluate the anti-melanoma effects in vivo. Results We identified that the expression of N-acetyltransferase 10 (NAT10), a catalytic enzyme for the N 4-acetylcytidine (ac4C) modification of RNA, was significantly upregulated in the DR cells. Clinically, NAT10 expression was elevated in disease progression samples and predicted a poor outcome. Using ac4C RNA immunoprecipitation (ac4C-RIP), we found that the mRNAs of two C2H2 zinc finger transcriptional factors, DDX41 and ZNF746, were targets of NAT10-mediated ac4C modification. Gain- and loss-of-function experiments in NAT10, or in DDX41 and ZNF746, altered the chemosensitivity of melanoma accordingly, and the two target genes also negatively correlated with clinical outcomes. Finally, pharmacological inhibition of NAT10 with Remodelin sensitized melanoma cells to DTIC treatment in vitro and in a mouse xenograft model. Conclusion Our study elucidates the previously unrecognized role of NAT10-mediated ac4C modification in the chemoresistance of melanoma and provides a rationale for developing new strategies to overcome chemoresistance in melanoma patients.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuefen Zeng
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Ying Zhang
- Department of Acupuncture and Tuina, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Yun Zhu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Shuangyan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Zuohui Liang
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| |
Collapse
|
9
|
Ma J, Ross SR. Multifunctional role of DEAD-box helicase 41 in innate immunity, hematopoiesis and disease. Front Immunol 2024; 15:1451705. [PMID: 39185415 PMCID: PMC11341421 DOI: 10.3389/fimmu.2024.1451705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Qian C, Zhu W, Wang J, Wang Z, Tang W, Liu X, Jin B, Xu Y, Zhang Y, Liang G, Wang Y. Cyclic-di-GMP induces inflammation and acute lung injury through direct binding to MD2. Clin Transl Med 2024; 14:e1744. [PMID: 39166890 PMCID: PMC11337466 DOI: 10.1002/ctm2.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG. However, how extracellular CDG, which is released by bacterial autolysis or rupture, activates the inflammatory response remains unclear. METHODS The interaction between extracellular CDG and myeloid differentiation protein 2 (MD2) was investigated using in vivo and in vitro models. MD2 blockade was achieved using specific inhibitor and genetic knockout mice. Site-directed mutagenesis, co-immunoprecipitation, SPR and Bis-ANS displacement assays were used to identify the potential binding sites of MD2 on CDG. RESULTS Our data show that extracellular CDG directly interacts with MD2, leading to activation of the TLR4 signalling pathway and lung injury. Specific inhibitors or genetic knockout of MD2 in mice significantly alleviated CDG-induced lung injury. Moreover, isoleucine residues at positions 80 and 94, along with phenylalanine at position 121, are essential for the binding of MD2 to CDG. CONCLUSION These results reveal that extracellular CDG induces lung injury through direct interaction with MD2 and activation of the TLR4 signalling pathway, providing valuable insights into bacteria-induced ALI mechanisms and new therapeutic approaches for the treatment of bacterial co-infection in COVID-19 patients.
Collapse
Affiliation(s)
- Chenchen Qian
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weiwei Zhu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiong Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhe Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Weiyang Tang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Xin Liu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bo Jin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yong Xu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yuyang Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yi Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
11
|
Yañez AJ, Barrientos CA, Isla A, Aguilar M, Flores-Martin SN, Yuivar Y, Ojeda A, Ibieta P, Hernández M, Figueroa J, Avendaño-Herrera R, Mancilla M. Discovery and Characterization of the ddx41 Gene in Atlantic Salmon: Evolutionary Implications, Structural Functions, and Innate Immune Responses to Piscirickettsia salmonis and Renibacterium salmoninarum Infections. Int J Mol Sci 2024; 25:6346. [PMID: 38928053 PMCID: PMC11204154 DOI: 10.3390/ijms25126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.
Collapse
Affiliation(s)
- Alejandro J. Yañez
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
| | - Claudia A. Barrientos
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Adolfo Isla
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Valdivia 5090000, Chile
| | - Marcelo Aguilar
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Sandra N. Flores-Martin
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Yassef Yuivar
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Adriana Ojeda
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Pablo Ibieta
- TEKBios Ltda, Camino Pargua Km 8, Maullín 5580000, Chile;
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz 4133515, Chile;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rubén Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Marcos Mancilla
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| |
Collapse
|
12
|
Sampaio LR, Dias RDB, Goes JVC, de Melo RPM, de Paula Borges D, de Lima Melo MM, de Oliveira RTG, Ribeiro-Júnior HL, Magalhães SMM, Pinheiro RF. Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice. Med Oncol 2024; 41:128. [PMID: 38656461 DOI: 10.1007/s12032-024-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.
Collapse
Affiliation(s)
- Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ricardo Dyllan Barbosa Dias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Renata Pinheiro Martins de Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mayara Magna de Lima Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
13
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
15
|
Tharshan Jeyakanesh J, Nadarajapillai K, Tharanga EMT, Park C, Jo Y, Jeong T, Wan Q, Lee J. Amphiprion clarkii DDX41 modulates fish immune responses: Characterization by expression profiling, antiviral assay, and macrophage polarization analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109365. [PMID: 38199263 DOI: 10.1016/j.fsi.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.
Collapse
Affiliation(s)
- Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
16
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Zoller J, Trajanova D, Feurstein S. Germline and somatic drivers in inherited hematologic malignancies. Front Oncol 2023; 13:1205855. [PMID: 37904876 PMCID: PMC10613526 DOI: 10.3389/fonc.2023.1205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.
Collapse
Affiliation(s)
| | | | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. SCIENCE ADVANCES 2023; 9:eadf1785. [PMID: 36867703 PMCID: PMC9984181 DOI: 10.1126/sciadv.adf1785] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.
Collapse
Affiliation(s)
- Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Marco Preußner
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Leyla El Ayoubi
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Vivi-Yun Feng
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Caroline Harnisch
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Kilian Merz
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Paula Leupold
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Peter Yudichev
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Dmitry E. Agafonov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cindy L. Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cyrille Girard
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany
| | - Berthold Kastner
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Florian Heyd
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
19
|
Venkat V, Abdelhalim H, DeGroat W, Zeeshan S, Ahmed Z. Investigating genes associated with heart failure, atrial fibrillation, and other cardiovascular diseases, and predicting disease using machine learning techniques for translational research and precision medicine. Genomics 2023; 115:110584. [PMID: 36813091 DOI: 10.1016/j.ygeno.2023.110584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and loss of disability adjusted life years (DALYs) globally. CVDs like Heart Failure (HF) and Atrial Fibrillation (AF) are associated with physical effects on the heart muscles. As a result of the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. Rightful application of artificial intelligence (AI) and machine learning (ML) approaches can lead to new insights into CVDs for providing better personalized treatments with predictive analysis and deep phenotyping. In this study we focused on implementing AI/ML techniques on RNA-seq driven gene-expression data to investigate genes associated with HF, AF, and other CVDs, and predict disease with high accuracy. The study involved generating RNA-seq data derived from the serum of consented CVD patients. Next, we processed the sequenced data using our RNA-seq pipeline and applied GVViZ for gene-disease data annotation and expression analysis. To achieve our research objectives, we developed a new Findable, Accessible, Intelligent, and Reproducible (FAIR) approach that includes a five-level biostatistical evaluation, primarily based on the Random Forest (RF) algorithm. During our AI/ML analysis, we have fitted, trained, and implemented our model to classify and distinguish high-risk CVD patients based on their age, gender, and race. With the successful execution of our model, we predicted the association of highly significant HF, AF, and other CVDs genes with demographic variables.
Collapse
Affiliation(s)
- Vignesh Venkat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - William DeGroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
20
|
Multiple Roles of TRIM21 in Virus Infection. Int J Mol Sci 2023; 24:ijms24021683. [PMID: 36675197 PMCID: PMC9867090 DOI: 10.3390/ijms24021683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The tripartite motif protein 21 (TRIM21) belongs to the TRIM family, possessing an E3 ubiquitin ligase activity. Similar to other TRIMs, TRIM21 also contains three domains (named RBCC), including the Really Interesting New Gene (RING) domain, one or two B-Box domains (B-Box), and one PRY/SPRY domain. Notably, we found that the RING and B-Box domains are relatively more conservative than the PRY/SPRY domain, suggesting that TRIM21 of different species had similar functions. Recent results showed that TRIM21 participates in virus infection by directly interacting with viral proteins or modulating immune and inflammatory responses. TRIM21 also acts as a cytosol high-affinity antibody Fc receptor, binding to the antibody-virus complex and triggering an indirect antiviral antibody-dependent intracellular neutralization (ADIN). This paper focuses on the recent progress in the mechanism of TRIM21 during virus infection and the application prospects of TRIM21 on virus infection.
Collapse
|
21
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers (Basel) 2023; 15:344. [PMID: 36672294 PMCID: PMC9857085 DOI: 10.3390/cancers15020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation is related to the defect in the gene's normal functions of RNA and innate immunity. About 80% of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often present with the higher-grade disease, but there are conflicting reports about its impact on survival outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an appropriate screening/surveillance strategy for identified carriers. This article reviews our current understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and their clinical implications.
Collapse
Affiliation(s)
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Nasr W, Filippi MD. Acquired and hereditary bone marrow failure: A mitochondrial perspective. Front Oncol 2022; 12:1048746. [PMID: 36408191 PMCID: PMC9666693 DOI: 10.3389/fonc.2022.1048746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
The disorders known as bone marrow failure syndromes (BMFS) are life-threatening disorders characterized by absence of one or more hematopoietic lineages in the peripheral blood. Myelodysplastic syndromes (MDS) are now considered BMF disorders with associated cellular dysplasia. BMFs and MDS are caused by decreased fitness of hematopoietic stem cells (HSC) and poor hematopoiesis. BMF and MDS can occur de novo or secondary to hematopoietic stress, including following bone marrow transplantation or myeloablative therapy. De novo BMF and MDS are usually associated with specific genetic mutations. Genes that are commonly mutated in BMF/MDS are in DNA repair pathways, epigenetic regulators, heme synthesis. Despite known and common gene mutations, BMF and MDS are very heterogenous in nature and non-genetic factors contribute to disease phenotype. Inflammation is commonly found in BMF and MDS, and contribute to ineffective hematopoiesis. Another common feature of BMF and MDS, albeit less known, is abnormal mitochondrial functions. Mitochondria are the power house of the cells. Beyond energy producing machinery, mitochondrial communicate with the rest of the cells via triggering stress signaling pathways and by releasing numerous metabolite intermediates. As a result, mitochondria play significant roles in chromatin regulation and innate immune signaling pathways. The main goal of this review is to investigate BMF processes, with a focus mitochondria-mediated signaling in acquired and inherited BMF.
Collapse
Affiliation(s)
- Waseem Nasr
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Marie-Dominique Filippi,
| |
Collapse
|
24
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
25
|
Kobatake K, Ikeda K, Nakata Y, Yamasaki N, Kanai A, Sekino Y, Takemoto K, Fukushima T, Babasaki T, Kitano H, Goto K, Hayashi T, Sentani K, Teishima J, Kaminuima O, Hinata N. DDX41 expression is associated with tumor necrosis in clear cell renal cell carcinoma and in cooperation with VHL loss leads to worse prognosis. Urol Oncol 2022; 40:456.e9-456.e18. [DOI: 10.1016/j.urolonc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
|
26
|
Serfecz JC, Hong Y, Gay LA, Shekhar R, Turner PC, Renne R. DExD/H Box Helicases DDX24 and DDX49 Inhibit Reactivation of Kaposi's Sarcoma Associated Herpesvirus by Interacting with Viral mRNAs. Viruses 2022; 14:2083. [PMID: 36298642 PMCID: PMC9609691 DOI: 10.3390/v14102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that is the causative agent of primary effusion lymphoma and Kaposi's sarcoma. In healthy carriers, KSHV remains latent, but a compromised immune system can lead to lytic viral replication that increases the probability of tumorigenesis. RIG-I-like receptors (RLRs) are members of the DExD/H box helicase family of RNA binding proteins that recognize KSHV to stimulate the immune system and prevent reactivation from latency. To determine if other DExD/H box helicases can affect KSHV lytic reactivation, we performed a knock-down screen that revealed DHX29-dependent activities appear to support viral replication but, in contrast, DDX24 and DDX49 have antiviral activity. When DDX24 or DDX49 are overexpressed in BCBL-1 cells, transcription of all lytic viral genes and genome replication were significantly reduced. RNA immunoprecipitation of tagged DDX24 and DDX49 followed by next-generation sequencing revealed that the helicases bind to mostly immediate-early and early KSHV mRNAs. Transfection of expression plasmids of candidate KSHV transcripts, identified from RNA pull-down, demonstrated that KSHV mRNAs stimulate type I interferon (alpha/beta) production and affect the expression of multiple interferon-stimulated genes. Our findings reveal that host DExD/H box helicases DDX24 and DDX49 recognize gammaherpesvirus transcripts and convey an antiviral effect in the context of lytic reactivation.
Collapse
Affiliation(s)
- Jacquelyn C. Serfecz
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yuan Hong
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Shinriki S, Matsui H. Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis. Front Oncol 2022; 12:992340. [PMID: 36119490 PMCID: PMC9478608 DOI: 10.3389/fonc.2022.992340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloid malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), patient selection and therapeutic strategies are increasingly based on tumor-specific genetic mutations. Among these, mutations in DDX41, which encodes a DEAD-box type RNA helicase, are present in approximately 2–5% of AML and MDS patients; this disease subtype exhibits a distinctive disease phenotype characterized by late age of onset, tendency toward cytopenia in the peripheral blood and bone marrow, a relatively favorable prognosis, and a high frequency of normal karyotypes. Typically, individuals with a loss-of-function germline DDX41 variant in one allele later acquire the p.R525H mutation in the other allele before overt disease manifestation, suggesting that the progressive decrease in DDX41 expression and/or function is involved in myeloid leukemogenesis.RNA helicases play roles in many processes involving RNA metabolism by altering RNA structure and RNA-protein interactions through ATP-dependent helicase activity. A single RNA helicase can play multiple cellular roles, making it difficult to elucidate the mechanisms by which mutations in DDX41 are involved in leukemogenesis. Nevertheless, multiple DDX41 functions have been associated with disease development. The enzyme has been implicated in the regulation of RNA splicing, nucleic acid sensing in the cytoplasm, R-loop resolution, and snoRNA processing.Most of the mutated RNA splicing-related factors in MDS are involved in the recognition and determination of 3’ splice sites (SS), although their individual roles are distinct. On the other hand, DDX41 is likely incorporated into the C complex of the spliceosome, which may define a distinctive disease phenotype. This review summarizes the current understanding of how DDX41 is involved in this unique myeloid malignancy.
Collapse
|
28
|
Yan Z, Yuan H, Wang J, Yang Z, Zhang P, Mahmmod YS, Wang X, Liu T, Song Y, Ren Z, Zhang XX, Yuan ZG. Four Chemotherapeutic Compounds That Limit Blood-Brain-Barrier Invasion by Toxoplasma gondii. Molecules 2022; 27:molecules27175572. [PMID: 36080339 PMCID: PMC9457825 DOI: 10.3390/molecules27175572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Toxoplasma gondii, an intracellular protozoan parasite, exists in the host brain as cysts, which can result in Toxoplasmic Encephalitis (TE) and neurological diseases. However, few studies have been conducted on TE, particularly on how to prevent it. Previous proteomics studies have showed that the expression of C3 in rat brains was up-regulated after T. gondii infection. Methods: In this study, we used T. gondii to infect mice and bEnd 3 cells to confirm the relation between T. gondii and the expression of C3. BEnd3 cells membrane proteins which directly interacted with C3a were screened by pull down. Finally, animal behavior experiments were conducted to compare the differences in the inhibitory ability of TE by four chemotherapeutic compounds (SB290157, CVF, NSC23766, and Anxa1). Results: All chemotherapeutic compounds in this study can inhibit TE and cognitive behavior in the host. However, Anxa 1 is the most suitable material to inhibit mice TE. Conclusion: T. gondii infection promotes TE by promoting host C3 production. Anxa1 was selected as the most appropriate material to prevent TE among four chemotherapeutic compounds closely related to C3.
Collapse
Affiliation(s)
- Zijing Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, Xinjiang Agricultual University, Urumqi 830052, China
| | - Junjie Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yasser S. Mahmmod
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Veterinary Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tanghui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaowen Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.-X.Z.); (Z.-G.Y.)
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.-X.Z.); (Z.-G.Y.)
| |
Collapse
|
29
|
Hirsch P, Bories D, Chapiro E, Nguyen-Khac F, Benusiglio PR, Norol F, Nguyen S. Successive relapses from donor and host cells in a patient with DEAD-box helicase 41 (DDX41)-associated myelodysplastic syndrome: The lessons to be learned. Br J Haematol 2022; 199:623-626. [PMID: 36029113 DOI: 10.1111/bjh.18433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Hirsch
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Paris, France.,Service d'Hématologie Biologique, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Dominique Bories
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri Mondor, Créteil, France
| | - Elise Chapiro
- Unité de Cytogénétique Hématologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France.,Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Centre de Recherche des Cordeliers, Inserm, Université de Paris, Paris, France
| | - Florence Nguyen-Khac
- Unité de Cytogénétique Hématologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France.,Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Centre de Recherche des Cordeliers, Inserm, Université de Paris, Paris, France
| | - Patrick R Benusiglio
- UF d'Oncogénétique clinique, Département de Génétique médicale, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Françoise Norol
- Service d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Nguyen
- Service d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
30
|
Duployez N, Largeaud L, Duchmann M, Kim R, Rieunier J, Lambert J, Bidet A, Larcher L, Lemoine J, Delhommeau F, Hirsch P, Fenwarth L, Kosmider O, Decroocq J, Bouvier A, Le Bris Y, Ochmann M, Santagostino A, Adès L, Fenaux P, Thomas X, Micol JB, Gardin C, Itzykson R, Soulier J, Clappier E, Recher C, Preudhomme C, Pigneux A, Dombret H, Delabesse E, Sébert M. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood 2022; 140:756-768. [PMID: 35443031 PMCID: PMC9389637 DOI: 10.1182/blood.2021015328] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).
Collapse
Affiliation(s)
- Nicolas Duployez
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Matthieu Duchmann
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Rathana Kim
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julie Rieunier
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Audrey Bidet
- Hematology Laboratory, CHU de Bordeaux, Bordeaux, France
| | - Lise Larcher
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean Lemoine
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - François Delhommeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Laurène Fenwarth
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | | | | | - Anne Bouvier
- Hematology Laboratory, CHU Angers, Angers, France
| | - Yannick Le Bris
- Hematology Biology, Nantes University Hospital, Nantes, France
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | | | | | - Lionel Adès
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Pierre Fenaux
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Xavier Thomas
- Hematology Department, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
| | - Jean-Baptiste Micol
- Hematology Department, Gustave Roussy Institute, University of Paris-Saclay, Villejuif, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Jean Soulier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuelle Clappier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christian Recher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France; and
| | - Claude Preudhomme
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Marie Sébert
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| |
Collapse
|
31
|
Zhang S, Wang J, Fan Y, Meng W, Qian C, Liu P, Wei Y, Yuan C, Du Y, Yin Z. YciR, a Specific 3′-Phosphodiesterase, Plays a Role in the Pathogenesis of Uropathogenic Escherichia coli CFT073. Front Microbiol 2022; 13:910906. [PMID: 35923408 PMCID: PMC9339999 DOI: 10.3389/fmicb.2022.910906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTIs), with the characteristics of recurrence and resistance to antibiotics due to misuse, remain a common health and economic issue for patients. Uropathogenic Escherichia coli (UPEC), which is capable of evading the immune response by forming intracellular bacterial communities (IBCs) in the cytoplasm of bladder epithelial cells (BECs) after invasion, has been shown to be the prevailing cause of UTIs. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small molecule responsible for eliciting the innate immune response of the host only if it has not been degraded by some phosphodiesterases (PDEs), such as YciR. The relationship between YciR and c-di-GMP levels in UPEC is inconclusive. In this study, we investigated the gene expression profile of UPEC in BECs and identified yciR as an upregulated gene. Western blot revealed that YciR enhanced the virulence of UPEC by inhibiting the phosphorylation of NF-κB. The expression of yciR could be repressed by HupB in a directly binding manner. We identified YciR, a novel PDE, and defined its possible function in innate immune evasion. We also demonstrated that YciR is an HupB-dependent PDE that degrades c-di-GMP and that a low concentration of c-di-GMP might make NF-κB less phosphorylated, thereby reducing the host’s pro-inflammatory response. This is the first time that YciR has been identified as a virulence factor in the pathogenesis of UPEC. These findings further increase our understanding of the pathogenesis of UPEC and provide a theoretical basis for further studies.
Collapse
Affiliation(s)
- Si Zhang
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- College of Life Science, Nankai University, Tianjin, China
| | - Jingting Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Yu Fan
- College of Life Science, Nankai University, Tianjin, China
| | - Wang Meng
- Tianjin First Central Hospital, Tianjin, China
| | - Chengqian Qian
- College of Life Science, Nankai University, Tianjin, China
| | - Peng Liu
- College of Life Science, Nankai University, Tianjin, China
| | - Yi Wei
- College of Life Science, Nankai University, Tianjin, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuhui Du
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Yuhui Du,
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
- Zhiqiu Yin,
| |
Collapse
|
32
|
Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep 2022; 39:110856. [PMID: 35613581 PMCID: PMC9205463 DOI: 10.1016/j.celrep.2022.110856] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022] Open
Abstract
Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation. cGAS is activated by dsDNA. Singh et al. find DDX41 regulates cGAS activation through unwinding and annealing activities on dsDNA and ssDNA, respectively, and MDS/AML patient mutant R525H causes overactivation of innate immune response due to its unbalanced activities. This DDX41-cGAS-STING pathway may be related to molecular pathogenesis of MDS/AML.
Collapse
Affiliation(s)
- Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Manisha Yadav
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Aanchal Aggarwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kannupriya Pandey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aizhang Xu
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Noreen Rapin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Mark Bosch
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jim Xiang
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada; Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Susan R Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
33
|
Wang Y, Liao J, Wu J, Huang H, Yuan Z, Yang W, Wu X, Li X. Genome-Wide Identification and Characterization of the Soybean DEAD-Box Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2022; 23:1120. [PMID: 35163041 PMCID: PMC8835661 DOI: 10.3390/ijms23031120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
DEAD-box proteins are a large family of RNA helicases that play important roles in almost all cellular RNA processes in model plants. However, little is known about this family of proteins in crops such as soybean. Here, we identified 80 DEAD-box family genes in the Glycine max (soybean) genome. These DEAD-box genes were distributed on 19 chromosomes, and some genes were clustered together. The majority of DEAD-box family proteins were highly conserved in Arabidopsis and soybean, but Glyma.08G231300 and Glyma.14G115100 were specific to soybean. The promoters of these DEAD-box genes share cis-acting elements involved in plant responses to MeJA, salicylic acid (SA), low temperature and biotic as well as abiotic stresses; interestingly, half of the genes contain nodulation-related cis elements in their promoters. Microarray data analysis revealed that the DEAD-box genes were differentially expressed in the root and nodule. Notably, 31 genes were induced by rhizobia and/or were highly expressed in the nodule. Real-time quantitative PCR analysis validated the expression patterns of some DEAD-box genes, and among them, Glyma.08G231300 and Glyma.14G115100 were induced by rhizobia in root hair. Thus, we provide a comprehensive view of the DEAD-box family genes in soybean and highlight the crucial role of these genes in symbiotic nodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan 430070, China; (Y.W.); (J.L.); (J.W.); (H.H.); (Z.Y.); (W.Y.); (X.W.)
| |
Collapse
|
34
|
R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun 2021; 12:7314. [PMID: 34916496 PMCID: PMC8677849 DOI: 10.1038/s41467-021-27530-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA-DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.
Collapse
|
35
|
Chlon TM, Stepanchick E, Hershberger CE, Daniels NJ, Hueneman KM, Kuenzi Davis A, Choi K, Zheng Y, Gurnari C, Haferlach T, Padgett RA, Maciejewski JP, Starczynowski DT. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell 2021; 28:1966-1981.e6. [PMID: 34473945 DOI: 10.1016/j.stem.2021.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
DDX41 mutations are the most common germline alterations in adult myelodysplastic syndromes (MDSs). The majority of affected individuals harbor germline monoallelic frameshift DDX41 mutations and subsequently acquire somatic mutations in their other DDX41 allele, typically missense R525H. Hematopoietic progenitor cells (HPCs) with biallelic frameshift and R525H mutations undergo cell cycle arrest and apoptosis, causing bone marrow failure in mice. Mechanistically, DDX41 is essential for small nucleolar RNA (snoRNA) processing, ribosome assembly, and protein synthesis. Although monoallelic DDX41 mutations do not affect hematopoiesis in young mice, a subset of aged mice develops features of MDS. Biallelic mutations in DDX41 are observed at a low frequency in non-dominant hematopoietic stem cell clones in bone marrow (BM) from individuals with MDS. Mice chimeric for monoallelic DDX41 mutant BM cells and a minor population of biallelic mutant BM cells develop hematopoietic defects at a younger age, suggesting that biallelic DDX41 mutant cells are disease modifying in the context of monoallelic DDX41 mutant BM.
Collapse
Affiliation(s)
- Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily Stepanchick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Courtney E Hershberger
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Noah J Daniels
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Biomedicine and Prevention & PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome, Tor Vergata, Rome, Italy
| | | | - Richard A Padgett
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
36
|
Goyal T, Tu ZJ, Wang Z, Cook JR. Clinical and Pathologic Spectrum of DDX41-Mutated Hematolymphoid Neoplasms. Am J Clin Pathol 2021; 156:829-838. [PMID: 33929502 DOI: 10.1093/ajcp/aqab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study seeks to further characterize the clinicopathologic spectrum of DDX41-mutated hematolymphoid malignancies. METHODS We identified DDX41 mutations from a cohort of known or suspected hematologic disorders and reviewed the corresponding clinical, genetic, phenotypic, and morphologic findings. RESULTS DDX41 mutations were identified in 20 (1.4%) of 1,371 cases, including 8 cases of acute myeloid leukemia (AML), 5 cases of myelodysplastic syndrome (MDS), 2 cases of therapy-related MDS/AML, 1 case of primary myelofibrosis, 1 case of chronic myeloid leukemia, 1 case of clonal cytopenia of uncertain significance (CCUS), 1 case of T-cell large granular lymphocytic leukemia (T-LGL), and 1 case of multiple myeloma. DDX41-mutated neoplasms were morphologically heterogeneous with a median cellularity of 20% (range, 10%-100%). Megakaryocyte dysplasia occurred in 7 (35%) of 20 cases and trilineage dysplasia in 1 (5%). Frequently comutated genes include a second, somatic DDX41 mutation (8/19, 42%) followed by mutations in TET2 (20%), DNMT3A (20%), ASXL1 (20%), and CUX1 (20%). Karyotypes were noncomplex in 17 (89%) of 19. CONCLUSIONS This report extends the spectrum of DDX41-mutated disorders to include CCUS, T-LGL, and plasma cell disorders. The morphologic features are heterogeneous and nonspecific, highlighting the importance of DDX41 testing during routine workup of hematolymphoid neoplasms.
Collapse
Affiliation(s)
- Tanu Goyal
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zheng Jin Tu
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Wang
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
37
|
Amparyup P, Charoensapsri W, Soponpong S, Jearaphunt M, Wongpanya R, Tassanakajon A. Stimulator of interferon gene (STING) and interferon regulatory factor (IRF) are crucial for shrimp antiviral defense against WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 117:240-247. [PMID: 34418555 DOI: 10.1016/j.fsi.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The cytosolic DNA-sensing immune response is essential for recognizing and establishing an effective host immune response to pathogens. However, the importance of the cytosolic signalling molecules responsible for facilitating an appropriate immune response following infection with a DNA virus in shrimps remains unknown. Here, we report the discovery of the Penaeus monodon stimulator of interferon gene (PmSTING) and interferon regulatory factor (PmIRF) genes and their important roles in the host defense against viral infection. High expression levels of PmSTING transcripts were detected in the midgut, hepatopancreas, and hindgut, with lower levels in foregut, while PmIRF was highly expressed in the hindgut, foregut, and hepatopancreas of P. monodon. The mRNA expression level of both PmSTING and PmIRF was up-regulated in the foregut in response to white spot syndrome virus (WSSV; dsDNA virus) infection. RNA-interference-mediated gene silencing of PmSTING and PmIRF rendered shrimps to be more susceptible to WSSV infection; suppression of PmIRF decreased the mRNA transcript level of PmSTING; and silencing of the cytosolic sensor PmDDX41 suppressed both PmSTING and PmIRF gene transcript levels. Thus, PmSTING and PmIRF are likely to be important for the antiviral innate response against the dsDNA WSSV pathogen and may mediate the antiviral immune defenses via PmDDX41/PmSTING/PmIRF signaling cascade in P. monodon.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Miti Jearaphunt
- Program in Biology, Faculty of Science and Technology, Suratthani Rajabhat University, 272 Moo 9 Surat-Nasarn Road, Khun Talae, Muang, Surat Thani, 84100, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
38
|
Konina D, Sparber P, Viakhireva I, Filatova A, Skoblov M. Investigation of LINC00493/SMIM26 Gene Suggests Its Dual Functioning at mRNA and Protein Level. Int J Mol Sci 2021; 22:ijms22168477. [PMID: 34445188 PMCID: PMC8395196 DOI: 10.3390/ijms22168477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The amount of human long noncoding RNA (lncRNA) genes is comparable to protein-coding; however, only a small number of lncRNAs are functionally annotated. Previously, it was shown that lncRNAs can participate in many key cellular processes, including regulation of gene expression at transcriptional and post-transcriptional levels. The lncRNA genes can contain small open reading frames (sORFs), and recent studies demonstrated that some of the resulting short proteins could play an important biological role. In the present study, we investigate the widely expressed lncRNA LINC00493. We determine the structure of the LINC00493 transcript, its cell localization and influence on cell physiology. Our data demonstrate that LINC00493 has an influence on cell viability in a cell-type-specific manner. Furthermore, it was recently shown that LINC00493 has a sORF that is translated into small protein SMIM26. The results of our knockdown and overexpression experiments suggest that both LINC00493/SMIM26 transcript and protein affect cell viability, but in the opposite manner.
Collapse
Affiliation(s)
- Daria Konina
- Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Peter Sparber
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Iuliia Viakhireva
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Alexandra Filatova
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Mikhail Skoblov
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| |
Collapse
|
39
|
Wan Z, Han B. Clinical features of DDX41 mutation-related diseases: a systematic review with individual patient data. Ther Adv Hematol 2021; 12:20406207211032433. [PMID: 34349893 PMCID: PMC8287267 DOI: 10.1177/20406207211032433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
Background: DDX41 serves as a DNA sensor in innate immunity and mutated DDX41 is pathogenic, mainly for myeloid neoplasms. Methods: In this study, “DDX41” was searched in PubMed and Web of Science between 1 January 2015 and 29 April 2021 with individual-patient data seeking. A meta-analysis was not valid here due to the absence of a large dataset. Thirty articles were finally included in the qualitative analysis and 277 patients from 20 studies without overlap were involved in the quantitative summary. Results: Pooled incidence was 3.3% (95% confidence interval 2.4–4.2%) of unselected myeloid neoplasms. Patients with hematologic disorders harboring mutated DDX41 were featured as 80% males, median 66 (20–88) years old at diagnosis, 75% acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), 64% with normal karyotype. Eighty-five percent of patients had germline variants which were nationally diverse and more of frameshift type, whereas 64% of patients had somatic DDX41 variants where p.R525H and missense dominated. ASXL1 and TP53 were the top frequent concomitant somatic mutations. Therapeutically, 70% overall response rate was obtained of hypomethylating agents in MDS, 96% complete remission of chemotherapy in AML, and 8% of relapse in hematopoietic stem cell transplant. Neither overall survival nor progression-free survival could be summed. Conclusions: Several significant clinical differences were observed in different diagnosis groups, familial and sporadic cases, and p.R525H compared with other somatic variants. In conclusion, myeloid neoplasms carrying DDX41 mutations were mainly older, male, MDS, and AML patients who had promising responses to treatment. Both germline and somatic DDX41 variants possessed unique characteristics and groups of interest presented certain differences worth further research. (CRD42021228886)
Collapse
Affiliation(s)
- Ziqi Wan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 1#Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
40
|
Gao L, Xia L, Ji W, Zhang Y, Xia W, Lu S. Knockdown of CDK5 down-regulates PD-L1 via the ubiquitination-proteasome pathway and improves antitumor immunity in lung adenocarcinoma. Transl Oncol 2021; 14:101148. [PMID: 34130052 PMCID: PMC8215302 DOI: 10.1016/j.tranon.2021.101148] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022] Open
Abstract
Knockdown of CDK5 down-regulates PD-L1 in lung adenocarcinoma and improves tumor immunity. Interference of CDK5 leads to ubiquitination and degradation of PD-L1 protein. TRIM21 mediates the ubiquitination and degradation process of PD-L1. Combination of CDK5 disruption and anti-PD-L1 therapy has a stronger effect on inhibiting tumor formation, compared with CDK5 knockdown alone.
Although immunotherapy (anti-PD-1/PD-L1 antibodies) has been approved for clinical treatment of lung cancer, only a small proportion of patients respond to monotherapy. Hence, understanding the regulatory mechanism of PD-L1 is particularly important to identify optimal combinations. In this study, we found that inhibition of CDK5 induced by shRNA or CDK5 inhibitor leads to reduced expression of PD-L1 protein in human lung adenocarcinoma cells, while the mRNA level is not substantially altered. The PD-L1 protein degradation is mediated by E3 ligase TRIM21 via ubiquitination-proteasome pathway. Subsequently, we studied the function of CDK5/PD-L1 axis in LUAD. In vitro, the absence of CDK5 in mouse Lewis lung cancer cell (LLC) has no effect on cell proliferation. However, the attenuation of CDK5 or combined with anti-PD-L1 greatly suppresses tumor growth in LLC implanted mouse models in vivo. Disruption of CDK5 elicits a higher level of CD3+, CD4+ and CD8+ T cells in spleens and lower PD-1 expression in CD4+ and CD8+ T cells. Our findings highlight a role for CDK5 in promoting antitumor immunity, which provide a potential therapeutic target for combined immunotherapy in LUAD.
Collapse
Affiliation(s)
- Lin Gao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Wenxiang Ji
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 HuashanRoad, Shanghai 200030, PR China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 HuashanRoad, Shanghai 200030, PR China.
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China.
| |
Collapse
|
41
|
Frame JM, North TE. Ddx41 loss R-loops in cGAS to fuel inflammatory HSPC production. Dev Cell 2021; 56:571-572. [PMID: 33689767 DOI: 10.1016/j.devcel.2021.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this issue of Developmental Cell, Weinreb et al. reveal that loss of the DEAD-box helicase Ddx41 unexpectedly triggers an R-loop-mediated sterile inflammatory cascade which drives HSPC production during embryonic development. Human studies suggest mechanistic conservation for inflammation in DDX41-associated hematologic disease, uncovering a potential route for future therapeutic intervention.
Collapse
Affiliation(s)
- Jenna M Frame
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Choi EJ, Cho YU, Hur EH, Jang S, Kim N, Park HS, Lee JH, Lee KH, Kim SH, Hwang SH, Seo EJ, Park CJ, Lee JH. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica 2021; 107:510-518. [PMID: 33626862 PMCID: PMC8804579 DOI: 10.3324/haematol.2020.270553] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
DDX41 mutations are associated with hematologic malignancies including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but the incidence in idiopathic cytopenia of undetermined significance (ICUS) is unknown. We investigated the incidence, genetic characteristics, and clinical features of DDX41 mutations in Korean patients with ICUS, MDS, or AML. We performed targeted deep sequencing of 61 genes including DDX41 in 457 patients with ICUS (n=75), MDS (n=210), or AML (n=172). The germline DDX41 mutations with causality were identified in 28 (6.1%) patients, of whom 27 (96.4%) had somatic mutations in the other position of DDX41. Germline origins of the DDX41 mutations were confirmed in all of the 11 patients who performed germline-based testing. Of the germline DDX41 mutations, p.V152G (n=10) was most common, followed by p.Y259C (n=8), p.A500fs (n=6), and p.E7* (n=3). Compared with non-mutated patients, DDX41-mutated patients showed male predominance, old age, normal karyotype, low leukocyte count, and hypocellular marrow at diagnosis. Three of the 4 ICUS patients with germline DDX41 mutations progressed to MDS. DDX41 mutations in Korean patients showed a high incidence and distinct mutation patterns, in that p.V152G was a unique germline variant. ICUS harboring germline DDX41 mutations may be regarded as a hereditary myeloid neoplasm. Germline DDX41 mutations are not uncommon and should be explored when treating the patients with myeloid malignancies.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Young-Uk Cho
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Nayoung Kim
- Asan Institution for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Han-Seung Park
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Jung-Hee Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Si-Hwan Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul.
| |
Collapse
|
43
|
Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol Cell 2021; 81:599-613.e8. [PMID: 33373584 PMCID: PMC8183676 DOI: 10.1016/j.molcel.2020.11.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.
Collapse
MESH Headings
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/ultrastructure
- Epitopes
- Evolution, Molecular
- HEK293 Cells
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/ultrastructure
- Models, Molecular
- Phylogeny
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/ultrastructure
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/ultrastructure
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Wang J, Li T, Deng S, Ma E, Zhang J, Xing S. DDX6 Is Essential for Oocyte Development and Maturation in Locusta migratoria. INSECTS 2021; 12:70. [PMID: 33466820 PMCID: PMC7830464 DOI: 10.3390/insects12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated gene silencing. DDX6 participates in many developmental processes but the biological function of DDX6 in insects has not yet been adequately addressed. Herein, we characterized the LmDDX6 gene that encodes the LmDDX6 protein in Locusta migratoria, a global, destructive pest. LmDDX6 possesses five motifs unique to the DDX6 subfamily. In the phylogenetic tree, LmDDX6 was closely related to its orthologs in Apis dorsata and Zootermopsis nevadensis. RT-qPCR data revealed high expression of LmDDX6 in the ovary, muscle, and fat body, with a declining trend in the ovary after adult ecdysis. LmDDX6 knockdown downregulated the expression levels of the juvenile hormone receptor Met, and genes encoding Met downstream targeted Grp78-1 and Grp78-2, reduced LmVg expression, and impaired ovary development and oocyte maturation. These results demonstrate that LmDDX6 plays an essential role in locust female reproduction and, thus, could be a novel target for locust biological control.
Collapse
Affiliation(s)
- Junxiu Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| |
Collapse
|
45
|
Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020; 5:270. [PMID: 33214545 PMCID: PMC7677403 DOI: 10.1038/s41392-020-00347-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy especially immune checkpoint inhibition has achieved unprecedented successes in cancer treatment. However, there are many patients who failed to benefit from these therapies, highlighting the need for new combinations to increase the clinical efficacy of immune checkpoint inhibitors. In this review, we summarized the latest discoveries on the combination of nucleic acid-sensing immunity and immune checkpoint inhibitors in cancer immunotherapy. Given the critical role of nuclear acid-mediated immunity in maintaining the activation of T cell function, it seems that harnessing the nuclear acid-mediated immunity opens up new strategies to enhance the effect of immune checkpoint inhibitors for tumor control.
Collapse
Affiliation(s)
- Miaoqin Chen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yiling Li
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ting Ting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
46
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
47
|
Song Y, Wu X, Xu Y, Zhu J, Li J, Zou Z, Chen L, Zhang B, Hua C, Rui H, Zheng Q, Zhou Q, Wang Q, Cheng H. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome. Int J Biol Sci 2020; 16:2924-2937. [PMID: 33061806 PMCID: PMC7545706 DOI: 10.7150/ijbs.50074] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus (HPV) is a DNA virus that causes sexually transmitted infections. The HPV oncoprotein E7 plays a critical role in the regulation of host immunity to promote the immune escape of HPV and the occurrence of cervical cancer or genital warts. Pyroptosis, a highly inflammatory form of programmed cell death, can be induced by inflammasomes and acts as a defense against pathogenic infection. However, whether HPV E7 can regulate cell pyroptosis to evade immune surveillance has not been determined. In this study, we found that HPV E7 could inhibit cell pyroptosis induced by transfection with dsDNA. The activation of the inflammasome, and the production of IL-18 and IL-1β were also restrained by HPV E7. Mass spectrometry and immunoprecipitation showed that HPV E7 interacted with IFI16 and TRIM21. We also discovered that HPV E7 recruited the E3 ligase TRIM21 to ubiquitinate and degrade the IFI16 inflammasome, leading to the inhibition of cell pyroptosis and self-escape from immune surveillance. Thus, our study reveals an important immune escape mechanism in HPV infection and may provide targets for the development of a novel immunotherapeutic strategy to effectively restore antiviral immunity.
Collapse
Affiliation(s)
- Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Jiaying Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luxia Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Boya Zhang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Han Rui
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Qiaoli Zheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, PR China
| |
Collapse
|
48
|
Zhu T, Fernandez-Sesma A. Innate Immune DNA Sensing of Flaviviruses. Viruses 2020; 12:v12090979. [PMID: 32899347 PMCID: PMC7552040 DOI: 10.3390/v12090979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses that have been used extensively to study host antiviral responses. Often selected just to represent standard single-stranded positive-sense RNA viruses in early studies, the Flavivirus genus over time has taught us how truly unique it is in its remarkable ability to target not just the RNA sensory pathways but also the cytosolic DNA sensing system for its successful replication inside the host cell. This review summarizes the main developments on the unexpected antagonistic strategies utilized by different flaviviruses, with RNA genomes, against the host cyclic GAMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway in mammalian systems. On the basis of the recent advancements on this topic, we hypothesize that the mechanisms of viral sensing and innate immunity are much more fluid than what we had anticipated, and both viral and host factors will continue to be found as important factors contributing to the host innate immune system in the future.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-5182
| |
Collapse
|
49
|
Dlamini Z, Shoba B, Hull R. Splicing machinery genomics events in acute myeloid leukaemia (AML): in search for therapeutic targets, diagnostic and prognostic biomarkers. Am J Cancer Res 2020; 10:2690-2704. [PMID: 33042611 PMCID: PMC7539770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukaemia and has the highest mortality rate. Screening for mutations in patients with AML has shown that in many cases genes carrying mutations are involved in the alternate splicing of mRNA. These include members of the Serine Arginine (SR) family of splicing factors, as well as components of the spliceosome. Mutations in associated genes also affect the function of members of the heterogeneous nuclear ribonucleoproteins (hnRNPs). These mutations in splicing factors can lead to changes in the expression of different isoforms whose splicing is controlled by these splicing factors. These different isoforms may have completely different functions, for example, members of the BCl-2 family are alternately spliced to give rise to pro and anti-apoptotic members. Mutations in the splicing factors that control the splicing of these mRNAs can lead to changes in the expression level of these isoforms. In this review we will examine the mechanics of the regulation of the various splice isoforms and how this drives the development of tumors. This information is pertinent for drug discovery, and the splicing factors with the most promise for pharmacological control will be discussed.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Bonginkosi Shoba
- Department of Medical Oncology, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| |
Collapse
|
50
|
Wang E, Aifantis I. RNA Splicing and Cancer. Trends Cancer 2020; 6:631-644. [PMID: 32434734 DOI: 10.1016/j.trecan.2020.04.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Abstract
RNA splicing is an essential process that governs many aspects of cellular proliferation, survival, and differentiation. Considering the importance of RNA splicing in gene regulation, alterations in this pathway have been implicated in many human cancers. Large-scale genomic studies have uncovered a spectrum of splicing machinery mutations that contribute to tumorigenesis. Moreover, cancer cells are capable of hijacking the expression of RNA-binding proteins (RBPs), leading to dysfunctional gene splicing and tumor-specific dependencies. Advances in next-generation RNA sequencing have revealed tumor-specific isoforms associated with these alterations, including the presence of neoantigens, which serve as potential immunotherapeutic targets. In this review, we discuss the various mechanisms by which cancer cells exploit RNA splicing to promote tumor growth and the current therapeutic landscape for splicing-based therapies.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|