1
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Biram A, Shulman Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol Rev 2020; 296:36-47. [PMID: 32557712 DOI: 10.1111/imr.12890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Enduring immunity against harmful pathogens depends on the generation of immunological memory. Serum immunoglobulins are constantly secreted by long-lived antibody-producing cells, which provide extended protection from recurrent exposures. These cells originate mainly from germinal center structures, wherein B cells introduce mutations to their immunoglobulin genes followed by affinity-based selection. Generation of high-affinity antibodies relies on physical contacts between T and B cells, a process that facilitates the delivery of fate decision signals. T-B cellular engagements are mediated through interactions between the T cell receptor and its cognate peptide presented on B cell major histocompatibility class II molecules. Here, we describe the cellular and molecular aspects of these cognate T-B interactions, and highlight exceptional cases, especially those arising at intestinal lymphoid organs, at which T cells provide help to B cells in an atypical manner, independent of T cell specificity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Isobe J, Maeda S, Obata Y, Iizuka K, Nakamura Y, Fujimura Y, Kimizuka T, Hattori K, Kim YG, Morita T, Kimura I, Offermanns S, Adachi T, Nakao A, Kiyono H, Takahashi D, Hase K. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. Int Immunol 2019; 32:243-258. [DOI: 10.1093/intimm/dxz078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Secretory immunoglobulin A (SIgA), the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate up-regulated the production of transforming growth factor β1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.
Collapse
Affiliation(s)
- Junya Isobe
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shintarou Maeda
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo (IMSUT), Tokyo, Japan
| | - Keito Iizuka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Tatsuki Kimizuka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Kouya Hattori
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tatsuya Morita
- Department of Applied Biological Chemistry, Graduate School of Agriculture, University of Shizuoka, Shizuoka, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max-Plank-Institute for Heart and lung Research, Berlin, Germany
| | - Takahiro Adachi
- Department of Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhito Nakao
- Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo (IMSUT), Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
5
|
Class-switch recombination to IgA in the Peyer's patches requires natural thymus-derived Tregs and appears to be antigen independent. Mucosal Immunol 2019; 12:1268-1279. [PMID: 31501516 DOI: 10.1038/s41385-019-0202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/04/2023]
Abstract
Our understanding of how class-switch recombination (CSR) to IgA occurs in the gut is still incomplete. Earlier studies have indicated that Tregs are important for IgA CSR and these cells were thought to transform into follicular helper T cells (Tfh), responsible for germinal center formation in the Peyer's patches (PP). Following adoptive transfer of T-cell receptor-transgenic (TCR-Tg) CD4 T cells into nude mice, we unexpectedly found that oral immunization did not require an adjuvant to induce strong gut IgA and systemic IgG responses, suggesting an altered regulatory environment in the PP. After sorting of splenic TCR-Tg CD4 T cells into CD25+ or CD25- cells we observed that none of these fractions supported a gut IgA response, while IgG responses were unperturbed in mice receiving the CD25- cell fraction. Hence, while Tfh functions resided in the CD25- fraction the IgA CSR function in the PP was dependent on CD25+ Foxp3+ Tregs, which were found to be Helios+ neuropilin-1+ thymus-derived Tregs. This is the first study to demonstrate that Tfh and IgA CSR functions are indeed, unique, and separate functions in the PP with the former being TCR-dependent while the latter appeared to be antigen independent.
Collapse
|
6
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
7
|
Pierre JF, Hinterleitner R, Bouziat R, Hubert NA, Leone V, Miyoshi J, Jabri B, Chang EB. Dietary antioxidant micronutrients alter mucosal inflammatory risk in a murine model of genetic and microbial susceptibility. J Nutr Biochem 2018; 54:95-104. [PMID: 29331497 PMCID: PMC5866768 DOI: 10.1016/j.jnutbio.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) are caused by the convergence of microbial, environmental, and genetic factors. Diet significantly alters these interactions by affecting both the host and microbiome. Using a mucosal inflammatory model that resembles the human condition of ileal pouchitis, we investigated the effects of Control (CONT) or Antioxidant (AOX) diet, containing pharmacologically relevant levels of 4 micronutrients, on disease risk in wild-type and IL-10-/- animals following surgical self-filling (SF) ileal blind loop placement. Although no differences were found in body weight change or survival, IL-10-/- CONT animals had significantly larger lymphoid organs compared with IL-10-/- AOX or with WT. SF loops from IL-10-/- CONT loop mucosa demonstrated histological inflammation, characterized by goblet cell depletion, increased mucosal myeloperoxidase (MPO), and elevated IFNγ, TNFα, and IL-17α gene expression, which AOX attenuated. AOX elevated luminal IgA in IL-10-/- animals, but not significantly in WT. In IL-10-/- animals, AOX significantly decreased the percentage of CD4 + T-bet and CD4 + RORγ T-cells compared with CONT, with no changes in CD4 + Foxp3+ Treg cells. 16S rRNA gene sequencing demonstrated AOX increased microbial alpha diversity compared with CONT in both genotypes. Notably, colonizing germ-free IL-10-/- hosts with CONT bacterial communities, but not AOX, recapitulated the inflammatory phenotype. Collectively, these findings highlight that common dietary antioxidant micronutrients reshape the gut microbial community to mitigate intestinal inflammatory profiles in genetically susceptible hosts. Insights into the dietary-immune-microbial nexus may improve understanding for recurrent inflammatory episodes in susceptible patient populations and opportunities for practical therapeutics to restore immune and microbial homeostasis.
Collapse
Affiliation(s)
- Joseph F Pierre
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Reinhard Hinterleitner
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Romain Bouziat
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Nathan A Hubert
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Vanessa Leone
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Jun Miyoshi
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Bana Jabri
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL
| | - Eugene B Chang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL..
| |
Collapse
|
8
|
Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 2017; 10:1361-1374. [PMID: 28745325 DOI: 10.1038/mi.2017.62] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/20/2017] [Indexed: 02/04/2023]
Abstract
The majority of activated B cells differentiate into IgA plasma cells, with the gut being the largest producer of immunoglobulin in the body. Secretory IgA antibodies have numerous critical functions of which protection against infections and the role for establishing a healthy microbiota appear most important. Expanding our knowledge of the regulation of IgA B-cell responses and how effective mucosal vaccines can be designed are of critical importance. Here we discuss recent developments in the field that shed light on the uniqueness and complexity of mucosal IgA responses and the control of protective IgA responses in the gut, specifically.
Collapse
Affiliation(s)
- N Y Lycke
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - M Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Lee JM, Jang YS, Jin BR, Kim SJ, Kim HJ, Kwon BE, Ko HJ, Yoon SI, Lee GS, Kim WS, Seo GY, Kim PH. Retinoic acid enhances lactoferrin-induced IgA responses by increasing betaglycan expression. Cell Mol Immunol 2015; 13:862-870. [PMID: 26277894 DOI: 10.1038/cmi.2015.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023] Open
Abstract
Lactoferrin (LF) and retinoic acid (RA) are enriched in colostrum, milk, and mucosal tissues. We recently showed that LF-induced IgA class switching through binding to betaglycan (transforming growth factor-beta receptor III, TβRIII) and activation of canonical TGF-β signaling. We investigated the combined effect of LF and RA on the overall IgA response. An increase in IgA production by LF was further augmented by RA. This combination effect was also evident in Ig germ-line α (GLα) transcription and GLα promoter activity, indicating that LF in cooperation with RA increased IgA isotype switching. We subsequently found that RA enhanced TβRIII expression and that this increase contributed to LF-stimulated IgA production. In addition to the IgA response, LF and RA in combination also enhanced the expression of the gut-homing molecules C-C chemokine receptor 9 (CCR9) and α4β7 on B cells. Finally, peroral administration of LF and RA enhanced the frequency of CCR9+IgA+ plasma cells in the lamina propria. Taken together, these results suggest that LF in cooperation with RA can contribute to the establishment of gut IgA responses.
Collapse
Affiliation(s)
- Jeong-Min Lee
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Saeng Jang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Bo-Ra Jin
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sun-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyeon-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung-Il Yoon
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Woan-Sub Kim
- Department of Animal Life and Environmental Science, College of Agriculture and Life Science, Hankyong National University, Anseong-si 456-749, Republic of Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
10
|
Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling. Mucosal Immunol 2015; 8:906-17. [PMID: 25492477 DOI: 10.1038/mi.2014.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
Abstract
Lactoferrin (LF), a pleiotropic iron-binding glycoprotein, is known to modulate the humoral immune response. However, its exact role in Ig synthesis has yet to be elucidated. In this study, we investigated the effect of LF on Ig production by mouse B cells and its underlying mechanisms. LF, like transforming growth factor (TGF)-β1, stimulated B cells to produce IgA and IgG2b, while downregulating other isotypes. Using limiting dilution analysis, LF was shown to increase the frequency of IgA-secreting B-cell clones. This was paralleled by an increase in Ig germ-line α (GLα) transcripts, indicating that LF plays a role as an IgA switch factor. Interestingly, LF directly interacted with betaglycan (TGF-β receptor III, TβRIII) and in turn induced phosphorylation of TβRI and Smad3 through formation of the TβRIII/TβRII/TβRI complex, leading to IgA isotype switching. Peroral administration of LF increased intestinal/serum IgA production as well as number of IgA plasma cells in lamina propria. Finally, we found that LF has an adjuvant activity when nontoxigenic Salmonella typhimurium was inoculated perorally, conferring protection against intragastrical infection of toxigenic S. typhimurium. These results suggest that LF has an important effect on the mucosal/systemic IgA response and can contribute to protection against intestinal pathogens.
Collapse
|
11
|
Lee SH, Kim PH, Oh SM, Park JH, Yoo YC, Lee J, Park SR. SUMO Proteins are not Involved in TGF-β1-induced, Smad3/4-mediated Germline α Transcription, but PIASy Suppresses it in CH12F3-2A B Cells. Immune Netw 2014; 14:321-7. [PMID: 25550698 PMCID: PMC4275389 DOI: 10.4110/in.2014.14.6.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022] Open
Abstract
TGF-β induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-β signal-transducing transcription factors, mediate germline (GL) α transcription induced by TGF-β1, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-β-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-β1-induced, Smad3/4-mediated GLα transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-β1-induced, Smad3/4-mediated GLα promoter activity, expression of endogenous GLα transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-β1-induced, Smad3/4-mediated GLα promoter activity. We found that PIASy overexpression suppresses the GLα promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of GLα transcription and IgA switching induced by TGF-β1/Smad3/4, while PIASy acts as a repressor.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
12
|
Retinoic acid acts as a selective human IgA switch factor. Hum Immunol 2014; 75:923-9. [DOI: 10.1016/j.humimm.2014.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/10/2014] [Accepted: 06/23/2014] [Indexed: 11/22/2022]
|
13
|
Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR, Lee JM, Choe J, Kim PH. Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol 2013; 94:325-35. [PMID: 23744644 DOI: 10.1189/jlb.0313128] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrates that RA has activity of an IgA switch factor and is more specific than TGF-β1. RA independently caused only IgA switching, whereas TGF-β1 caused IgA and IgG2b switching. We found that RA increased IgA production and that this was a result of its ability to increase the frequency of IgA-secreting B cell clones. Increased IgA production was accompanied by an increase of GLTα. RA activity was abrogated by an antagonist of the RAR. Additionally, RA affected intestinal IgA production in mice. Surprisingly, RA, in combination with TGF-β1, notably enhanced not only IgA production and GLTα expression but also CCR9 and α4β7 expression on B cells. These results suggest that RA selectively induces IgA isotype switching through RAR and that RA and TGF-β have important effects on the overall gut IgA antibody response.
Collapse
Affiliation(s)
- Goo-Young Seo
- School of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bemark M, Boysen P, Lycke NY. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann N Y Acad Sci 2012; 1247:97-116. [PMID: 22260403 DOI: 10.1111/j.1749-6632.2011.06378.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut immune system protects against mucosal pathogens, maintains a mutualistic relationship with the microbiota, and establishes tolerance against food antigens. This requires a balance between immune effector responses and induction of tolerance. Disturbances of this strictly regulated balance can lead to infections or the development inflammatory diseases and allergies. Production of secretory IgA is a unique effector function at mucosal surfaces, and basal mechanisms regulating IgA production have been the focus of much recent research. These investigations have aimed at understanding how long-term IgA-mediated mucosal immunity can best be achieved by oral or sublingual vaccination, or at analyzing the relationship between IgA production, the composition of the gut microbiota, and protection from allergies and autoimmunity. This research has lead to a better understanding of the IgA system; but at the same time seemingly conflicting data have been generated. Here, we discuss how gut IgA production is controlled, with special focus on how differences between T cell-dependent and T cell-independent IgA production may explain some of these discrepancies.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|