1
|
Majstorović J, Kyslík J, Klak K, Maciuszek M, Chan JTH, Korytář T, Holzer AS. Erythrocytes of the common carp are immune sentinels that sense pathogen molecular patterns, engulf particles and secrete pro-inflammatory cytokines against bacterial infection. Front Immunol 2024; 15:1407237. [PMID: 38947329 PMCID: PMC11211254 DOI: 10.3389/fimmu.2024.1407237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.
Collapse
Affiliation(s)
- Jovana Majstorović
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jiří Kyslík
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Justin T. H. Chan
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, Veterinary University of Vienna, Vienna, Austria
| | - Tomáš Korytář
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Astrid S. Holzer
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, Veterinary University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Yang S, Bai Y, Tao J, Tu C, Chen B, Huang X, Zhang L, Liu L, Li L, Qin Z. Exploration of the immune response of grass carp (Ctenopharyngodon idellus) erythrocytes during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109526. [PMID: 38554743 DOI: 10.1016/j.fsi.2024.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1β, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.
Collapse
Affiliation(s)
- Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
3
|
Fuess LE, Bolnick DI. Single-Cell RNA Sequencing Reveals Microevolution of the Stickleback Immune System. Genome Biol Evol 2023; 15:evad053. [PMID: 37039516 PMCID: PMC10116603 DOI: 10.1093/gbe/evad053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
The risk and severity of pathogen infections in humans, livestock, or wild organisms depend on host immune function, which can vary between closely related host populations or even among individuals. This immune variation can entail between-population differences in immune gene coding sequences, copy number, or expression. In recent years, many studies have focused on population divergence in immunity using whole-tissue transcriptomics. But, whole-tissue transcriptomics cannot distinguish between evolved differences in gene regulation within cells, versus changes in cell composition within the focal tissue. Here, we leverage single-cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight broad immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types among the three populations of fish. Furthermore, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data: we reevaluate previously published whole-tissue transcriptome data from a quantitative genetic experimental infection study to gain better resolution relating infection outcomes to inferred cell type variation. Our combined study demonstrates the power of single-cell sequencing to not only document evolutionary phenomena (i.e., microevolution of immune cells) but also increase the power of traditional transcriptomic data sets.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, Texas State University
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut
| |
Collapse
|
4
|
Stosik M, Tokarz-Deptuła B, Deptuła J, Deptuła W. Immune Functions of Erythrocytes in Osteichthyes. Front Immunol 2020; 11:1914. [PMID: 33072066 PMCID: PMC7533606 DOI: 10.3389/fimmu.2020.01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/16/2020] [Indexed: 12/03/2022] Open
Abstract
Red blood cells (RBCs)—erythrocytes—of Osteichthyes are primarily known for their involvement in the process of gas exchange and respiration. Currently, physiological properties of RCBs in fish should also include their ability to participate in defense processes as part of the innate and adaptive immune mechanisms. In response to viruses, bacteria, and fungi or recombinant nanoparticles, they can modulate expression of genes responsible for immune reactions, influence activity of leukocytes, and produce cytokines, antimicrobial peptides, and paracrine intercellular signaling molecules. Via the complement system (CR1 receptor) and owing to their phagocytic properties (erythrophagocytosis), RBCs of Osteichthyes can eliminate pathogens. In addition, they are probably involved in the immune response as antigen-presenting cells via major histocompatibility complex class II antigens.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra Góra, Poland
| | | | - Jakub Deptuła
- International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
5
|
Kim A, Yoon D, Lim Y, Roh HJ, Kim S, Park CI, Kim HS, Cha HJ, Choi YH, Kim DH. Co-Expression Network Analysis of Spleen Transcriptome in Rock Bream ( Oplegnathus fasciatus) Naturally Infected with Rock Bream Iridovirus (RBIV). Int J Mol Sci 2020; 21:ijms21051707. [PMID: 32131541 PMCID: PMC7084886 DOI: 10.3390/ijms21051707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Rock bream iridovirus (RBIV) is a notorious agent that causes high mortality in aquaculture of rock bream (Oplegnathus fasciatus). Despite severity of this virus, no transcriptomic studies on RBIV-infected rock bream that can provide fundamental information on protective mechanism against the virus have been reported so far. This study aimed to investigate physiological mechanisms between host and RBIV through transcriptomic changes in the spleen based on RNA-seq. Depending on infection intensity and sampling time point, fish were divided into five groups: uninfected healthy fish at week 0 as control (0C), heavy infected fish at week 0 (0H), heavy mixed RBIV and bacterial infected fish at week 0 (0MH), uninfected healthy fish at week 3 (3C), and light infected fish at week 3 (3L). We explored clusters from 35,861 genes with Fragments Per Kilo-base of exon per Million mapped fragments (FPKM) values of 0.01 or more through signed co-expression network analysis using WGCNA package. Nine of 22 modules were highly correlated with viral infection (|gene significance (GS) vs. module membership (MM) |> 0.5, p-value < 0.05). Expression patterns in selected modules were divided into two: heavy infected (0H and 0MH) and control and light-infected groups (0C, 3C, and 3L). In functional analysis, genes in two positive modules (5448 unigenes) were enriched in cell cycle, DNA replication, transcription, and translation, and increased glycolysis activity. Seven negative modules (3517 unigenes) built in this study showed significant decreases in the expression of genes in lymphocyte-mediated immune system, antigen presentation, and platelet activation, whereas there was significant increased expression of endogenous apoptosis-related genes. These changes lead to RBIV proliferation and failure of host defense, and suggests the importance of blood cells such as thrombocytes and B cells in rock bream in RBIV infection. Interestingly, a hub gene, pre-mRNA processing factor 19 (PRPF19) showing high connectivity (kME), and expression of this gene using qRT-PCR was increased in rock bream blood cells shortly after RBIV was added. It might be a potential biomarker for diagnosis and vaccine studies in rock bream against RBIV. This transcriptome approach and our findings provide new insight into the understanding of global rock bream-RBIV interactions including immune and pathogenesis mechanisms.
Collapse
Affiliation(s)
- Ahran Kim
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.K.); (D.Y.); (S.K.)
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (Y.L.); (H.J.R.)
| | - Dahye Yoon
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.K.); (D.Y.); (S.K.)
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Yunjin Lim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (Y.L.); (H.J.R.)
- Hazardous Substances Analysis Division, Gwangju Regional Office of Food and Drug Safety, Gwangju 61012, Korea
| | - Heyong Jin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (Y.L.); (H.J.R.)
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.K.); (D.Y.); (S.K.)
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47227, Korea;
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (Y.L.); (H.J.R.)
- Correspondence: ; Tel.: +82-51-629-5945
| |
Collapse
|
6
|
Anderson HL, Brodsky IE, Mangalmurti NS. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:1343-1351. [PMID: 30127064 DOI: 10.4049/jimmunol.1800565] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/23/2022]
Abstract
The field of red cell biology is undergoing a quiet revolution. Long assumed to be inert oxygen carriers, RBCs are emerging as important modulators of the innate immune response. Erythrocytes bind and scavenge chemokines, nucleic acids, and pathogens in circulation. Depending on the conditions of the microenvironment, erythrocytes may either promote immune activation or maintain immune quiescence. We examine erythrocyte immune function through a comparative and evolutionary lens, as this framework may offer perspective into newly recognized roles of human RBCs. Next, we review the known immune roles of human RBCs and discuss their activity in the context of sepsis where erythrocyte function may prove important to disease pathogenesis. Given the limited success of immunomodulatory therapies in treating inflammatory diseases, we propose that the immunologic function of RBCs provides an understudied and potentially rich area of research that may yield novel insights into mechanisms of immune regulation.
Collapse
Affiliation(s)
- H Luke Anderson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nilam S Mangalmurti
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and.,Penn Center for Pulmonary Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|