1
|
Yanagiya R, Nakagawa S, Onizuka M, Kotani A. Aberrant expression of human endogenous retrovirus K9-derived elements is associated with better clinical outcome of acute myelocytic leukemia. Retrovirology 2025; 22:4. [PMID: 40165318 PMCID: PMC11959769 DOI: 10.1186/s12977-025-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Acute myelocytic leukemia (AML) is a common hematological malignancy in adults. Although several risk stratifications based on cytogenetic and molecular abnormalities are available to guide the indications for allogeneic hematopoietic cell transplantation (allo-HCT), determining optimal treatment strategies for AML remains challenging. In this study, using transcriptome datasets, we investigated the association between event-free survival (EFS) in intensively treated AML patients and the aberrant expression of endogenous viral element (EVE)-derived open reading frames (ORFs), which have been reported to be associated with the pathophysiology of various malignancies and have the potential to serve as neoantigens in specific cancers. RESULTS The expression levels of human endogenous retrovirus family K9 (HERVK9) ORFs were associated with EFS, independent of conventional risk stratification. Furthermore, AML cells with higher levels of HERVK9 expression exhibited enhanced antigen processing and presentation, along with increased expression of genes associated with adaptive immune responses and apoptosis, indicating that aberrant HERVK9 expression may initiate an anti-neoplastic immune response via increased antigen presentation. CONCLUSIONS HERVK9 expression may have serve as a crucial prognostic indicator that could aid in determining the indications for upfront allo-HCT in AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/virology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/immunology
- Endogenous Retroviruses/genetics
- Female
- Middle Aged
- Male
- Adult
- Open Reading Frames
- Prognosis
- Transcriptome
- Aged
- Hematopoietic Stem Cell Transplantation
Collapse
Affiliation(s)
- Ryo Yanagiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
- Laboratory of Regulation of Infectious Cancer, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143-Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Division of Omics Sciences, Institute of Medical Sciences, Tokai University, Isehara, Japan.
- Division of Interdisciplinary Merging of Health Research, Micro/Nano Technology Center, Tokai University, Hiratsuka, Japan.
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Ai Kotani
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
- Laboratory of Regulation of Infectious Cancer, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Isehara, Japan
| |
Collapse
|
2
|
Ko EJ, Jeong JY, Bae SC, Cha HJ. Expression profiles of TNF-Alpha and HERV-K Env proteins in multiple types of colon and lung disease. Genes Genomics 2025; 47:113-123. [PMID: 39567418 DOI: 10.1007/s13258-024-01585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) were integrated into the human genome millions of years ago and have since proliferated to comprise about 8% of the human genome. For a long time, HERVs were thought to be remnants of ancient viruses, rendered inactive over the ages. However, recent studies have revealed that HERVs are involved in various diseases, including cancer. Notably, HERVs have been found to play a crucial role in immune responses and inflammatory processes, indicating their significant influence on the regulation of immune-related diseases. OBJECTIVE We reported in previous reports that HERV-K119 env Knockout (KO) and inflammatory response were associated. In this study, we identified the correlation between inflammatory disease and HERV-K Env and TNF-Alpha protein expression in multiple types of colon disease tissue and lung disease spectrum tissue. METHODS We performed Immunofluorescence (IF) using multiple types of colon disease and lung disease spectrum tissue microarray (TMAs) and compared and analyzed the patient clinical data provided. RESULTS As a result, we identified that the expression of HERV-K Env and TNF-Alpha proteins in certain colorectal inflammatory diseases and certain lung inflammatory diseases showed specific expression. And through the analysis of the clinical data provided, environmental factors could be identified. CONCLUSION Our study demonstrates that the relationship between TNF-Alpha and HERV-K Env expression in inflammation disease and clinical significance of disease tissues.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, 10032, USA.
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, 49241, Republic of Korea
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea
| | - Sung Chul Bae
- Department of Biological Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
| |
Collapse
|
3
|
Ko EJ, Suh DS, Kim H, Lee JY, Eo WK, Kim H, Kim KH, Cha HJ. Transcriptome analysis of the effect of HERV-K env gene knockout in ovarian cancer cell lines. Genes Genomics 2024; 46:1293-1301. [PMID: 39271536 DOI: 10.1007/s13258-024-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of various diseases, particularly cancers. Previous investigations from our group demonstrated that targeted knockout (KO) of the HERV-K env gene led to a significant reduction in tumorigenic attributes, including proliferation, migration, and invasion of ovarian cancer cells. OBJECTIVE In this study, we aimed to elucidate the impact of HERV-K env KO on gene expression in ovarian cancer cell lines through comparative RNA sequencing (RNA-Seq) analysis with two distinct HERV-K env KO ovarian cancer cell lines, SKOV3 and OVCAR3. METHODS HERV-K env gene KO was achieved in SKOV3 and OVCAR3 ovarian cancer cell lines using the CRISPR-Cas9 system. Next-generation mRNA sequencing was employed to assess the gene expression profiles of both mock and HERV-K env KO ovarian cancer cells. Furthermore, comprehensive analyses involving gene ontology and pathway assessments were conducted. RESULTS Transcriptome analysis revealed that 23 differentially expressed genes (DEGs) were upregulated and 17 DEGs were downregulated in SKOV3 cells. In OVCAR3 cells, 198 DEGs were upregulated, and 17 DEGs were downregulated. Notably, 53 DEGs exhibited statistically significant differences among the 1,612 DEGs identified. Our findings indicate that HERV-K env gene KO exerts a profound influence on gene expression patterns in OVCAR3 cells, while genetic alterations in expression were relatively modest in SKOV3 cells. Nevertheless, genes ND1, ND2, and CYTB displayed a common increase in expression, while ERRFI1 and NDRG1 exhibited a decrease in expression in both cell lines. CONCLUSION Our study demonstrates that KO of the HERV-K env gene in ovarian cancer cell lines has a substantial impact on gene expression patterns and can be used to identify potential therapeutic targets for ovarian cancer and related diseases.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, 49241, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Heungyeol Kim
- Department of Obstetrics and Gynecology, Hannah Hospital, Busan, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, 49241, Republic of Korea.
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea.
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.
- Institute for Medical Science, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
4
|
Kim DY, Kim H, Ko EJ, Koh SB, Kim H, Lee JY, Lee CM, Eo WK, Kim KH, Cha HJ. Correlation analysis of cancer stem cell marker CD133 and human endogenous retrovirus (HERV)-K env in SKOV3 ovarian cancer cells. Genes Genomics 2024; 46:511-518. [PMID: 38457096 DOI: 10.1007/s13258-024-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Human endogenous retrovirus (HERV)-K is a type of retrovirus that is present in the human genome, and its expression is usually silenced in healthy tissues. The precise mechanism by which HERV-K env influences cancer stemness is not fully understood, but it has been suggested that HERV-K env may activate various signaling pathways that promote stemness traits in cancer cells. OBJECTIVE To establish the connection between HERV-K env expression and cancer stemness in ovarian cancer cells, we carried out correlation analyses between HERV-K env and the cancer stem cell (CSC) marker known as the cluster of differentiation 133 (CD133) gene in SKOV3 ovarian cancer cells. METHOD To perform correlation analysis between HERV-K env and CSCs, ovarian cancer cells were cultured in a medium designed for cancer stem cell induction. The expression of HERV-K env and CD133 genes was verified using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Additionally, the expression of stemness-related markers, such as OCT-4 and Nanog, was also confirmed using RT-qPCR. RESULTS In the stem cell induction medium, the number of tumorsphere-type SKOV3 cells increased, and the expression of CD133 and HERV-K env genes was up-regulated. Additionally, other stemness-related markers like OCT-4 and Nanog also exhibited increased expression when cultured in the cancer stem cell induction medium. However, when HERV-K env knockout (KO) SKOV3 cells were cultured in the same cancer stem cell induction medium, there was a significant decrease in the number of tumorsphere-type cells compared to mock SKOV3 cells subjected to the same conditions. Furthermore, the expression of CD133, Nanog, and OCT-4 did not show a significant increase in HERV-K env KO SKOV3 cells compared to mock SKOV3 cells cultured in the same cancer stem cell induction medium. CONCLUSION These findings indicate that the expression of HERV-K env increased in SKOV3 cells when cultured in cancer stem cell induction media, and cancer stem cell induction was inhibited by KO of HERV-K env in SKOV3 cells. These results suggest a strong association between HERV-K env and stemness in SKOV3 ovarian cancer cells.
Collapse
Affiliation(s)
- Do-Ye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Heungyeol Kim
- Department of Obstetrics and Gynecology, Hannah Hospital, Busan, Republic of Korea
| | - Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Suk Bong Koh
- Department of Obstetrics and Gynecology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chul Min Lee
- Department of Obstetrics and Gynecology, Ilsan Medical Center School of Medicine, Cha University, Seoul, Republic of Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.
- Institute for Medical Science, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
5
|
Ferlita AL, Nigita G, Tsyba L, Palamarchuk A, Alaimo S, Pulvirenti A, Balatti V, Rassenti L, Tsichlis PN, Kipps T, Pekarsky Y, Croce CM. Expression signature of human endogenous retroviruses in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2023; 120:e2307593120. [PMID: 37871223 PMCID: PMC10622969 DOI: 10.1073/pnas.2307593120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is one of the most diagnosed forms of leukemia worldwide and it is usually classified into two forms: indolent and aggressive. These two forms are characterized by distinct molecular features that drive different responses to treatment and clinical outcomes. In this context, a better understanding of the molecular landscape of the CLL forms may potentially lead to the development of new drugs or the identification of novel biomarkers. Human endogenous retroviruses (HERVs) are a class of transposable elements that have been associated with the development of different human cancers, including different forms of leukemias. However, no studies about HERVs in CLL have ever been reported so far. Here, we present the first locus-specific profiling of HERV expression in both the aggressive and indolent forms of CLL. Our analyses revealed several dysregulations in HERV expression occurring in CLL and some of them were specific for either the aggressive or indolent form of CLL. Such results were also validated by analyzing an external cohort of CLL patients and by RT-qPCR. Moreover, in silico analyses have shown relevant signaling pathways associated with them suggesting a potential involvement of the dysregulated HERVs in these pathways and consequently in CLL development.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Liudmyla Tsyba
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Alexey Palamarchuk
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania95123, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania95123, Italy
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Laura Rassenti
- Department of Medicine, University of California San Diego, La JollaCA92093
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Thomas Kipps
- Department of Medicine, University of California San Diego, La JollaCA92093
| | - Yuri Pekarsky
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| |
Collapse
|
6
|
Ko EJ, Kim MH, Kim DY, An H, Leem SH, Choi YH, Kim HS, Cha HJ. The Role of Human Endogenous Retrovirus (HERV)-K119 env in THP-1 Monocytic Cell Differentiation. Int J Mol Sci 2023; 24:15566. [PMID: 37958549 PMCID: PMC10648273 DOI: 10.3390/ijms242115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Human endogenous retrovirus (HERV)-K was reportedly inserted into the human genome millions of years ago and is closely related to various diseases, including cancer and immune regulation. In our previous studies, CRISPR-Cas9-enabled knockout (KO) of the HERV-K env gene was found to potentially reduce cell proliferation, cell migration, and invasion in colorectal and ovarian cancer cell lines. The immune response involves the migration and invasion of cells and is similar to cancer; however, in certain ways, it is completely unlike cancer. Therefore, we induced HERV-K119 env gene KO in THP-1, a monocytic cell that can be differentiated into a macrophage, to investigate the role of HERV-K119 env in immune regulation. Cell migration and invasion were noted to be significantly increased in HERV-K119 env KO THP-1 cells than in MOCK, and these results were contrary to those of cancer cells. To identify the underlying mechanism of HERV-K119 env KO in THP-1 cells, transcriptome analysis and cytokine array analysis were conducted. Semaphorin7A (SEMA7A), which induces the production of cytokines in macrophages and monocytic cells and plays an important role in immune effector cell activation during an inflammatory immune response, was significantly increased in HERV-K119 env KO THP-1 cells. We also found that HERV-K119 env KO THP-1 cells expressed various macrophage-specific surface markers, suggesting that KO of HERV-K119 env triggers the differentiation of THP-1 cells from monocytic cells into macrophages. In addition, analysis of the expression of M1 and M2 macrophage markers showed that M1 macrophage marker cluster of differentiation 32 (CD32) was significantly increased in HERV-K119 env KO cells. These results suggest that HERV-K119 env is implicated in the differentiation of monocytic cells into M1 macrophages and plays important roles in the immune response.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Min-Hye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Do-Ye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Hyojin An
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47227, Republic of Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 49241, Republic of Korea;
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
- Institute for Medical Science, Kosin University College of Medicine, Busan 49267, Republic of Korea
| |
Collapse
|
7
|
Costa B, Vale N. Exploring HERV-K (HML-2) Influence in Cancer and Prospects for Therapeutic Interventions. Int J Mol Sci 2023; 24:14631. [PMID: 37834078 PMCID: PMC10572383 DOI: 10.3390/ijms241914631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
This review investigates the intricate role of human endogenous retroviruses (HERVs) in cancer development and progression, explicitly focusing on HERV-K (HML-2). This paper sheds light on the latest research advancements and potential treatment strategies by examining the historical context of HERVs and their involvement in critical biological processes such as embryonic development, immune response, and disease progression. This review covers computational modeling for drug-target binding assessment, systems biology modeling for simulating HERV-K viral cargo dynamics, and using antiviral drugs to combat HERV-induced diseases. The findings presented in this review contribute to our understanding of HERV-mediated disease mechanisms and provide insights into future therapeutic approaches. They emphasize why HERV-K holds significant promise as a biomarker and a target.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Hosseiniporgham S, Sechi LA. Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines (Basel) 2023; 11:vaccines11040751. [PMID: 37112663 PMCID: PMC10144246 DOI: 10.3390/vaccines11040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The footprint of human endogenous retroviruses (HERV), specifically HERV-K, has been found in malignancies, such as melanoma, teratocarcinoma, osteosarcoma, breast cancer, lymphoma, and ovary and prostate cancers. HERV-K is characterized as the most biologically active HERV due to possession of open reading frames (ORF) for all Gag, Pol, and Env genes, which enables it to be more infective and obstructive towards specific cell lines and other exogenous viruses, respectively. Some factors might contribute to carcinogenicity and at least one of them has been recognized in various tumors, including overexpression/methylation of long interspersed nuclear element 1 (LINE-1), HERV-K Gag, and Env genes themselves plus their transcripts and protein products, and HERV-K reverse transcriptase (RT). Therapies effective for HERV-K-associated tumors mostly target invasive autoimmune responses or growth of tumors through suppression of HERV-K Gag or Env protein and RT. To design new therapeutic options, more studies are needed to better understand whether HERV-K and its products (Gag/Env transcripts and HERV-K proteins/RT) are the initiators of tumor formation or just the disorder’s developers. Accordingly, this review aims to present evidence that highlights the association between HERV-K and tumorigenicity and introduces some of the available or potential therapies against HERV-K-induced tumors.
Collapse
|