1
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
2
|
Ishikawa M. Perioperative Anesthesia Management: The Role of MicroRNAs. J NIPPON MED SCH 2025; 92:14-21. [PMID: 40058830 DOI: 10.1272/jnms.jnms.2025_92-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
MicroRNA (miRNA) is a small RNA molecule that does not code for proteins, and organ- and disease-specific miRNAs are being investigated as diagnostic tools and therapeutic targets, particularly for cardiovascular disease and cancer. Much remains unknown about how anesthetics, other drugs, and perioperative management affect miRNAs, but miRNA-targeted drugs might eventually be used perioperatively. This review examines changes in miRNA expression related to anesthesia management. Sevoflurane results in gene expression patterns that differ by organ. The author investigated changes in miRNA expression induced by anesthetics in the brain, lungs, and liver and found that changes in miRNA expression differ by drug and organ. Since miRNA does not have a one-to-one correspondence with its target mRNA and exhibits complex effects within and between cells, as well as remotely, drug- and organ-specific changes in mRNA expression caused by anesthetics likely involve complex alterations. Cardiovascular disease and cancer are related to perioperative management via miRNAs. Inhalational anesthetics may exacerbate or suppress cellular activity, depending on the type of cancer, and the mechanisms of action differ depending on the inhalational anesthetic. These findings suggest that propofol is more likely to contribute to suppression of cancer cells through intercellular communication. The role of miRNA in perioperative management remains unclear. In the future, it is expected that changes in miRNA expression will be considered when selecting and administering anesthetic drugs perioperatively.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
3
|
Mm Yahya S, Elsayed GH. The role of MiRNA-34 family in different signaling pathways and its therapeutic options. Gene 2024; 931:148829. [PMID: 39154971 DOI: 10.1016/j.gene.2024.148829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types. This family is also important for obesity, the cardiovascular system, and glycolysis. It's interesting to note that the miRNA-34 family is known to play a role in major depressive disorder, schizophrenia, Parkinson's disease (PD), adverse childhood experiences or trauma, regulation of stress responses, Alzheimer's disease (AD), and stress-related psychatric conditions. In this review, the expected targets of the miRNA-34 family are presented alongside the well-established targets identified by pathway analysis. Furthermore, the therapeutic potential of this miRNA family will be discussed.
Collapse
Affiliation(s)
- Shaymaa Mm Yahya
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Fang XL, Cao XP, Xiao J, Hu Y, Chen M, Raza HK, Wang HY, He X, Gu JF, Zhang KJ. Overview of role of survivin in cancer: expression, regulation, functions, and its potential as a therapeutic target. J Drug Target 2024; 32:223-240. [PMID: 38252514 DOI: 10.1080/1061186x.2024.2309563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/11/2023] [Indexed: 01/24/2024]
Abstract
Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.
Collapse
Affiliation(s)
- Xian-Long Fang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Xue-Ping Cao
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yun Hu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Mian Chen
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Hafiz Khuram Raza
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Huai-Yuan Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Fa Gu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Wang Y, Guo Z, Yang Z, Deng Q, Huang Y, Chen Y. Long intergenic noncoding RNA for IGF2BP2 stability suppresses gastric cancer cell apoptosis by inhibiting the maturation of microRNA-34a. Open Med (Wars) 2024; 19:20240992. [PMID: 39381424 PMCID: PMC11459274 DOI: 10.1515/med-2024-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/05/2024] [Accepted: 06/09/2024] [Indexed: 10/10/2024] Open
Abstract
The oncogenic role of long intergenic noncoding RNA for IGF2BP2 stability (LINRIS) has been reported in colorectal cancer. This research aimed to study its potential involvement in gastric cancer (GC). In this study, paired GC and non-tumor tissues were obtained from 64 GC patients, and the levels of LINRIS, mature microRNA-34a (miR-34a), and miR-34a precursor in these tissues were measured with RT-qPCR. Linear regression was used to analyze their correlations. The role of LINRIS overexpression and siRNA silencing in regulating the maturation of miR-34a was analyzed by RT-qPCR. Cell apoptosis was studied with flow cytometry. It was observed that LINRIS was overexpressed in GC and showed a negative correlation with mature miR-34a, but not miR-34a precursor. In GC cells, LINRIS siRNA silencing upregulated mature miR-34a level, but not miR-34a precursor level. LINRIS overexpression downregulated miR-34a level. Cell apoptosis analysis showed that LINRIS siRNA silencing and miR-34a overexpression promoted GC cell apoptosis and suppressed cell migration and invasion, while LINRIS overexpression suppressed cell apoptosis and enhanced cell migration and invasion. In addition, the effect of LINRIS overexpression was reversed by miR-34a overexpression. Therefore, LINRIS siRNA silencing in GC may promote cell apoptosis by promoting miR-34a maturation.
Collapse
Affiliation(s)
- Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, 528400, P.R. China
| | - Zhigang Guo
- Department of Gastrointestinal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, 528400, P.R. China
| | - Zhifeng Yang
- Department of Gastrointestinal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, 528400, P.R. China
| | - Qingyan Deng
- Department of Gastrointestinal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, 528400, P.R. China
| | - Yueming Huang
- Department of Gastrointestinal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, 528400, P.R. China
| | - Yanhong Chen
- Department of Hospital Infection Management, Zhongshan City People’s Hospital, No. 2 Sunwen East Road, Shiqi District, Zhongshan, Guangdong, 528400, P.R. China
| |
Collapse
|
6
|
Guo Q, Wang X, Zhai Y, Dong Y, He Q. Oxaliplatin activates P53/miR-34a/survivin axis in inhibiting the progression of gastric cancer cells. Immun Inflamm Dis 2024; 12:e70004. [PMID: 39254476 PMCID: PMC11386343 DOI: 10.1002/iid3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION The purpose of this research was to determine how the P53/microRNA-34a (miR-34a)/survivin pathway contributes to oxaliplatin-induced (L-OHP) cell inhibition in gastric cancer. METHODS The BGC-823 gastric cancer cells were selected, and we examined their viability following treatment with L-OHP at different concentrations and time periods. The expression levels of miR-34a, P53, and survivin in the cells were determined. RESULTS In the 12- and 24-h groups, drug concentration of 15 μg/cm² (p < .005 in both) significantly lowered cell viability. In comparison to the control group, miR-34a mRNA expression, P53 mRNA expression, and protein expression were all significantly greater in the 24-h group (p = .0324, p = .0069, p = .0260, respectively), but survivin mRNA and protein expressions were significantly lower than those in the control group (p = .0338, p = .0032, respectively). There was a significant decrease in gastric cancer cells in the miR-34a overexpression group (p = .0020), a significant increase in P53 mRNA and protein expression compared to the control group (p = .0080, p = .0121, respectively), and a significant decrease in survivin mRNA and protein expression compared to the control group. (p = .0213, p = .0069, respectively). CONCLUSION Oxaliplatin inhibits tumor growth, invasion, and metastasis by upregulating miR-34a, activating the expression of the upstream P53 gene, and driving the downregulation of survivin (P53/miR-34a/survivin axis) in BGC-823 gastric cancer cells.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Baotou Medical CollegeBaotouChina
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Xin‐Yuan Wang
- Department of General SurgeryHeNan RongJun HospitalXinxiangChina
| | - Yan‐Chang Zhai
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Yong‐Wei Dong
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Qing‐Si He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Baotou Medical CollegeBaotouChina
| |
Collapse
|
7
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
9
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
10
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Pandey R, Yang FS, Sivasankaran VP, Lo YL, Wu YT, Chang CY, Chiu CC, Liao ZX, Wang LF. Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15010215. [PMID: 36678844 PMCID: PMC9865708 DOI: 10.3390/pharmaceutics15010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an alternative safe gene delivery method, we designed a unique combination for miRNA34a delivery using a transgene carrier in the form of iron oxide magnetic nanoparticles (IONPs) via magnetofection to downregulate PD-L1 expression in cancer cells. We synthesized IONPs of multiple shapes (IONRs (iron oxide nanorods), IONSs (iron oxide nanospheres), and ITOHs (iron oxide truncated octahedrons)), surface-functionalized with polyethyleneimine (PEI) using the ligand exchange method, as gene delivery systems. Under the guidance of an external magnetic field, PEI@IONPs loaded with plasmid DNA (DNA/PEI@IONPs) encoding GFP showed high transfection efficiency at different weight ratios and time points in A549 and MDA-MB-231 cells. Additionally, the DNA/PEI@IONPs with miRNA34a inserts under a static magnetic field resulted in significant knockdown of the PD-L1 gene, as demonstrated via immunoblotting of the PD-L1 protein. Among the three shapes of IONPs, IONRs showed the highest PD-L1 knockdown efficiency. The genetic expression of miRNA34a was also studied using qPCR and it showed high expression of miRNA in cells treated with PEI@IONRs. Flow cytometry and a live/dead assay confirmed apoptosis after transfection with miRNA34a. To conclude, in this paper, a promising transgene carrier with low cost, negligible cytotoxicity, and high transfection efficiency has been successfully established for miRNA gene delivery in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Richa Pandey
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Feng-Shuo Yang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | | | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yu Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-2217
| |
Collapse
|
12
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
13
|
miR-34a-Mediated Survivin Inhibition Improves the Antitumor Activity of Selinexor in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14060523. [PMID: 34072442 PMCID: PMC8227962 DOI: 10.3390/ph14060523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
Collapse
|
14
|
Jafari N, Abediankenari S, Hossein-Nataj H. miR-34a mimic or pre-mir-34a, which is the better option for cancer therapy? KatoIII as a model to study miRNA action in human gastric cancer cells. Cancer Cell Int 2021; 21:178. [PMID: 33740991 PMCID: PMC7980621 DOI: 10.1186/s12935-021-01872-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Aberrantly expressed microRNAs play important roles in gastric tumorigenesis. However, use of miRNAs as a therapeutic option in gastric cancer still remains as a challenging problem. Methods We performed transient transfection of miR-34a-5p mimic and stable transfection of pre-mir-34a into KatoIII cells. Then, we evaluated the effect of transfected miRNAs on numerous cellular and molecular processes. Results Following transient transfection of miR-34a-5p mimic at 25 nM—a commonly used concentration—into KatoIII cells, inhibition of two target genes expression, namely Notch1 and β-catenin, was not observed, but a non-significant marginal increase of these genes was detected. No changes were detected in the percentage of apoptotic cells as well as in CD44 + and EpCAM + cells after 25 nM miR-34a-5p mimic transfection. Interestingly, stable transfection of pre-mir-34a into KatoIII cells (named as KatoIII-pGFPC1-34a cells) caused a significant repression in β-catenin protein and Notch1 mRNA levels (p < 0.05 and p < 0.01, respectively) relative to equivalent control (KatoIII- pGFPC1-empty cells). The percentage of CD44 + cells in the KatoIII-pGFPC1-34a cells (< 40%) was significantly lower than that in control cells (~ 95%) (p < 0.05). An increase of ~ 3.5% in apoptotic cells and a slower proliferation rate were detected in KatoIII-pGFPC1-34a cells. Conclusions Our study revealed that the effect of miR mimic in target gene repression can be dependent to its concentration as well as to the cell type. Meanwhile, our findings further support a regulatory function for pre-miRNAs in target repression and will help to develop effective therapeutic strategies in cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01872-5.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran.
| | - Hadi Hossein-Nataj
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
15
|
Ishikawa M, Iwasaki M, Sakamoto A, Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 2021; 21:71. [PMID: 33750303 PMCID: PMC7941705 DOI: 10.1186/s12871-021-01294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism including cancer cell biology, cell-to-cell communication, and anti-cancer immunity. Main Body Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA). Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles with their subsequent anti-cancer effects via modulating cell-to-cell communication. Conclusion Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is needed to figure out optimal anesthesia regimens for cancer patients.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan. .,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK.
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
16
|
Yahya SMM, Abd-Elhalim MM, Abdelhamid AO, Eskander EF, Elsayed GH. Could miR-34a Inhibition be Used as a Tool to Overcome Drug Resistance in MCF-7 Cells Treated with Synthesized Steroidal Heterocycles? Asian Pac J Cancer Prev 2021; 22:819-826. [PMID: 33773546 PMCID: PMC8286668 DOI: 10.31557/apjcp.2021.22.3.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Progesterone derivatives have explored an improved effect on human cancer cells through combination of the explored heterocycles with progesterone moiety.miRNAs have an important role in moderating cancer cell survival, proliferation and drug resistance. The current study tested the hypothesis “whether miR-34a inhibitor has a negative impact on apoptosis and angiogenesis in MCF-7 cells treated with newly synthesized progesterone derivatives”. Methods: MCF-7 cells were treated with progesterone derivatives individually and in combination with miR-34a inhibitor. miR-34a expression levels were measured in MCF-7 cells treated with progesterone derivatives using QRT-PCR. MCF-7 cells treated with progesterone derivatives individually showed increased miR-34a expression levels. miR-34a deficient cells were treated with the newly synthesized progesterone derivatives, after that, apoptotic and angiogenic gene expression levels were determined using QRT-PCR. The studied genes were as follows: apoptotic (Bcl-2, survivin, CCND1, CDC2, P53 and P21) and angiogenic (VEGF, Hif-1α, MMP-2, Ang-1, Ang-2, and FGF-1). Results: The results showed that miR-34a deficient MCF-7 cells treated with the newly progesterone derivatives still have promising effects on apoptotic and angiogenic genes. Besides, results revealed that miRNA-34a deficient MCF-7 cells exhibited improved effect of tested compounds in some apoptotic and angiogenic genes such as CDC-2, MMP-2. Conclusion: These results revealed that miR-34a inhibitor did not have remarkable negative effect on apoptosis and angiogenesis. On contrary, it showed an improved effect on some genes. And consequently, miR-34a inhibitor could be used safely as a tool to tackle drug resistance in breast cancer cells.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mervat M Abd-Elhalim
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Abdou O Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Emad F Eskander
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada H Elsayed
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
17
|
Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig 2021; 42:253-263. [PMID: 33638320 DOI: 10.1515/hmbci-2020-0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES High fat diet can lead to testicular structural and functional disturbances, spermatogenesis disorders as well as infertility. So, the present investigation was proposed to clarify whether voluntary exercise could prevent high fat diet induced reproductive complications in rats through testicular stress oxidative and apoptosis. METHODS Forty male Wistar rats were randomly divided into four groups; control (C), voluntary exercise (VE), high fat diet (HFD) and high fat diet and voluntary exercise (VE + HFD) groups. The rats in the VE and VE + HFD groups were accommodated in apart cages that had running wheels and the running distance was assessed daily for 10 weeks. In VE + HFD group, animals were fed with HFD for five weeks before commencing exercise. The sperm parameters, the expressions of testicular miR-34a gene, and P53 and SIRT1 proteins as well as testicular apoptosis were analyzed in all groups. RESULTS The results indicated that voluntary exercise in VE + HFD group led to significantly increased GPX and SOD activities, SIRT1 protein expression, sperm parameters, and decreased the expression of miR34a gene and Acp53 protein, and cellular apoptosis index compared to HFD group (p<0.001 to p<0.05). The SOD and catalase activities, SIRT1 protein expression, sperm parameters in VE + HFD group were lower than of those of VE group, however, MDA content, expression of Acp53 protein, apoptosis indexes in VE + HFD group was higher than that of VE group (p<0.001 to p<0.05). CONCLUSION This study revealed that voluntary exercise improved spermatogenesis, in part by decreasing the testicular oxidative stress status, apoptosis through alteration in miR-34a/SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:58-65. [PMID: 33643571 PMCID: PMC7894640 DOI: 10.22038/ijbms.2020.49498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/07/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This research was designed to demonstrate the impact of voluntary exercise on sperm parameters including sperm count, morphology, motility, viability, testicular apoptosis, oxidative stress, and the mir-34a/SIRT1/p53 pathway in type 2 diabetic rats. MATERIALS AND METHODS 32 Wistar male rats were separated into four groups: control (C), voluntary exercise (VE), diabetic (D), and diabetic rats that performed voluntary exercise (VED). To induce diabetes, animals were injected with streptozotocin (35 mg/kg) after receiving a high-fat diet. The testicular protein levels of SIRT1 and P53, miR-34a expression, MDA, GPx, SOD, catalase, and sperm parameters were evaluated. RESULTS Diabetes caused increased testicular MDA content, miR-34a expression, acetylated p53 protein expression, and the percent of immotile sperm (P<0.01 to P<0.001) as well as reduced testicular GPx, SOD and catalase activities, SIRT1 protein expression, and sperm parameters (P<0.05 to P<0.001). Voluntary exercise reduced testicular MDA content, miR-34a, and acetylated p53 protein expression compared with the D group (P<0.001), however, GPx, SOD, catalase activities, and sperm parameters in voluntarily exercised rats were elevated compared with diabetic rats (P<0.05 to P<0.001). CONCLUSION It seems that voluntary exercise has significant positive impacts that can be employed to reduce the complications of type 2 diabetes in the testis of male rats.
Collapse
Affiliation(s)
- Saber Gaderpour
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Yong H, Fu J, Gao G, Shi H, Zheng D, Zhou X. MiR-34a suppresses the proliferation and invasion of gastric cancer by modulating PDL1 in the immune microenvironment. Mol Cell Probes 2020; 53:101601. [DOI: 10.1016/j.mcp.2020.101601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
20
|
Shi L, Wang Z, Geng X, Zhang Y, Xue Z. Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo. Aging (Albany NY) 2020; 12:8549-8564. [PMID: 32391804 PMCID: PMC7244055 DOI: 10.18632/aging.103157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide manifesting high morbidity and mortality. Cancer-associated fibroblasts (CAFs), important components of the tumor microenvironment, are essential for tumorigenesis and progression. Exosomes secreted from CAFs have been reported as the critical molecule-vehicle in intercellular crosstalk. However, the precise mechanism underlying the effect of CAFs remains to be fully investigated. In this study, we aimed to determine the role of CAFs and their exosomes in the progression of GC and related mechanisms. The results revealed that miRNA-34 was downregulated in both GC fibroblasts (GCFs) and GC cell lines while the overexpression of miRNA-34 suppressed the proliferation, invasion, and motility of GC cell lines. Coculturing GC cells with miRNA-34-overexpressing GCFs led to the suppression of cancer progression. Also, exosomes derived from GCFs were taken up by GC cells in vitro and in vivo and exerted antitumor roles in GC. In addition, exosomal miRNA-34 inhibited GC cell proliferation and invasion in vitro and suppressed tumor growth in vivo. Furthermore, 16 genes were identified as potential downstream targeting genes of miRNA-34. Taken together, GCFs-derived exosomal miRNA-34 may be a promising targeting molecule for therapeutic strategies in GC.
Collapse
Affiliation(s)
- Liang Shi
- Endoscope Room, Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China
- Medical College of Hebei University, Shijiazhuang 050011, Hebei Province, China
| | - Zhenyong Wang
- The First Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China
| | - Xiuchao Geng
- Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050020, Hebei Province, China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated hospital of Hebei university, Baoding 071000, Hebei Province, China
| | - Ziqing Xue
- Hebei University, Baoding 071002, Hebei Province, China
| |
Collapse
|
21
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
22
|
Shariatnasery M, Irani S, Soleimani M, Goodarzi N, Dinarvand R. Synergistic effect of microRNA and albumin-bound nanoparticles for inhibition of glioblastoma cancer cell proliferation. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | | | - Rassoul Dinarvand
- Tehran University of Medical Sciences, Iran; Tehran University of Medical Sciences, Iran
| |
Collapse
|
23
|
Sun C, Zhang S, Liu C, Liu X. Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells. Cancer Biother Radiopharm 2019; 34:634-641. [PMID: 31539270 DOI: 10.1089/cbr.2019.2874] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: To investigate the effects of curcumin on miR-34a and proliferation of gastric cancer cells. Materials and Methods: Human gastric cancer cell line SGC-7901 was divided into control, curcumin, miR-34a agomir (miR-34a), miR-34a agomir negative control, and curcumin combined miR-34a antagomir (combine) groups. 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, scratch damage test, and transwell assay were used to detect cell proliferation, migration, and invasion. The cell apoptosis and cell cycle were detected by flow cytometry. Western blot was used to detect the expression of B-cell lymphoma-2 (Bcl-2), cyclin-dependent kinase 4 (CDK4), and cyclin D1. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to detect apoptosis of tumors and Western blot was used to detect the expression of Bcl-2, CDK4, and cyclin D1 in tumors. Results: The results showed that curcumin markedly increased the content of miR-34a microRNA (mRNA) in SGC-7901 cells, inhibited proliferation, migration, and invasion of SGC-7901 cells, when compared to control group (p < 0.05). Compared with control group, curcumin significantly inhibited cell cycle progression in G0/G1-S phase, increased the cell number of G0/G1 phase, and downregulated the Bcl-2, CDK4, and cyclin D1 protein expression in cells and tissues (p < 0.05). After transfection of miR-34a agomir or antagomir into cells it was found that miR-34a agomir and curcumin had similar effects on resisting malignant biological behavior. Curcumin combined with miR-34a antagomir could weaken or reverse the above results. Conclusions: Curcumin could inhibit the proliferation and induce apoptosis of SGC-7901 cells. Its mechanism might be related to the miR-34a expression in cells, thus affecting the expression of Bcl-2, CDK4, and cyclin D1.
Collapse
Affiliation(s)
- Chunlin Sun
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| | - Shuping Zhang
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Changhai Liu
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| | - Xueqiang Liu
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| |
Collapse
|
24
|
Hasanpourghadi M, Abdul Majid N, Rais Mustafa M. The role of miRNAs 34a, 146a, 320a and 542 in the synergistic anticancer effects of methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC) with doxorubicin in breast cancer cells. PeerJ 2018; 6:e5577. [PMID: 30245930 PMCID: PMC6147144 DOI: 10.7717/peerj.5577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.
Collapse
Affiliation(s)
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Zhao Y, Wang X. miR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma. Oncol Lett 2018; 16:6566-6572. [PMID: 30405796 PMCID: PMC6202510 DOI: 10.3892/ol.2018.9427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Sinonasal squamous cell carcinomas (SN-SCC) are rare tumors with low survival rate. It was reported that miR-34a expression is low in many cancers and acted as a tumor suppressor. But the biological function of miR-34a in SN-SCC has hardly been reported. Therefore, we explored the role and underlying mechanism of miR-34a in the migration and invasion of SN-SCC. Western blot analysis and RT-PCR were carried out to examine B-cell lymphoma-2 (BCL-2) and miR-34a expression in SN-SCC. Transwell assay was performed to test the SN-SCC migratory and invasive ability. Luciferase reporter assay was carried out to verify the target of miR-34a. Results demonstrated that miR-34a expression was lower in SN-SCC tissues and cells than normal SN-SCC. Re-expression of miR-34a inhibited cell migration and invasion, while had the opposite effect on inhibition of miR-34a. We also found that BCL-2 expression was higher in SN-SCC and silencing BCL-2 curbed the development of SN-SCC. BCL-2 was found to be a target of miR-34a and negatively correlated with miR-34a expression. Furthermore, BCL-2 attenuated the miR-34a inhibitory effect on SN-SCC cell migration and invasion. In short, these data demonstrated that miR-34a inhibited SN-SCC cell migration and invasion through targeting BCL-2.
Collapse
Affiliation(s)
- Yigang Zhao
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xianzhi Wang
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
26
|
Fomison-Nurse I, Saw EEL, Gandhi S, Munasinghe PE, Van Hout I, Williams MJA, Galvin I, Bunton R, Davis P, Cameron V, Katare R. Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death Differ 2018; 25:1336-1349. [PMID: 29302057 PMCID: PMC6030067 DOI: 10.1038/s41418-017-0047-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
Increased apoptosis and premature cellular ageing of the diabetic heart underpin the development of diabetic heart disease. The molecular mechanisms underlying these pathologies are still unclear. Here we determined the role of pro-senescence microRNA (miR)-34a in accelerating the ageing of the diabetic heart. RT-PCR analysis showed a significant increase in the level of circulating miR-34a from early stages in asymptomatic type-2 diabetic individuals compared to non-diabetic controls. We also observed significant upregulation of miR-34a in the type-2 human diabetic heart suggesting circulating miR-34a may be cardiac in origin. Moreover, western blot analysis identified marked downregulation of the pro-survival protein sirtuin 1 (SIRT1), a direct target of miR-34a. Analysis of cultured human adult cardiomyocytes exposed to high glucose and cardiac progenitor cells (CPCs) isolated from the diabetic heart confirmed significant upregulation of miR-34a and downregulation of SIRT1, associated with a marked increase in pro-apoptotic caspase-3/7 activity. Although therapeutic inhibition of miR-34a activity restored SIRT1 expression in both cardiomyocytes and CPCs, p53 expression was further upregulated in cardiomyocytes but conversely downregulated in CPCs. In spite of increased p53, miR-34a inhibition significantly reduced high glucose induced apoptotic cell death in cardiomyocytes. However, this effect was not observed in CPCs, which in fact showed reduced proliferation following miR-34a inhibition. Taken together, our results demonstrate upregulation of miR-34a in the diabetic heart and in the circulation from an early stage of the disease. However, inhibition of miR-34a activity has differential effects depending on the cell type, thereby warranting the need to eliminate off-target effects when introducing miR-based therapy.
Collapse
Affiliation(s)
- Ingrid Fomison-Nurse
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Eugene Eng Leng Saw
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sophie Gandhi
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ivor Galvin
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Vicky Cameron
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
27
|
Hua K, Chen YT, Chen CF, Tang YS, Huang TT, Lin YC, Yeh TS, Huang KH, Lee HC, Hsu MT, Chi CW, Wu CW, Lin CH, Ping YH. MicroRNA-23a/27a/24-2 cluster promotes gastric cancer cell proliferation synergistically. Oncol Lett 2018; 16:2319-2325. [PMID: 30008935 PMCID: PMC6036456 DOI: 10.3892/ol.2018.8924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies have indicated that certain microRNAs (miRNAs/miRs) function as either tumor suppressors or oncogenes in human cancer. The present study identified the miR-23a/27a/24-2 cluster, containing miR-23, miR-27a and miR-24, as an oncogene in gastric cancer. The expression of the miR-23a/27a/24-2 cluster was upregulated in clinical gastric cancer tissues. Transfection with inhibitors of miR-23a, miR-27a, or miR-24, either independently or together, repressed in vitro colony formation and in vivo tumor formation. The miR23a/27a/24-2 cluster inhibitors repressed the growth of gastric cancer cells in a synergistic manner. In addition, treatment with lower doses of the miRNA inhibitor mixture induced the formation of apoptotic bodies. According to computational predictions using TargetScan, suppressor of cytokine-induced signaling 6 (SOCS6) was identified as one of the downstream target genes of the miR-23a/27a/24-2 cluster. The expression of SOCS6 was significantly lower in tumor tissues than in matched normal tissues (P<0.01) and was associated with poor survival (P<0.00001). Taken together, these results strongly suggested that the miR-23a/27a/24-2 cluster may mediate the progression of gastric cancer through the suppression of SOCS6 expression. The present study also provides a novel molecular target for the development of an anti-gastric cancer agent.
Collapse
Affiliation(s)
- Kate Hua
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Ting Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chian-Feng Chen
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ya-Syuan Tang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tzu-Ting Huang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Cheng Lin
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tien-Shun Yeh
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kuo-Hung Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ming-Ta Hsu
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chew-Wun Wu
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chi-Hung Lin
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| |
Collapse
|
28
|
Ghosh N, Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 2018; 17:43. [PMID: 29566757 PMCID: PMC5863891 DOI: 10.1186/s12933-018-0684-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication in individuals with diabetes and is characterized by ventricular dilation and hypertrophy, diastolic dysfunction, decreased or preserved systolic function and reduced ejection fraction eventually resulting in heart failure. Despite being well characterized, the fundamental mechanisms leading to DCM are still elusive. Recent studies identified the involvement of small non-coding small RNA molecules such as microRNAs (miRs) playing a key role in the etiology of DCM. Therefore, miRs associated with DCM represents a new class of targets for the development of mechanistic therapeutics, which may yield marked benefits compared to other therapeutic approaches. Indeed, few miRs currently under active clinical investigation, with many expressing cautious optimism that miRs based therapies will succeed in the coming years. The major caution in using miRs based therapy is the need to improve the stability and specificity following systemic injection, which can be achieved through chemical and structural modification. In this review, we first discuss the established role of miRs in DCM and the advances in miRs based therapeutic strategies for the prevention/treatment of DCM. We next discuss the currently employed chemical modification of miR oligonucleotides and their utility in therapies specifically focusing on the DCM. Finally, we summarize the commonly used delivery system and approaches for assessment of miRNA modulation and potential off-target effects.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Physiology-HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
29
|
Cheng C, Qin Y, Zhi Q, Wang J, Qin C. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol 2018; 107:2620-2629. [DOI: 10.1016/j.ijbiomac.2017.10.154] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
|
30
|
Wu YC, Liu X, Wang JL, Chen XL, Lei L, Han J, Jiang YS, Ling ZQ. Soft-shelled turtle peptide modulates microRNA profile in human gastric cancer AGS cells. Oncol Lett 2017; 15:3109-3120. [PMID: 29435044 DOI: 10.3892/ol.2017.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer prevention using natural micronutrition on epigenetic mechanisms primarily revolves around plant extracts. However, the role of macronutrition, including animal peptides, on epigenetic modification in cancer has been elusive. In traditional Chinese medicine, the soft-shelled turtle has a long-history of being a functional food that strengthens immunity through unknown mechanisms. The present study aimed to investigate the impact of soft-shelled turtle peptide on microRNA (miRNA) expression in gastric cancer (GC) cells and to analyze the potential anticancer mechanisms for GC. Affymetrix GeneChip miRNA 3.0 Array and quantitative polymerase chain reaction were used to detect the miRNA expression profile in human GC AGS cells treated with the soft-shelled turtle peptide. The results demonstrated that 101 miRNAs (49 upregulated miRNAs and 52 downregulated miRNAs) were significantly differentially expressed in the AGS cells following soft-shelled turtle peptide treatment. Several tumor suppressor miRNAs were upregulated markedly, including miRNA-375, let-7d, miRNA-429, miRNA-148a/148b and miRNA-34a. Pathway analysis indicated that soft-shelled turtle peptide may function with anticancer properties through the Hippo signaling pathway and the forkhead box O signaling pathway. Therefore, these results demonstrated that soft-shelled turtle peptide has the capacity to influence cancer-related pathways through the regulation of miRNA expression in GC cells.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiu-Li Wang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang-Liu Chen
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Lan Lei
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - You-Shui Jiang
- Zhejiang Agricultural Group Co., Ltd., Hangzhou, Zhejiang 310021, P.R. China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
31
|
Abbas M, Habib M, Naveed M, Karthik K, Dhama K, Shi M, Dingding C. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice. Biomed Pharmacother 2017; 95:1082-1090. [PMID: 28922727 DOI: 10.1016/j.biopha.2017.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
|
32
|
Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in Laryngeal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3921258. [PMID: 29082244 PMCID: PMC5610801 DOI: 10.1155/2017/3921258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023]
Abstract
Objective Altered microRNAs (miRNAs) expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). The aim of this study was to determine the role and clinical value of three LSCC-related miRs, such as miR-21-5p, miR-let-7a, and miR-34c-5p in a homogeneous cohort of patients with primary LSCC treated by primary surgery. Methods Expression levels of miR-21-5p, miR-let-7a, and miR-34c-5p were detected in 43 pairs of LSCC and adjacent normal tissues by reverse-transcription quantitative PCR. Overall survival and disease-free survival were evaluated using the Kaplan–Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results miR-21-5p is significantly upregulated, while miR-let-7a is significantly downregulated in LSCC tumor tissues compared with the corresponding adjacent normal tissues. The downregulation of miR-34c-5p expression significantly correlated with a shorter disease-free survival and, in the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. Conclusions miR-21-5p, miR-let-7a, and miR-34c-5p seem to play a critical role in LSCC carcinogenesis and might have a diagnostic and prognostic clinical value. The miR-let-7a levels could have a predictive role for lymph node metastases and miR-34c-5p might be a promising biomarker of patient outcome.
Collapse
|
33
|
Wen J, Zhao YK, Liu Y, Zhao JF. MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol 2017. [PMID: 28635396 DOI: 10.1177/1010428317705761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor that occurs mainly in children and adolescents. Recent evidence has demonstrated that miR-34a is involved in the invasion and metastasis of osteosarcoma. This study aims to explore the effect of biological behavior of miR-34a on osteosarcoma. First, we collect osteosarcoma and adjacent specimens, and the relative expression of miR-34a and C-IAP2 messenger RNA was quantitated by real-time polymerase chain reaction. Furthermore, miR-34a stimulant is synthesized and transfected onto osteosarcoma MG-63 cells. The effect of overexpression of miR-34a on osteosarcoma was detected by colony-forming assay, Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit I, Transwell assay, and animal experiment in vivo. Finally, the relative levels of C-IAP2 and Bcl-2 protein were checked by western blot, and the activity of caspase-3 and caspase-9 was tested by spectrophotometry assay. In conclusion, miR-34a was downregulated in osteosarcoma cells. And the expression of C-IAP2 and Bcl-2 protein was drastically inhibited, and the activities of caspase-3 and caspase-9 were significantly increased after transfecting miR-34a onto osteosarcoma MG-63 cells. And the overexpression of miR-34a can inhibit cell invasion and metastasis, promote cell apoptosis, and arrest cells in G0/G1 period. And the animal experiment in vivo demonstrated that the overexpression of miR-34a could significantly inhibit the growth of osteosarcoma in animal skin. Taken together, we indicated that miR-34a can inhibit tumor invasion and metastasis in osteosarcoma, and its mechanism may be partly related to downregulating the expression of C-IAP2 and Bcl-2 protein directly or indirectly.
Collapse
Affiliation(s)
- Jie Wen
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Yan-Kun Zhao
- 3 Department of Orthopedics, Jiu-yuan District Hospital, Baotou, China
| | - Yan Liu
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Jin-Feng Zhao
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumour Biol 2017; 39:1010428317701652. [PMID: 28468587 DOI: 10.1177/1010428317701652] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a major cause of cancer mortality worldwide, with a low survival rate for patients with advanced forms of the disease. Over the recent decades, the investigation of the pathophysiological mechanisms of tumourigenesis has opened promising avenues to understand some of the complexities of cancer treatment. However, tumour regeneration and metastasis impose great difficulty for gastric cancer cure. In recent years, cancer stem cells - a small subset of tumour cells in many cancers - have become a major focus of cancer research. Cancer stem cells are capable of self-renewal and are known to be responsible for tumour initiation, metastasis, therapy resistance and cancer recurrence. Recent studies have revealed the key role of microRNAs - small noncoding RNAs regulating gene expression - in these processes. MicroRNAs play crucial roles in the regulation of a wide range of biological processes in a post-transcriptional manner, though their expression is dysregulated in most malignancies, including gastric cancer. In this article, we review the consequences of aberrant expression of microRNA-34 in cancer and cancer stem cells, with a specific focus on the miR-34 dysregulation in gastric cancer and gastric cancer stem cells. We address the critical effects of the aberrant expression of miR-34 and its target genes in maintaining cancer stem cell properties. Information collection and discussion about the advancements in gastric cancer stem cells and microRNAs can be useful for providing novel insights into patient treatment.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Li L, Wu C, Zhao Y. miRNA-34a enhances the sensitivity of gastric cancer cells to treatment with paclitaxel by targeting E2F5. Oncol Lett 2017; 13:4837-4842. [PMID: 28599485 DOI: 10.3892/ol.2017.6041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignant cancer worldwide, however improvements are required to the current therapies for GC. Although paclitaxel is one of the most promising chemotherapeutic agents in clinical use for GC, the resistance to paclitaxel that develops during treatment is a major obstacle to further treatments of GC. The present study reports that micro (mi) RNA-34a, a tumor suppressor in various types of cancer, may be an important regulator of chemoresistance in GC, as miRNA-34a mimics and inhibitors, enhance and inhibit the chemotherapeutic efficacy of paclitaxel, respectively. In addition, the present study identified that E2F transcription factor 5 (E2F5), a key oncogenic protein, is the direct target candidate of miRNA-34a. Previous studies have demonstrated that the inhibition of E2F5 by specific E2F5 small interfering RNA also increases the sensitivity of GC cells to paclitaxel. In conclusion, the present data suggest that miRNA-34a enhances the treatment of sensitive GC cells to paclitaxel by targeting E2F5. Therefore, the miRNA-34a/E2F5 axis appears to be a potential promising therapeutic target for overcoming the chemotherapeutic resistance of GC.
Collapse
Affiliation(s)
- Lina Li
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Cuiling Wu
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yue Zhao
- Department of Dermatology, Changzhi Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
36
|
Jiao C, Jiao X, Zhu A, Ge J, Xu X. Exosomal miR-34s panel as potential novel diagnostic and prognostic biomarker in patients with hepatoblastoma. J Pediatr Surg 2017; 52:618-624. [PMID: 28277300 DOI: 10.1016/j.jpedsurg.2016.09.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study is to identify the diagnostic values of serum exosomal miRNA-34s of patients with HB in a large Asian group and explore the prognostic value of the exosomal miRNA-34s panel compared with other risk factors. METHODS We retrospectively reviewed 89 children with HB. Among these patients, 63 patients were included as training group to build the diagnostic model for HB. 26 patients were defined as the validation group. The expressions of miRNA-34s were detected by real-time PCR. The comparison of diagnostic and prognostic performance of serum exosomal miRNA-34s was measured using the area under ROC curve (AUC). RESULTS For patients in the training group, expression of miRNA-34a, miRNA-34b and miRNA-34c was significantly lower in patients with HB compared with control group in serum exosomes. Between HB training group and the control group, exosomal miRNA-34a, miRNA-34b and miRNA-34c had no significant differences compared with the AFP level in diagnosing HB. The performance of the exosomal miRNA-34s panel in differentiating the HB training group from the control group was superior to the AFP level. The value of the exosomal miRNA-34s panel in predicting prognosis of patients with HB was superior to other risk factors in both training group and validation group. CONCLUSIONS In this study, we found that the expression of exosomal miRNA-34a, miRNA-34b and miRNA-34c was significantly lower in patients with HB compared with the control group, and we confirmed the exosomal miRNA-34s panel could be defined as a diagnostic and prognostic biomarker for patients with HB. LEVEL OF EVIDENCE Level II. TYPE OF STUDY Retrospective Study.
Collapse
Affiliation(s)
- Chenwei Jiao
- Department of Pediatric Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xiaohu Jiao
- Department of Surgery, Baoji Hospital affiliated to Xi'an Medical University, Baoji, China
| | - Anzhi Zhu
- Department of Pediatric Surgery of The Second People's Hospital of Liaocheng city, Linqing, China
| | - Juntao Ge
- Department of Pediatric Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xiaoqing Xu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
37
|
He XJ, Zhang Q, Ma LP, Li N, Chang XH, Zhang YJ. Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer. Chin Med J (Engl) 2017; 129:1140-6. [PMID: 27174320 PMCID: PMC4878157 DOI: 10.4103/0366-6999.181965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Survivin is an oncoprotein silenced in normal mature tissues but reactivated in serous ovarian cancer (SOC). Although transcriptional activation is assumed for its overexpression, the long 3'-untranslated region (3'-UTR) in survivin gene, which contains many alternate polyadenylation (APA) sites, implies a propensity for posttranscriptional control and therefore was the aim of our study. METHODS The abundance of the coding region, the proximal and the distal region of survivin mRNA 3'-UTR, was evaluated by real-time polymerase chain reaction (PCR) in SOC samples, cell lines, and normal fallopian tube (NFT) tissues. The APA sites were confirmed by rapid amplification of cDNA 3' ends and DNA sequencing. Real-time PCR were used to screen survivin-targeting microRNAs (miRNAs) that were inversely correlated with survivin. The expression of an inversely correlated miRNA was restored by pre-miRNA transfection or induction with a genotoxic agent to test its inhibitory effect on survivin overexpression. RESULTS Varying degrees of APA were observed in SOC by comparing the abundance of the proximal and the distal region of survivin 3'-UTR, and changes of 3'-UTR correlated significantly with survivin expression (r = 0.708, P< 0.01). The main APA sites are proved at 1197 and 1673 of survivin 3'-UTR by DNA sequencing. Higher level of 3'-UTR proximal region than coding region was observed in NFT, as well as in SOC and cell lines. Among the survivin-targeting miRNAs, only a few highly expressed miRNAs were inversely correlated with survivin levels, and they mainly targeted the distal part of the 3'-UTR. However, in ovarian cancer cells, restoration of an inversely correlated miRNA (miR-34c) showed little effect on survivin expression. CONCLUSIONS In NFT tissues, survivin is not transcriptionally silenced but regulate posttranscriptionally. In SOC, aberrant APA leads to the shortening of survivin 3'-UTR which enables it to escape the negative regulation of miRNAs and is responsible for survivin up-regulation.
Collapse
Affiliation(s)
- Xiang-Jun He
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Qi Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Li-Ping Ma
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Na Li
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Hong Chang
- Gynecology Oncology Center, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Jun Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
38
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Li QL, Zhang HY, Qin YJ, Meng QL, Yao XL, Guo HK. MicroRNA-34a promoting apoptosis of human lens epithelial cells through down-regulation of B-cell lymphoma-2 and silent information regulator. Int J Ophthalmol 2016; 9:1555-1560. [PMID: 27990356 DOI: 10.18240/ijo.2016.11.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the role of microRNA-34a (miR-34a) in the induction of apoptosis of human lens epithelial (HLE-B3) cells. METHODS The apoptosis of HLE-B3 cells was detected by Annexin V-PE apoptosis detection kit after the treatment with 200 µmol/L H2O2 for 24h and lentiviral miR-34a vector transfection. The expression of miR-34a in the cells was quantified by quantitative real time polymerase chain reaction (qRT-PCR) in response to H2O2 exposure and the vector transfection. The effects of overexpression of miR-34a on the expression of B-cell lymphoma-2 (Bcl-2) and silent information regulator 1 (SIRT1) was determined by qRT-PCR and Western blot. RESULTS The expression of miR-34a was up-regulated by the treatment of H2O2 in HLE-B3 cells. The increased expression of miR-34a is accompanied with the cell apoptosis. Consistence with the H2O2 exposure, ectopic overexpression of miR-34a in HLE-B3 cells promoted cells apoptosis. Importantly the anti-apoptosis factors Bcl-2 and SIRT1 were reduced significantly by up-regulation of miR-34a in HLE-B3 cells. CONCLUSION MiR-34a promotes the apoptosis of HLE-B3 cells by down-regulating Bcl-2 and SIRT1, suggesting that miR-34a may involve in the pathogenesis of cataract formation and targeting miR-34a may be a potentially therapeutic approach for treatment of cataract.
Collapse
Affiliation(s)
- Qing-Lan Li
- Department of Ophthalmology, Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; Department of Ophthalmology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong Province, China
| | - Hong-Yang Zhang
- Department of Ophthalmology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong Province, China
| | - Yong-Jie Qin
- Department of Ophthalmology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong Province, China
| | - Qian-Li Meng
- Department of Ophthalmology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Lei Yao
- Department of Ophthalmology, Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Hai-Ke Guo
- Department of Ophthalmology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong Province, China; Zhengzhou Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
40
|
Treece AL, Duncan DL, Tang W, Elmore S, Morgan DR, Dominguez RL, Speck O, Meyers MO, Gulley ML. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. J Transl Med 2016; 96:661-71. [PMID: 26950485 PMCID: PMC5767475 DOI: 10.1038/labinvest.2016.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Aged
- Aged, 80 and over
- Case-Control Studies
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pilot Projects
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Amanda L Treece
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Duncan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weihua Tang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ricardo L Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Olga Speck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael O Meyers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Mansoori B, Mohammadi A, Shirjang S, Baradaran B. HMGI-C suppressing induces P53/caspase9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle 2016; 15:2585-2592. [PMID: 27245202 DOI: 10.1080/15384101.2016.1190892] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The HMGI-C (high mobility group protein isoform I-C) protein is a member of the high-mobility group AT-hook (HMGA) family of small non-histone chromosomal proteins that can modulate transcription of an ample number of genes. Genome-wide studies reveal upregulation of the HMGI-C gene in many human cancers, which suggests that HMGI-C might play a critical role in the progression of various tumors. However, the exact role of HMGI-C in breast adenocarcinoma has not been made clear. METHODS HMGI-C mRNA expression in breast cancer samples and marginal normal tissues was characterized using qRT-PCR. The cytotoxic effects of HMGI-C siRNA on breast adenocarcinoma cells were determined using MTT assay. Relative HMGI-C mRNA and protein levels were measured by quantitative real-time PCR and western blotting, respectively. Apoptosis detection was done using TUNEL and Annexin-V/PI assays, P53, caspase 3, 9, 8 and Bcl2 proteins evaluated by protein gel blot and miR34a, Let-7a genes investigates by QRT-PCR assay. Cell cycle was analyzed by flow cytometry assay using propidium iodide DNA staining. RESULTS An overexpression of HMGA2 was revealed with highly statistically significant differences between breast cancer samples and marginal normal tissues (P < 0.0001). HMGI-C siRNA significantly reduced both mRNA and protein expression levels in a 48-hour period after transfection and in a dose-dependent manner. We observed that the knockdown of HMGI-C led to the significant induction of apoptosis via mitochondrial pathway by inducing miR34a and cell cycle arrest in MDA-MB-468 cells in vitro. CONCLUSIONS These results propose that HMGI-C might play a critical role in the progression of breast adenocarcinoma. Here we introduced HMGI-C as a potential therapeutic target for trigger apoptosis and cell cycle arrest in human breast adenocarcinoma. Therefore HMGI-C siRNA may be an effective adjuvant in human breast adenocarcinoma.
Collapse
Affiliation(s)
- Behzad Mansoori
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran.,c Aras International Branch of Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Mohammadi
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Solmaz Shirjang
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Behzad Baradaran
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
42
|
Stobiecka M, Chalupa A. DNA Strand Replacement Mechanism in Molecular Beacons Encoded for the Detection of Cancer Biomarkers. J Phys Chem B 2016; 120:4782-90. [PMID: 27187043 DOI: 10.1021/acs.jpcb.6b03475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling properties of a fluorescent hairpin oligonucleotide molecular beacon (MB) encoded to recognize protein survivin (Sur) mRNA have been investigated. The process of complementary target binding to SurMB with 20-mer loop sequence is spontaneous, as expected, and characterized by a high affinity constant (K = 2.51 × 10(16) M(-1)). However, the slow kinetics at room temperature makes it highly irreversible. To understand the intricacies of target binding to MB, a detailed kinetic study has been performed to determine the rate constants and activation energy Ea for the reaction at physiological temperature (37 °C). Special attention has been paid to assess the value of Ea in view of reports of negative activation enthalpy for some nucleic acid reactions that would make the target binding even slower at increasing temperatures in a non-Arrhenius process. The target-binding rate constant determined is k = 3.99 × 10(3) M(-1) s(-1) at 37 °C with Ea = 28.7 ± 2.3 kcal/mol (120.2 ± 9.6 kJ/mol) for the temperature range of 23 to 55 °C. The positive high value of Ea is consistent with a kinetically controlled classical Arrhenius process. We hypothesize that the likely contribution to the activation energy barrier comes from the SurMB stem melting (tm = 53.7 ± 0.2 °C), which is a necessary step in the completion of target strand hybridization with the SurMB loop. A low limit of detection (LOD = 2 nM) for target tDNA has been achieved. Small effects of conformational polymorphs of SurMB have been observed on melting curves. Although these polymorphs could potentially cause a negative Ea, their effect on kinetic transients for target binding is negligible. No toehold preceding steps in the mechanism of target binding were identified.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW) , 02776 Warsaw, Poland
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers , 11010 Barczewo, Poland
| |
Collapse
|
43
|
Wang JX, Zhang QJ, Pei SG, Yang BL. Effect and mechanism of miR-34a on proliferation, apoptosis and invasion of laryngeal carcinoma cells. ASIAN PAC J TROP MED 2016; 9:494-8. [DOI: 10.1016/j.apjtm.2016.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
|
44
|
Wang G, Liu G, Ye Y, Fu Y, Zhang X. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway. Oncol Lett 2016; 11:2661-2667. [PMID: 27073535 DOI: 10.3892/ol.2016.4266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Diallyl disulfide (DADS) exerts anticarcinogenic activity in various types of cancer. However, the mechanism underlying its anticarcinogenic activity remains to be elucidated. The aim of the present study was to explore the mechanism of the anticarcinogenic activity of DADS in gastric cancer (GC). The expression levels of microRNA (miR)-34a in GC and normal tissues were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of miR-34a was also measured using RT-qPCR in SGC-7901 cells following treatment with DADS. In addition, the effect of DADS on the invasion capability of SGC-7901 cells was observed in the presence of miR-34a or anti-miR-34a using a Matrigel invasion assay. Furthermore, in identical conditions, the apoptosis of SGC-7901 cells was observed using flow cytometry. Finally, the present study investigated the effects of DADS and miR-34a on the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in vitro. The level of miR-34a in GC tissues was reduced compared with that in adjacent normal tissues (P<0.05). Treatment with DADS upregulated miR-34a expression in SGC-7901 cells (P<0.05). In the Matrigel invasion assay, DADS inhibited the invasive capability of SGC-7901 cells (P<0.05 vs. control), which was improved by overexpression of miR-34a (P<0.01 vs. control) but reduced by downregulation of miR-34a (P<0.05 vs. DADS treatment group). Furthermore, DADS induced apoptosis of SGC-7901 cells (P<0.05 vs. control); and DADS and miR-34a synergistically enhanced apoptosis of SGC-7901 cells (P<0.01 vs. control). In addition, DADS and miR-34a inhibited the expression levels of phosphorylated (p)-PI3K and p-Akt (P<0.05 vs. control). By contrast, downregulation of miR-34a alleviated the decrease in p-PI3K and p-Akt expression induced by DADS (P<0.05 vs. DADS treatment group). Cell viability was reduced with increasing concentrations of DADS, however, DADS did not affect cell viability following inhibition of the PI3K/Akt signaling pathway. In conclusion, DADS suppresses invasion and induces apoptosis of SGC-7901 cells by upregulation of miR-34a, via inhibition of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Guojun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guanghui Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanwei Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
45
|
Li G, Yao L, Zhang J, Li X, Dang S, Zeng K, Zhou Y, Gao F. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Tumour Biol 2015; 37:7481-91. [PMID: 26678891 DOI: 10.1007/s13277-015-4623-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/10/2015] [Indexed: 01/27/2023] Open
Abstract
The tumor protein D52 (TPD52) is an oncogene overexpressed in breast cancer. Although the oncogenic effects of TPD52 are well recognized, how its expression and the role in migration/invasion is still not clear. This study tried to explore the regulative role of microRNA-34a (miR-34a), a tumor suppressive miRNA, on TPD52 expression in breast cancer. The expression of miR-34a was found significantly decreased in breast cancer specimens with lymph node metastases and breast cancer cell lines. The clinicopathological characteristics analyzed showed that lower expression levels of miR-34a were associated with advanced clinical stages. Moreover, TPD52 was demonstrated as one of miR-34a direct targets in human breast cancer cells. miR-34a was further found significantly repress epithelial-mesenchymal transition (EMT) and inhibit breast cancer cell migration and invasion via TPD52. These findings indicate that miR-34a inhibits breast cancer progression and metastasis through targeting TPD52. Consequently, our data strongly suggested that oncogenic TPD52 pathway regulated by miR-34a might be useful to reveal new therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Guodong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.
| | - Jinning Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xinglong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shuwei Dang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Kai Zeng
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuhui Zhou
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Feng Gao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.
| |
Collapse
|
46
|
Yang B, Huang J, Liu H, Guo W, Li G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol 2015; 37:1771-9. [PMID: 26318298 DOI: 10.1007/s13277-015-3951-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
miR-335 and miR-34a are two microRNAs (miRNAs) usually downregulated in gastric cancer (GC). But, their exact regulative roles were not fully elucidated. In this study, we studied the association between miR-335 and/or miR-34a expression and overall survival of GC patients and explored the regulative role of miR-335 and -34a over survivin expression and GC cell growth and invasion. Fifty patients with GC were regularly followed up from 2011 to 2015. miRNA microarray was used to examine the expression trend of miRNAs in eight tumor tissue samples and adjacent normal tissue samples. The possible binding site between miR-335 and survivin messenger RNA (mRNA) was predicted using online database and verified using qRT-PCR, Western blot, and dual luciferase assay. The regulative role of miR-335 and miR-34a over GC cell growth, apoptosis, and invasion was studied using Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay, respectively. Among the GC patients, low miR-335 or miR-34a expression is associated with higher clinical stage and lymph node metastasis. Patients with low miR-335 or miR-34a had poor overall survival, while those with combined low miR-335 and miR-34a expression had even poorer overall survival. miR-335 can directly regulate survivin expression through binding to the 3'UTR, while miR-34a has indirect modulating effect. Both miR-335 and miR-34a could inhibit cell proliferation and invasion and enhance cell apoptosis. But, these effects are largely abrogated by overexpression of survivin without 3'UTR. Therefore, besides the targets identified in previous studies, miR-335 and miR-34a can also regulate GC cell growth, apoptosis, and invasion at least partly through survivin.
Collapse
Affiliation(s)
- Bairen Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of General Surgery, The First People's Hospital of Yibin, Yibin, 64400, China
| | - Jun Huang
- Department of General Surgery, The First People's Hospital of Yibin, Yibin, 64400, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weichang Guo
- Department of General Surgery, The First People's Hospital of Yibin, Yibin, 64400, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene 2015; 35:2087-97. [PMID: 26234674 PMCID: PMC4740282 DOI: 10.1038/onc.2015.271] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
Based on its marked overexpression in multiple malignancies and its roles in promoting cell survival and proliferation, survivin is an attractive candidate for targeted therapy. Towards this end, a detailed understanding of the mechanisms regulating survivin expression in different cancer cells will be critical. We have previously shown that the RNA-binding protein (RBP) CUG-BP1 is overexpressed in esophageal cancer cells and post-transcriptionally regulates survivin in these cells. The objective of this study was to investigate the role of microRNAs (miRs) in regulating survivin expression in esophageal cancer cells. Using miR expression profiling analysis, we found that miR-214-3p is one of the most markedly downregulated miRs in two esophageal squamous cancer cell lines compared to esophageal epithelial cells. Interestingly, using miR target prediction programs, both survivin and CUG-BP1 mRNA were found to contain potential binding sites for miR-214-3p. Forced expression of miR-214-3p in esophageal cancer cells leads to a decrease in the mRNA and protein levels of both survivin and CUG-BP1. This effect is due to decreased mRNA stability of both targets. By contrast, silencing miR-214-3p in esophageal epithelial cells leads to an increase in both survivin and CUG-BP1 mRNA and protein. To determine whether the observed effect of miR-214-3p on survivin expression was direct, mediated through CUG-BP1, or both, binding studies utilizing biotin pull-down assays and heterologous luciferase reporter constructs were performed. These demonstrated that the mRNA of survivin and CUG-BP1 each contain two functional miR-214-3p binding sites as confirmed by mutational analysis. Finally, forced expression of miR-214-3p enhances the sensitivity of esophageal cancer cells to Cisplatin-induced apoptosis. This effect is abrogated with rescue expression of survivin or CUG-BP1. These findings suggest that miR-214-3p acts as a tumor suppressor and that its downregulation contributes to chemoresistance in esophageal cancer cells by targeting both survivin and CUG-BP1.
Collapse
|
48
|
Wei B, Huang QY, Huang SR, Mai W, Zhong XG. MicroRNA‑34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET. Mol Med Rep 2015; 12:5255-61. [PMID: 26238271 DOI: 10.3892/mmr.2015.4110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
Proliferation, invasion and metastasis are key features of gastric cancer, contributing to high mortality rates in patients with gastric cancer worldwide. As a direct target of p53, the functions of microRNA (miR)‑34a are important, but controversial, in the progression of gastric cancer. In the present study, the clinical importance of miR‑34a in GC specimens (n=40) were investigated and were confirmed in an independent cohort from The Cancer Genome Atlas (TCGA; n=352). The prognostic value of miR‑34a was analyzed using a Kaplan‑Meier survival curve in the TCGA cohort, in combination with complete follow‑up data (n=157). The level of miR‑34a was detected in the human gastric cancer cell line and normal gastric epithelial cell line. The effect of miR‑34a on proliferation and invasion were evaluated using Cell Counting Kit 8, colony formation and cell invasion assays. The molecular basis of miR‑34a was determined by bioinformatics prediction. The correlation between miR‑34a and MET was assessed using reverse transcription‑quantitative polymerase chain reaction and western blot analyses. The results indicated that miR‑34a was downregulated in the gastric cancer tissues, compared with the normal gastric tissues (P<0.01). miR‑34a was negatively correlated with the depth of invasion and lymph node metastasis of gastric cancer (P<0.01). In the TCGA cohort, the levels of miR‑34a were lower in T3 and T4 tumor stages, compared with the level in the T1 stage, and low levels of miR‑34a predicted significantly longer survival rates in patients with GC (P<0.05). miR‑34a also attenuated the proliferation ability, and inhibited the colony formation and cell invasion abilities of the cells (P<0.01). A negative correlation was observed between miR‑34a and MET in gastric cancer (P<0.01; r=‑0.9526), and >60% of cases exhibited consistent expression of miR‑34a and MET in gastric cancer (P<0.01). In conclusion, miR‑34a was associated with the clinicopathological features of gastric cancer and was a valuable predictor of patient prognosis. miR‑34a acted as a tumor suppressor to inhibit gastric cancer proliferation and invasion via the downregulation of MET.
Collapse
Affiliation(s)
- Bin Wei
- Department of Gastroenterology and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Qiao Ying Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Shun Rong Huang
- Department of Gastroenterology and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Wei Mai
- Department of Gastroenterology and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Xiao Gang Zhong
- Department of Gastroenterology and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
49
|
microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer 2015; 15:469. [PMID: 26077733 PMCID: PMC4477414 DOI: 10.1186/s12885-015-1359-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/23/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Extrahepatic Cholangiocarcinoma (EHCC) is one of the uncommon malignancies in the digestive system which is characterized by a poor prognosis. Aberrations of miRNAs have been shown involved in the progression of this disease. In this study, we evaluated the expression and effects of miR-34a on EHCC. METHODS miR-34a expression levels were detected in EHCC tissues, adjacent non-tumor tissues, normal bile duct (NBD) specimens of patients and cholangiocarcinoma (CC) cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Relationships between miR-34a with clinical characteristics of EHCC patients were further analyzed. Computational search, functional luciferase assay and western blot were further used to demonstrate the downstream target of miR-34a in CC cells. Immunohistochemistry was carried on to identify the downstream target gene of miR-34a in EHCC patients. Cell morphology, invasion and migration assays were further applied to confirm the anti-carcinogenic effects of miR-34a through the downstream target. RESULTS miR-34a expression was significantly decreased in human EHCC tissues and CC cell lines when compared with the adjacent non-tumor tissues and normal bile duct tissues. miR-34a was found correlated with the migration and invasion in EHCC patients. Smad4 was over-expressed in most of the EHCC patients and was further demonstrated as one of the downstream targets of miR-34a, which was involved in the progression of EHCC. Moreover, activation of miR-34a suppressed invasion and migration through TGF-beta/Smad4 signaling pathway by epithelial-mesenchymal transition (EMT) in vitro. CONCLUSIONS Taken together, our results suggest that miR-34a inhibits invasion and migration by targeting Smad4 to suppress EMT through TGF- beta/Smad signaling pathway in human EHCC.
Collapse
|
50
|
Geng D, Song X, Ning F, Song Q, Yin H. MiR-34a Inhibits Viability and Invasion of Human Papillomavirus-Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin. Int J Gynecol Cancer 2015; 25:707-13. [PMID: 25675046 DOI: 10.1097/igc.0000000000000399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells. METHODS MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells. RESULTS The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells. CONCLUSIONS This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.
Collapse
Affiliation(s)
- Dianzhong Geng
- *Department of Oncology, Binzhou Medical University Hospital; †Department of Obstetrics and Gynecology, Binzhou People's Hospital; and ‡Department of Obstetrics and Gynecology, Zouping Maternal and Child Health-Care Hospital, Shandong, China
| | | | | | | | | |
Collapse
|