1
|
Song J, Li W, Gao L, Yan Q, Zhang X, Liu M, Zhou S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun Biol 2024; 7:1604. [PMID: 39623057 PMCID: PMC11612435 DOI: 10.1038/s42003-024-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Juvenile hormone (JH) represses insect metamorphosis and stimulates reproduction. JH titers are generally low in juveniles, drop to a nadir during metamorphosis, increase after eclosion and peak in vitellogenic phase. We found that Jhamt, a rate-limiting enzyme in JH biosynthesis, mirrors JH titer patterns in the migratory locust. Knocking down Jhamt reduced JH titers, led to precocious nymphal ecdysis, metamorphosis and impaired vitellogenesis. Jhamt is negatively regulated by miR-276 and positively by miR-182013-5p. miR-276 is abundant in late nymphal but low in adults, while miR-182013-5p shows the opposite pattern. In nymphs, miR-276 binds more to Jhamt, while in adults, miR-182013-5p dominates. Functionally, miR-276 reduced Jhamt and JH levels, shortening nymphal development and inhibiting Vg expression. Conversely, miR-182013-5p increased Jhamt and JH levels, prolonging nymphal development and enhancing Vg expression. Our findings identify miR-276 and miR-182013-5p as dual regulators in JH biosynthesis, acting as "brake" and "accelerator," respectively. This study provides new insights into JH titer fluctuations and miRNA regulation in insect metamorphosis and reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wanwan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Lulu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingzhi Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
3
|
Mitrovic K, Zivotic I, Kolic I, Zakula J, Zivkovic M, Stankovic A, Jovanovic I. A preliminary study of the miRNA restitution effect on CNV-induced miRNA downregulation in CAKUT. BMC Genomics 2024; 25:218. [PMID: 38413914 PMCID: PMC10900603 DOI: 10.1186/s12864-024-10121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The majority of CAKUT-associated CNVs overlap at least one miRNA gene, thus affecting the cellular levels of the corresponding miRNA. We aimed to investigate the potency of restitution of CNV-affected miRNA levels to remediate the dysregulated expression of target genes involved in kidney physiology and development in vitro. METHODS Heterozygous MIR484 knockout HEK293 and homozygous MIR185 knockout HEK293 cell lines were used as models depicting the deletion of the frequently affected miRNA genes by CAKUT-associated CNVs. After treatment with the corresponding miRNA mimics, the levels of the target genes have been compared to the non-targeting control treatment. For both investigated miRNAs, MDM2 and PKD1 were evaluated as common targets, while additional 3 genes were investigated as targets of each individual miRNA (NOTCH3, FIS1 and APAF1 as hsa-miR-484 targets and RHOA, ATF6 and CDC42 as hsa-miR-185-5p targets). RESULTS Restitution of the corresponding miRNA levels in both knockout cell lines has induced a change in the mRNA levels of certain candidate target genes, thus confirming the potential to alleviate the CNV effect on miRNA expression. Intriguingly, HEK293 WT treatment with investigated miRNA mimics has triggered a more pronounced effect, thus suggesting the importance of miRNA interplay in different genomic contexts. CONCLUSIONS Dysregulation of multiple mRNA targets mediated by CNV-affected miRNAs could represent the underlying mechanism behind the unresolved CAKUT occurrence and phenotypic variability observed in CAKUT patients. Characterizing miRNAs located in CNVs and their potential to become molecular targets could eventually help in understanding and improving the management of CAKUT.
Collapse
Affiliation(s)
- Kristina Mitrovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Zivotic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivana Kolic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Jelena Zakula
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Jovanovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia.
| |
Collapse
|
4
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
6
|
Hosokawa R, Yoshino Y, Funahashi Y, Horiuchi F, Iga JI, Ueno SI. MiR-15b-5p Expression in the Peripheral Blood: A Potential Diagnostic Biomarker of Autism Spectrum Disorder. Brain Sci 2022; 13:brainsci13010027. [PMID: 36672009 PMCID: PMC9855964 DOI: 10.3390/brainsci13010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), is a neurodevelopmental disorder that is known to have a high degree of heritability. Diagnosis of ASD is difficult because of the high heterogeneity of the clinical symptoms. MicroRNAs (miRNAs) can potentially be diagnostic biomarkers for ASD, and several studies have shown the relationship between miRNAs and ASD pathogenesis. In this study, we investigated ten miRNA and mRNA expression of target genes in peripheral blood to explore a diagnostic biomarker for ASD. METHODS We recruited control and ASD subjects for the discovery cohort (n = 6, each) and replication cohort (n = 20, each). Using qPCR, miRNA and mRNA expression was measured using the SYBR green and probe methods, respectively. In-silico prediction was used for identifying target genes of miRNAs. An in vitro experiment using HEK293 cells was conducted to investigate whether miR-15b-5p modulates the predicted target genes (TGFBR3 and MYBL1). RESULTS miR-15b-5p expression indicated an increased trend in the discovery cohort (p = 0.052) and a significant upregulation in the replication cohort (p = 0.021). In-silico analysis revealed that miR-15b-5p is relevant to cell development and Wnt signaling. The decreased trends of TGFBR3 and MYBL expression were the same as in previous RNA-seq data. MiR-15b-5p positively regulated TGFBR3 expression in in vitro experiments. CONCLUSIONS Upregulated miR-15b-5p expression may represent a useful diagnostic marker of ASD subjects, and it may regulate TGFBR3 mRNA expression. These findings indicate a new perspective in the understanding of the pathogenesis of ASD.
Collapse
Affiliation(s)
- Rie Hosokawa
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Fumie Horiuchi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Center for Child Health, Behavior and Development, Ehime University Hospital, Toon 791-0295, Ehime, Japan
| | - Jun-ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Correspondence: ; Tel.: +81-89-960-5315; Fax: +81-89-960-5317
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
7
|
PmiRtarbase: a positive miRNA-target regulations database. Comput Biol Chem 2022; 98:107690. [DOI: 10.1016/j.compbiolchem.2022.107690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
8
|
Li F, Wu H, Zou G, Cang D, Shen Y. Circular RNA_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via regulation of microRNA-145/CBFB axis. Bioengineered 2021; 12:1952-1963. [PMID: 34027799 PMCID: PMC8806255 DOI: 10.1080/21655979.2021.1921553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis poses a threat to human health worldwide. To date, there have been few studies regarding targeted treatment of osteoporosis. We aimed to identify the possible molecular mechanism of circular RNA (circ)_0062582 in osteogenic differentiation, and the interactions among circ_0062582, microRNA-145 (miR-145) and core-binding factor subunit β (CBFB). The proliferation of human bone marrow mesenchymal stem cells (hBMSCs) was tested with a cell counting kit-8 assay. Circ_0062582, miR-145 and CBFB were overexpressed by transient transfection. Dual-luciferase reporter assay system was used to analyze the combination among circ_0062582, miR-145 and CBFB. Additionally, the levels of circ_0062582, miR-145, CBFB, osterix (OSX), osteocalcin (OCN) and collagen type 1 (COL1) were detected by means of RT-qPCR or western blot analysis. Alkaline phosphatase and Alizarin red stainings were performed to analyze the degree of osteogenic differentiation under the control of circ_0062582, miR-145 and CBFB. The results demonstrated that circ_0062582 level was notably elvated during osteogenic differentiation of hBMSCs. Circ_0062582 overexpression significantly promoted osteogenic differentiation and upregulated the levels of osteogenic differentiation-related proteins, including OSX, OCN and COL1. In addition, miR-145, which was identified as the target gene of circ_0062582, could specifically target CBFB 3′-UTR regions. Next, these changes caused by the overexpression of circ_0062582 were reversed following the addition of miR-145 mimic. Following overexpression of CBFB, osteogenic differentiation was increased. In summary, these results demonstrated that the role of circ_0062582 in osteoporosis is mediated through regulating the expression level of CBFB via miR-145.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R.China.,Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Hao Wu
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Guoyou Zou
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Dingwei Cang
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R.China
| |
Collapse
|
9
|
Role of MicroRNAs in Human Osteosarcoma: Future Perspectives. Biomedicines 2021; 9:biomedicines9050463. [PMID: 33922820 PMCID: PMC8146779 DOI: 10.3390/biomedicines9050463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a rare form of cancer with high death rate but is one of the most frequent forms of bone cancer in children and adolescents. MiRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could allow us to obtain an earlier diagnosis, predict prognosis and chemoresistance, and lead to the discovery of new treatments in different types of tumors, including OS. Despite the fact that there is currently only one clinical trial being carried out on a single miRNA for solid tumors, it is very probable that the number of clinical trials including miRNAs as prognostic and diagnostic biomarkers, as well as potential therapeutic targets, will increase in the near future. This review summarizes the different miRNAs related to OS and their possible therapeutic application.
Collapse
|
10
|
Wang W, Li Y, Zhi S, Li J, Miao J, Ding Z, Peng Y, Huang Y, Zheng R, Yu H, Qi P, Wang J, Fu X, Hu M, Chen S. LncRNA-ROR/microRNA-185-3p/YAP1 axis exerts function in biological characteristics of osteosarcoma cells. Genomics 2020; 113:450-461. [PMID: 32898639 DOI: 10.1016/j.ygeno.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
AIM The co-expression network of long non-coding RNA ROR (lncRNA-ROR) and microRNA-185-3p (miR-185-3p) has not been focused on osteosarcoma. Therein, this work was initiated to uncover lncRNA-ROR and miR-185-3p functions in osteosarcoma. METHODS LncRNA-ROR, miR-185-3p and Yes-associated protein 1 (YAP1) expression in osteosarcoma tissues and cells were detected. The screened cells (MG63 and U2OS) were transfected with decreased and/or increased lncRNA-ROR and miR-185-3p to explore osteosarcoma progression. Tumor growth was detected by tumor xenografts in mice. RESULTS Up-regulated lncRNA-ROR and YAP1 and down-regulated miR-185-3p were found in osteosarcoma. LncRNA ROR knockdown or miR-185-3p overexpression inhibited osteosarcoma cell progression while lncRNA ROR elevation or miR-185-3p inhibition presented the opposite effects. Function of lncRNA ROR was rescued by miR-185-3p and regulated the growth and metastasis of osteosarcoma cells via modulating YAP1, the target gene of miR-185-3p. CONCLUSION This work illustrates that lncRNA-ROR down-regulation or miR-185-3p up-regulation inhibits osteosarcoma progression via YAP1 repression.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yuezhan Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women & Children's Hospital, Ningbo 315000, Zhejiang, China
| | - Jinsong Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jinglei Miao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yi Peng
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha 410013, Hunan, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha 410013, Hunan, China
| | - Pei Qi
- Department of pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xingchang Fu
- Department of Orthopedics, Hunan Aerospace hospital, Changsha 410205, Hunan, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
The role and clinical significance of long noncoding RNA zinc finger E-box-binding homeobox two antisense RNA 1 in promoting osteosarcoma cancer cell proliferation, inhibiting apoptosis and increasing migration by regulating miR-145. Anticancer Drugs 2020; 32:168-177. [PMID: 32826416 DOI: 10.1097/cad.0000000000000984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We aimed to investigate the expression level of long noncoding RNA (lncRNA) zinc finger E-box-binding homeobox two antisense RNA 1 (ZEB2-AS1) in osteosarcoma and explore its possible regulatory mechanisms. Expression of lncRNA ZEB2-AS1 was detected by quantitative real-time PCR in 63 cancerous tissues and 25 adjacent normal mucosal tissues from patients with osteosarcoma. The correlation between the lncRNA ZEB2-AS1 level and clinicopathological characteristics of the osteosarcoma patients were evaluated, and 5-year overall survival (5OS) was also analyzed according to lncRNA ZEB2-AS1 expression. The ZEB2-AS1 and miR-145 recombinant expression vector was used to analyze their relationship in an in vitro cell system. Luciferase reporter gene assays and RNA immunoprecipitation assays were used to verify the interaction between ZEB2-AS1 and miR-145. The proliferation, apoptosis and migration of osteosarcoma cells were determined by Cell counting kit-8 assays, Annexin V-PI assays and transwell assays, respectively. A significantly increased level of lncRNA ZEB2-AS1 with a fold change of 3.86 was found in osteosarcoma tissues compared with control tissues (P < 0.001). The Chi-square test revealed that lncRNA ZEB2-AS1 expression in osteosarcoma was significantly different according to radiology classification (P = 0.018), TNM stage (P = 0.000) and survival status (P = 0.005). The 5OS was 18.4% and 52% in osteosarcoma patients with higher and lower lncRNA ZEB2-AS1 expression, respectively. Significantly increased ZEB2-AS1 expression was found in osteosarcoma cells, while decreased levels of miR-145 were confirmed in osteosarcoma tissues and cell lines compared to controls. Moreover, a negative correlation was found between the expression level of ZEB2-AS1 and miR-145 in osteosarcoma tissues (R2 = 0.71, P < 0.01). ZEB2-AS1 knockdown resulted in decreased osteosarcoma cell proliferation, increased apoptosis and reduced migration. In addition, negative regulation of miR-145 by ZEB2-AS1 in osteosarcoma cells was also observed, and the effects of ZEB2-AS1 on osteosarcoma cells were found to be regulated by miR-145. Significantly upregulated lncRNA ZEB2-AS1 expression in osteosarcoma patients influences the prognosis of patients, and ZEB2-AS1 accelerates tumorigenesis and osteosarcoma development by downregulating miR-145.
Collapse
|
12
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
13
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
14
|
Shahbazi R, Baradaran B, Khordadmehr M, Safaei S, Baghbanzadeh A, Jigari F, Ezzati H. Targeting ROCK signaling in health, malignant and non-malignant diseases. Immunol Lett 2020; 219:15-26. [PMID: 31904392 DOI: 10.1016/j.imlet.2019.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A Rho-associated coiled-coil kinase (ROCK) is identified as a critical downstream effector of GTPase RhoA which contains two isoforms, ROCK1 (also known as p160ROCK and ROKβ) and ROCK2 (also known as Rho-kinase and ROKα), the gene of which is placed on chromosomes 18 (18q11.1) and 2 (2p24), respectively. ROCKs have a principal function in the generation of actin-myosin contractility and regulation of actin cytoskeleton dynamics. They represent a chief role in regulating various cellular functions, such as apoptosis, growth, migration, and metabolism through modulation of cytoskeletal actin synthesis, and cellular contraction through phosphorylation of numerous downstream targets. Emerging evidence has indicated that ROCKs present a significant function in cardiac physiology. Of note, dysregulation of ROCKs involves in several cardiac pathological processes like cardiac hypertrophy, cardiac fibrosis, systemic blood pressure disorder, and pulmonary hypertension. Moreover, ROCKs, in addition to their role in regulating renal arteriolar contraction, glomerular blood flow, and filtration, can also play a role in controlling podocytes, tubular cells, and mesangial cell structure and function. Hyperactivity disorder and over-gene expression of Rho/ROCK have been indicated in different cancers. Furthermore, it seems that increasing the expression of mRNA or ROCK protein has an undesirable effect on patient survival and has a positive impact on the progression and worsening of disease prognosis. This review focuses on the physiological and pathological functions of ROCKs with a particular view on its possible value of ROCK inhibitors as a new therapy in cancers and non-cancer diseases.
Collapse
Affiliation(s)
- Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Farinaz Jigari
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
15
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Su Q, Zhang P, Yu D, Wu Z, Li D, Shen F, Liao P, Yin G. Upregulation of miR-93 and inhibition of LIMK1 improve ventricular remodeling and alleviate cardiac dysfunction in rats with chronic heart failure by inhibiting RhoA/ROCK signaling pathway activation. Aging (Albany NY) 2019; 11:7570-7586. [PMID: 31541994 PMCID: PMC6782012 DOI: 10.18632/aging.102272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
Objective: There are some researches about the role of microRNA (miRNA) in chronic heart failure (CHF) were performed, but the study about miR-93’s function in CHF is scarcely investigated. Thus, we determined to probe into the effects of miR-93 in rats with CHF by targeting LIMK1 through regulating RhoA/ROCK pathway. Results: We found increased LIMK1 and decreased miR-93 in CHF rats, and up-regulation of miR-93 inhibited LIMK1, RhoA and ROCK1 expression in CHF rats. Up-regulation of miR-93 or inhibition of LIMK1 decreased oxidative stress, inflammatory factors, as well as apoptosis-related indicators in CHF rats. LIMK1 was confirmed as a direct target gene of miR-93. Conclusion: Our study provides evidence that upregulated miR-93 and downregulated LIMK1 improve ventricular remodeling and reduce cardiac dysfunction in CHF rats by inhibiting RhoA/ROCK signaling pathway activation. Methods: First, rat models of CHF were established by aortic coarctation, and the rats were injected with miR-93 mimics, LIMK1-siRNA or overexpressed-LIMK1. Then expression of miR-93, LIMK1, RhoA, and ROCK1 expression in myocardial tissues were detected, after which indices of cardiac ultrasound, hemodynamics, and oxidative stress, inflammatory factors, apoptosis-related indicators were detected via a series of assays. Finally, the targeting relationship of miR-93 and LIMK1 was verified.
Collapse
Affiliation(s)
- Qian Su
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Peng Zhang
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Dong Yu
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Zhaodi Wu
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Dandan Li
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Fangfang Shen
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Pengfei Liao
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| | - Guizhi Yin
- Cardiovascular Department, Minhang Hospital, Fudan University, Shanghai 201199, P.R.China
| |
Collapse
|
17
|
Ding W, Wu D, Ji F, Zhang H. Inhibition of long non-coding RNA-AWPPH decreases osteosarcoma cell proliferation, migration and invasion. Oncol Lett 2019; 18:5055-5062. [PMID: 31612016 PMCID: PMC6781783 DOI: 10.3892/ol.2019.10898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a crucial role in various types of cancer. The lncRNA AWPPH has been reported to promote hepatocellular carcinoma and bladder cancer progression. However, to the best of our knowledge, the biological roles of AWPPH in osteosarcoma (OS) remain unclear. In the present study, the levels of AWPPH in OS tissues and cell lines were determined by reverse transcription-quantitative polymerase chain reaction. An MTT assay was used to detect OS cell proliferation. The levels of proteins associated with the PI3K/Akt signaling pathway and apoptosis were determined by western blotting. Wound-healing and Transwell assays were conducted to determine cell migration and invasion, respectively. The results demonstrated that AWPPH was highly expressed in OS tissues and cells. Functional analyses revealed that AWPPH depletion significantly inhibited OS cell proliferation and migration, and promoted OS cell apoptosis. Furthermore, AWPPH downregulation significantly inhibited the PI3K/AKT pathway. The present study demonstrated that AWPPH was highly expressed in OS, and that AWPPH promoted OS cell proliferation and migration, and inhibited OS cell apoptosis, which may be mediated by PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Wenbin Ding
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Dajiang Wu
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Fang Ji
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hao Zhang
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
18
|
Zhang C, Wan J, Long F, Liu Q, He H. Identification and validation of microRNAs and their targets expressed in osteosarcoma. Oncol Lett 2019; 18:5628-5636. [PMID: 31656545 DOI: 10.3892/ol.2019.10864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of bone cancer in children and adolescents, and has a poor prognosis. Previous studies have demonstrated that a number of microRNAs (miRNAs) were deregulated in OS, and that the expression of certain miRNAs was correlated with the stage of OS. Therefore, miRNAs may serve a role as a diagnostic and prognostic biomarker of OS. miRNA and mRNA integrated analysis of public expression profiles in the Gene Expression Omnibus database for OS was performed, and the regulated targets of miRNA in OS were predicted. Next, the regulatory network of miRNAs/genes was constructed and verified by reverse transcription-quantitative polymerase chain reaction in tissues and MG-63 cell lines. Two miRNA expression profiling studies and four eligible mRNA expression profiling studies were selected. Ten upregulated miRNAs, 5 downregulated miRNAs and 5 DGEs were identified in OS compared with normal tissues. hsa-miR-346 was inversely correlated with the target gene c-FLIP, which was consistent with the results of integrated analysis. In vitro, pre-miRNA-346 can downregulate the protein expression of c-FLIP, while not changing the mRNA level of c-FLIP. In the regulatory network, hsa-miR-346 and its target gene, c-FLIP, can be used as biomarkers for an earlier diagnosis of OS.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Long
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
20
|
Jian M, Du Q, Zhu D, Mao Z, Wang X, Feng Y, Xiao Z, Wang H, Zhu Y. Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1. J Endocrinol Invest 2019; 42:639-652. [PMID: 30370446 DOI: 10.1007/s40618-018-0963-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/01/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE Prolactinoma is the most commonly seen secretory tumor of pituitary glands, which accounts for approximately up to 40% of total pituitary adenomas. Due to its high drug resistance, dopamine agonist, such as bromocriptine, has limited effect on the treatment of patients with prolactinoma. Recent discoveries have revealed that multiple miRNAs were involved in regulating drug resistance. In this research, we explored the relationship between miR-145-5p expression as well as bromocriptine sensitivity both in vitro and in vivo. METHODS To study the role of miR-145-5p in drug resistance of prolactinoma, the expression levels of miR-145-5p in bromocriptine-resistant prolactinoma cell line MMQ/BRC and its parental cell line MMQ cells, 24 bromocriptine-resistant as well as eight sensitive clinical samples were measured by qRT-PCR. Moreover, CCK8, flow cytometry and immunofluorescence were performed to identify the biological characteristics of MMQ/BRC and MMQ. TPT1 was predicted as a direct target gene of miR-145-5p by bioinformatic methods. In addition, qRT-PCR, western blot and immunohistochemistry were used to detect the expression level of TPT1 in clinical specimens and cell lines. Xenograft mouse model was constructed to analyze whether miR-145-5p could reverse bromocriptine resistance in prolactinoma in vivo. RESULTS In our study, bromocriptine-resistant prolactinoma clinical samples and cell line had decreased miR-145-5p levels and expressed high levels of TPT1 compared with their sensitive counterparts. Bioinformatic methods and our preliminary dual luciferase reporter assay were utilized to elucidate that TPT1 was a direct target gene of miR-145-5p. Furthermore, introducing miR-145-5p mimic into MMQ cells led to a decrease of IC50 along with upregulation of TPT1; nevertheless, transfecting the corresponding inhibitor into MMQ cells resulted in an upregulation of IC50 as well as reduction of TPT1. CONCLUSIONS Collectively, our findings elucidated the role of miR-145-5p as an important regulator of drug resistance in prolactinoma by controlling TPT1, and implicated the potential application of miR-145-5p in cancer therapy as well.
Collapse
Affiliation(s)
- M Jian
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Du
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Wang
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Y Feng
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
21
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
22
|
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Zarpou S, Bagheri A. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120:12141-12155. [PMID: 30957271 DOI: 10.1002/jcb.28663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.
Collapse
Affiliation(s)
- Vahid Akbari Kordkheyli
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar Tarsi
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad A Mishan
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Setareh Zarpou
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Chen S, Liu Z, Lu S, Hu B. EPEL promotes the migration and invasion of osteosarcoma cells by upregulating ROCK1. Oncol Lett 2019; 17:3133-3140. [PMID: 30867743 PMCID: PMC6396117 DOI: 10.3892/ol.2019.9975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
E2F-mediated cell proliferation enhancing long non-coding RNA (lncRNA) (EPEL) is a newly identified lncRNA involved in the regulation of lung cancer cell proliferation. However, its association with other types of cancer is unknown. The present study recruited patients with osteosarcoma and healthy controls. Tumor and adjacent healthy tissues were obtained from patients with osteosarcoma, and whole blood was extracted from patients and healthy controls. The expression levels of EPEL in tissues were detected by reverse transcription-quantitative polymerase chain reaction. The diagnostic value of serum EPEL for osteosarcoma was evaluated by receiver operating characteristic curve analysis. The association between serum levels of EPEL and basic clinical patient information was analyzed by χ2 test. Subsequently, EPEL overexpression in osteosarcoma cell lines was established, and its effects on cell migration and invasion were explored by Transwell assay. The implications of EPEL overexpression on Rho-associated coiled-coil containing protein kinase 1 (ROCK1) expression were investigated by western blotting. The results revealed that EPEL was upregulated in tumor tissues compared with adjacent tissues. In addition, serum levels of EPEL were higher in patients with osteosarcoma compared with healthy controls, and were positively associated with distant tumor metastasis. Furthermore, EPEL overexpression promoted the migration and invasion of osteosarcoma cells and induced overexpression of ROCK1. In conclusion, these results suggested that EPEL may promote the migration and invasion of osteosarcoma cells by upregulating ROCK1.
Collapse
Affiliation(s)
- Shunguang Chen
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Zhengjie Liu
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Shengjun Lu
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Biao Hu
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
24
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
25
|
Du Z, Li F, Wang L, Huang H, Xu S. Regulatory effects of microRNA‑184 on osteosarcoma via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:1917-1924. [PMID: 29916553 PMCID: PMC6072159 DOI: 10.3892/mmr.2018.9184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miRNA/miR)‑184 in osteosarcoma growth, development and metastasis, and the effects of miRNA‑184 on the proliferation, invasion and metastasis of osteosarcoma cells and associated mechanisms. In vitro, miR‑184 was transfected into U‑2OS cells and 143B cells. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect the expression of miR‑184. MTT was utilized to detect cell proliferation. A Transwell assay was applied to detect cell invasiveness. In vivo, an osteosarcoma tibial orthotopic metastatic tumor model was established, and western blotting and RT‑qPCR were used to detect the expression of Wnt and β‑catenin. Following the overexpression of miR‑184, the proliferation and cell invasion ability were significantly increased in U‑2OS and 143B cells. Following inhibition of miR‑184, cell proliferation and cell invasion ability were significantly decreased. In nude mice, tumor volume significantly increased following overexpression of miR‑184, and Wnt and phosphorylated β‑catenin levels were significantly increased. Following miR‑184 inhibition, tumor volume was significantly decreased, and Wnt and phosphorylated β‑catenin levels were significantly decreased. The results of the present study indicated that the Wnt/β‑catenin signaling pathway serves a key function in the mechanism of osteosarcoma. Inhibition of miRNA‑184 may reduce tumor volume of osteosarcoma via regulation of the Wnt/β‑catenin signaling pathway and may provide a novel strategy for the future diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhenguang Du
- Department of Orthopedics, The People's Hospital of Liaoning, Shenyang, Liaoning 110016, P.R. China
| | - Fusheng Li
- Department of Orthopedics, The People's Hospital of Liaoning, Shenyang, Liaoning 110016, P.R. China
| | - Liangliang Wang
- Department of Orthopedics, The People's Hospital of Liaoning, Shenyang, Liaoning 110016, P.R. China
| | - Hai Huang
- Department of Orthopedics, The People's Hospital of Liaoning, Shenyang, Liaoning 110016, P.R. China
| | - Shaonian Xu
- Department of Orthopedics, The People's Hospital of Liaoning, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
26
|
MicroRNA-145 alleviates high glucose-induced proliferation and migration of vascular smooth muscle cells through targeting ROCK1. Biomed Pharmacother 2018; 99:81-86. [DOI: 10.1016/j.biopha.2018.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
|
27
|
Liu J, Huang L, Su P, Song T, Zhang W, Fan J, Liu Y. MicroRNA-499a-5p inhibits osteosarcoma cell proliferation and differentiation by targeting protein phosphatase 1D through protein kinase B/glycogen synthase kinase 3β signaling. Oncol Lett 2018; 15:4113-4120. [PMID: 29556286 PMCID: PMC5844143 DOI: 10.3892/ol.2018.7814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
A number of studies have attempted to elucidate the association between mircoRNAs (miRNAs/miRs) and cancer-associated processes. The aim of the present study was to determine how miR-499a-5p intervenes in human osteosarcoma cell proliferation and differentiation. The cancerous tissues and adjacent non-cancerous tissues of 62 patients with osteosarcoma (OS) were collected. miRNA microarray analysis revealed that 29 miRNAs were upregulated while 26 were downregulated, among which miR-499a-5p expression was the most decreased. Western blot analysis and reverse transcription-quantitative polymerase chain reaction demonstrated that the mRNA and protein expression of miR-499a-5p was lower, while that of protein phosphatase 1D (PPM1D) was higher in OS tissues compared with expression levels in normal tissues. Furthermore, miR-499a-5p expression was markedly decreased in the metastatic tumors and in those at stage III+IV compared with the non-metastatic tumors and those at stage I, respectively. In addition, following transfection of the human OS MG-63 cell line with an miR-499a-5p mimic, the expression of miR-499a-5p was elevated while the protein and mRNA expression of PPM1D was decreased. When combining these findings with the information obtained from the Targetscan predictive software, it was confirmed that PPM1D was targeted by miR-499a-5p. In MG-63 cells transfected with an miR-499a-5p mimic, PPM1D-associated downstream proteins phosphorylated protein kinase B (p-Akt) and phosphorylated glycogen synthase kinase 3β (p-GSK-3β) were significantly downregulated compared with the negative control (NC) group, while the expression of p-Akt and p-GSK-3β were significantly elevated in the tumor tissues compared with the adjacent non-tumor tissues. Simultaneously, the growth and proliferation activity of MG-63 cells were notably reduced when transfected with the miR-499a-5p mimic, compared with the NC group. Therefore, it may be concluded that miR-499a-5p suppresses OS cell proliferation and differentiation by targeting PPM1D through modulation of Akt/GSK-3β signaling.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand and Foot Surgery and Reparative and Reconstructive Surgery, Orthopedic Hospital of The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lei Huang
- Department of Burns, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pengxiao Su
- Department of Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Tao Song
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Wentao Zhang
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jinzhu Fan
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yang Liu
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
28
|
Hou R, Wang D, Lu J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol Lett 2017; 13:5009-5015. [PMID: 28599502 DOI: 10.3892/ol.2017.6033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are deregulated in numerous types of human cancers and have crucial roles in the carcinogenesis and progression of human cancers. MicroRNA-10b (miR-10b) has been studied in several types of human cancer. However, the expression and roles of miR-10b in cervical cancer remain unknown. In the present study, the expression, functions and molecular mechanisms of miR-10b were explored in cervical cancer. The present data revealed that miR-10b was significantly downregulated in cervical cancer tissues and cell lines. In addition, miR-10b overexpression inhibited the proliferation, migration and invasion of cervical cancer cells, while miR-10b under-expression had the opposite effect. Based on bioinformatics analysis, a luciferase reporter assay and western blot analysis, insulin-like growth factor-1 receptor (IGF-1R) was identified as a direct target of miR-10b in cervical cancer. In addition, IGF-1R small interfering RNA-mediated knockdown of IGF-1R also inhibited the proliferation, migration and invasion of the cervical cancer cells. In conclusion, the present study demonstrated that miR-10b serves an important role in cervical cancer progression by targeting IGF-1R.
Collapse
Affiliation(s)
- Ren Hou
- Department of Gynecology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Daixian Wang
- Department of Orthopedics, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Jian Lu
- Department of Orthopedics, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
29
|
Zhang M, Wang D, Zhu T, Yin R. miR-214-5p Targets ROCK1 and Suppresses Proliferation and Invasion of Human Osteosarcoma Cells. Oncol Res 2017; 25:75-81. [PMID: 28081735 PMCID: PMC7840756 DOI: 10.3727/096504016x14719078133401] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small conserved RNAs regulating specific target genes in posttranscriptional levels. They have been involved in multiple processes of tumor progression, including cell proliferation. miR-214-5p (also miR-214*) is a newly identified miRNA, and its functions are largely unknown. In this study, we explore the role of miR-214-5p in the proliferation and invasion of human osteosarcoma (OS) cells. The results showed that miR-214-5p was sharply reduced in OS tissues and cell lines, compared with normal tissues and cell lines. In addition, the miR-214-5p mimic greatly increased the miR-214-5p level and significantly decreased the proliferation and invasion of HOS and G293 OS cells. In contrast, the miR-214-5p inhibitor had a completely opposite effect on the miR-214-5p level, cell proliferation, and cell invasion. Moreover, bioinformatics and luciferase reporter gene assays confirmed that miR-1908 targeted the mRNA 3'-UTR region of ROCK1, a characterized tumor promoter in OS. In conclusion, miR-214-5p was identified as a new tumor suppressor, which directly targeted ROCK1 and suppressed proliferation of human OS cells.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopaedics, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| | - Dapeng Wang
- Department of Orthopaedics, Si-ping Central HospitalSipingP.R. China
| | - Tongtong Zhu
- Department of Orthopaedics, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| | - Ruofeng Yin
- Department of Orthopaedics, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| |
Collapse
|
30
|
Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma. Cancer Gene Ther 2017; 24:83-88. [PMID: 28186090 DOI: 10.1038/cgt.2017.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
Metastasis is the principal cause of cancer death and occurs through multiple, complex processes. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. MicroRNAs (miRNAs) are a class of widespread noncoding RNAs. In recent years, many studies have shown that miRNAs could influence the signaling pathways and downstream events that define EMT on a molecular level. However, the exact role and mechanisms of miR-145 in EMT of osteosarcoma (OS) was unknown. In the present study, miR-145 was downregulated in OS tissues and cell lines and it was shown that miR-145 expression was closely correlated with advanced tumor progression in patients of OS. In addition, miR-145 upregulation by miR-145 agomir significantly inhibited MG63 cells invasion and migration ability. MiR-145 was reported to be able to inhibit EMT in cancers. Following the examination of changes in cell epithelial and mesenchymal markers, it was found that upregulation of miR-145 strongly reversed EMT in MG63 cells. Meanwhile, the expression of Snail, a strong E-cadherin transcription repressor was also attenuated by miR-145 agomir. Furthermore, the decreased EMT and invasion and metastasis caused by miR-145 agomir could be restored by Snail siRNA. In conclusion, the results demonstrated that miR-145 could mediate EMT by targeting Snail and miR-145 might be a novel EMT regulating transcription factor that involved in the progression of OS. The specific drugs targeting miR-145-mediated EMT process might be new promising cancer therapies.
Collapse
|
31
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
32
|
Jia J, Zhou H, Zeng X, Feng S. Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells. Mol Med Rep 2017; 15:1539-1546. [PMID: 28260003 PMCID: PMC5364970 DOI: 10.3892/mmr.2017.6168] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Osteoprotegerin (OPG) is implicated in the pathogenesis of postmenopausal osteoporosis, and other metabolic bone diseases caused by estrogen deficiency. Previous studies have demonstrated that estrogen may stimulate OPG expression in osteoblast cells at the transcriptional level; however, whether estrogen can regulate OPG expression at a post-transcriptional level remains elusive. The present study aimed to investigate the role of microRNA (miRNA) in estrogen-mediated OPG production in human osteoblast-like MG-63 cells. The results from ELISA, western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed that estrogen may upregulate OPG expression. Mechanistic studies indicated that estrogen increased the activity of a luciferase reporter harboring the OPG 3′-untranslated region (3′-UTR). Bioinformatics analysis demonstrated that there is a potential targeting site in the OPG 3′-UTR for miRNA (miR)-145, which is associated with osteoblast differentiation. The results of an RT-qPCR suggested that estrogen suppressed miR-145 expression. In addition, dual-luciferase assay, RT-qPCR and western blot analysis indicated that miR-145 directly targets and negatively regulates OPG expression. Furthermore, transfection of cells with miR-145 mimics was able to partially inhibit the induction of OPG expression by estrogen, thus confirming the role of miR-145 in estrogen-mediated OPG induction. Taken together, the results of the present study demonstrated that estrogen may post-transcriptionally regulate OPG expression through suppression of miR-145 expression.
Collapse
Affiliation(s)
- Jun Jia
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiantie Zeng
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
33
|
Lin Y, Ge X, Wen Y, Shi ZM, Chen QD, Wang M, Liu LZ, Jiang BH, Lu Y. MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells. Oncotarget 2016; 7:70857-70868. [PMID: 27765914 PMCID: PMC5342594 DOI: 10.18632/oncotarget.12268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells.
Collapse
Affiliation(s)
- Yong Lin
- Department of Laboratory Medicine, Huashan Hospital of Fudan University, Shanghai, China
- The Department of Clinical Laboratory, Central Laboratory, Jing'an District Centre Hospital of Shanghai, Huashan Hospital of Fudan University Jing'An Branch, Shanghai, China
| | - Xin Ge
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Ninggao Personalized Medicine and Technology Innovation Center, Nanjing, China
| | - Yiyang Wen
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Zhu-Mei Shi
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiu-Dan Chen
- The Department of Clinical Laboratory, Central Laboratory, Jing'an District Centre Hospital of Shanghai, Huashan Hospital of Fudan University Jing'An Branch, Shanghai, China
| | - Min Wang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Seeliger C, Balmayor ER, van Griensven M. miRNAs Related to Skeletal Diseases. Stem Cells Dev 2016; 25:1261-81. [PMID: 27418331 DOI: 10.1089/scd.2016.0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations.
Collapse
Affiliation(s)
- Claudine Seeliger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
35
|
Zhou F, Li Y, Hao Z, Liu X, Chen L, Cao Y, Liang Z, Yuan F, Liu J, Wang J, Zheng Y, Dong D, Bian S, Yang B, Jiang C, Li Q. MicroRNA-300 inhibited glioblastoma progression through ROCK1. Oncotarget 2016; 7:36529-36538. [PMID: 27145462 PMCID: PMC5095018 DOI: 10.18632/oncotarget.9068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/06/2016] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma is a common type of brain aggressive tumors and has a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous and non-coding RNAs that play crucial roles in cell proliferation, survival and invasion. Deregulated expression of miR-300 has been studied in a lot of cancers. However, the role of miR-300 in glioblastoma is still unknown. In this study, we demonstrated that miR-300 expression was downregulated in glioblastoma tissues compared with the normal tissues. Lower expression level of miR-300 was observed in thirty cases (75 %, 30/40) of glioblastoma samples compared with the normal samples. Moreover, the overall survival of glioblastoma patients with lower miR-300 expression level was shorter than those with higher miR-300 expression level. In addition, miR-300 expression was also downregulated in glioblastoma cell lines. Overexpression of miR-300 inhibited cell proliferation, cell cycle and invasion in glioblastoma cell line U87 and U251. Moreover, we identified ROCK1 as a direct target of miR-300 in U87 and U251 cells. Overexpression of ROCK1 partially rescued the miR-300-mediated cell growth. ROCK1 expression levels in glioblastoma tissues were higher than that in normal tissues. ROCK1 expression levels were higher in thirty-one cases of glioblastoma samples than their normal samples. Furthermore, the expression level ROCK1 was inversely correlated with the expression level of miR-300. Importantly, overexpression of miR-300 suppressed glioblastoma progression in an established xenograft model. In conclusion, we revealed that miR-300 might act as a tumor suppressor gene through inhibiting ROCK1 in glioblastoma.
Collapse
Affiliation(s)
- Fucheng Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yang Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zhen Hao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Xuanxi Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Liang Chen
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yu Cao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zuobin Liang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Fei Yuan
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jie Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jianjiao Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yongri Zheng
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Deli Dong
- Harbin Medical University, Harbin 150086, China
| | - Shan Bian
- Institute of Molecular Biology, Austrian Academy of Sciences, Vienna, Austria
| | | | - Chuanlu Jiang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Qingsong Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
36
|
Sang W, Zhu L, Ma J, Lu H, Wang C. Lentivirus-Mediated Knockdown of CTHRC1 Inhibits Osteosarcoma Cell Proliferation and Migration. Cancer Biother Radiopharm 2016; 31:91-8. [PMID: 27043295 DOI: 10.1089/cbr.2014.1758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1), a secreted protein, is transiently expressed in the arterial wall in response to injury, indicating that it may contribute to vascular remodeling by limiting collagen matrix deposition and promoting cell migration. Recent studies showed that it is aberrantly upregulated in most human solid tumors, yet its role in osteosarcoma remains unclear. In this study, the authors investigated the role of CTHRC1 in human osteosarcoma tumorigenesis. The authors used lentivirus-mediated short hairpin RNA (shRNA) against CTHRC1 to limit its endogenous expression in U2OS and SW1353 cells. Interestingly, they found that depletion of CTHRC1 significantly inhibited cell proliferation and colony formation in U2OS and SW1353 cells. Flow cytometry assay showed that knockdown of CTHRC1 increased the cell percentage of G0/G1 phase, resulting in cell cycle arrest in U2OS cells. Moreover, CTHRC1 silencing induced the cell cycle arrest by a decrease in the cell percentage in G0/G1 phase and increased in G2/M phase in SW1353 cells. In addition, crystal violet staining suggested CTHRC1 silencing inhibited migration of U2OS and SW1353 cells. These results demonstrated that CTHRC1 might play an important role in osteosarcoma progression.
Collapse
Affiliation(s)
- Weilin Sang
- The Affiliated First People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Libo Zhu
- The Affiliated First People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Jinzhong Ma
- The Affiliated First People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Haiming Lu
- The Affiliated First People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Cong Wang
- The Affiliated First People's Hospital, Shanghai Jiaotong University , Shanghai, China
| |
Collapse
|
37
|
Wang W, Zhou X, Wei M. MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget 2016; 6:10297-308. [PMID: 25912304 PMCID: PMC4496356 DOI: 10.18632/oncotarget.3305] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/08/2015] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary tumor of bone. MicroRNAs (miRNAs) are a class of endogenously expressed small non-coding RNAs that are strongly implicated in cancerous processes. However, our current understanding of the biological role of miRNAs in OS remains incomplete. In the present study, miR-144 was markedly downregulated in OS cell lines and clinical specimens. Low-level expression of miR-144 was significantly associated with distant metastasis and poor prognosis. Functional studies demonstrated that ectopic expression of miR-144 suppresses tumor cell proliferation and metastasis in vitro as well as in vivo. Furthermore, we identified Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) as direct targets for miR-144 binding, resulting in suppression of their expression. Exogenous expression of ROCK1 or ROCK2 in 143B-miR-144 cells partially restored miR-144-inhibited cell proliferation and invasion. In clinical OS specimens, ROCK1 and ROCK2 levels were elevated, relative to that in paired normal bone tissues, and inversely correlated with miR-144 expression. Taken together, miR-144 suppresses OS progression by directly downregulating ROCK1 and ROCK2 expression, and may be a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xin Zhou
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Min Wei
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
38
|
Chen H, Arsovski AA, Yu K, Wang A. Genome-Wide Investigation Using sRNA-Seq, Degradome-Seq and Transcriptome-Seq Reveals Regulatory Networks of microRNAs and Their Target Genes in Soybean during Soybean mosaic virus Infection. PLoS One 2016; 11:e0150582. [PMID: 26963095 PMCID: PMC4786119 DOI: 10.1371/journal.pone.0150582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play key roles in a variety of cellular processes through regulation of their target gene expression. Accumulated experimental evidence has demonstrated that infections by viruses are associated with the altered expression profile of miRNAs and their mRNA targets in the host. However, the regulatory network of miRNA-mRNA interactions during viral infection remains largely unknown. In this study, we performed small RNA (sRNA)-seq, degradome-seq and as well as a genome-wide transcriptome analysis to profile the global gene and miRNA expression in soybean following infections by three different Soybean mosaic virus (SMV) isolates, L (G2 strain), LRB (G2 strain) and G7 (G7 strain). sRNA-seq analyses revealed a total of 253 soybean miRNAs with a two-fold or greater change in abundance compared with the mock-inoculated control. 125 transcripts were identified as the potential cleavage targets of 105 miRNAs and validated by degradome-seq analyses. Genome-wide transcriptome analysis showed that total 2679 genes are differentially expressed in response to SMV infection including 71 genes predicted as involved in defense response. Finally, complex miRNA-mRNA regulatory networks were derived using the RNAseq, small RNAseq and degradome data. This work represents a comprehensive, global approach to examining virus-host interactions. Genes responsive to SMV infection are identified as are their potential miRNA regulators. Additionally, regulatory changes of the miRNAs themselves are described and the regulatory relationships were supported with degradome data. Taken together these data provide new insights into molecular SMV-soybean interactions and offer candidate miRNAs and their targets for further elucidation of the SMV infection process.
Collapse
Affiliation(s)
- Hui Chen
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| | - Andrej Adam Arsovski
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Rd. 20, Harrow, Ontario, N0R 1G0, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| |
Collapse
|
39
|
Ge L, Zheng B, Li M, Niu L, Li Z. MicroRNA-497 suppresses osteosarcoma tumor growth in vitro and in vivo. Oncol Lett 2016; 11:2207-2212. [PMID: 26998150 DOI: 10.3892/ol.2016.4162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
It has been demonstrated that microRNA-497 (miR-497) acts as a tumor suppressor and is involved in tumor progression, development and metastasis in several types of cancer. However, little is known about the exact role of miR-497 in osteosarcoma (OS). The aim of the current study was to investigate the potential role of miR-497 in human OS. The role of miR-497 in the growth and survival of OS cells was determined using several in vitro approaches and a nude mouse model. The results demonstrated that exogenous expression of miR-497 in human OS MG63 cells suppressed cell proliferation, colony formation, migration and invasion, and induced cell apoptosis and cell arrest at the G0/G1 phase of the cell cycle. In addition, the results of the in vivo study indicated that restoration of miR-497 inhibited OS tumor growth in a nude mouse model. Overall, the results of the present study identified a crucial tumor suppressive role of miR-497 in the progression of OS, and suggested that miR-497 may be a potential therapeutic agent for the treatment of OS.
Collapse
Affiliation(s)
- Liang Ge
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Minghe Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Liang Niu
- Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
40
|
Mutations in TP53 increase the risk of SOX2 copy number alterations and silencing of TP53 reduces SOX2 expression in non-small cell lung cancer. BMC Cancer 2016; 16:28. [PMID: 26780934 PMCID: PMC4717590 DOI: 10.1186/s12885-016-2061-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Amplifications of the transcription factor, SRY (sex determining region Y)-box 2 (SOX2), are common in non-small cell lung cancer (NSCLC). SOX2 signaling is important in maintaining the stem cell-like phenotype of cancer cells and contributes to the pathogenesis of lung cancer. TP53 is known to inhibit gene amplifications and to repress many stem cell-associated genes following DNA damage. The aim of this study was to investigate if TP53 mutational status affected SOX2 copy number variation and gene expression in early-stage NSCLC patients; moreover, to assess if TP53 regulates SOX2 expression in human lung cancer cells. Methods 258 early-stage lung cancer patients were included in the study. Exons 4–9 in the TP53 gene were sequenced for mutations in tumor tissues. SOX2 copy number as well as TP53 and SOX2 gene expression were analyzed in tumor and in adjacent non-tumorous tissues by qPCR. TP53 and SOX2 were silenced using gene-specific siRNAs in human lung adenocarcinoma A427 cells, and the expression of TP53, SOX2 and subset of selected miRNAs was analyzed by qPCR. The odds ratios (ORs) for associations between copy number variation and lung cancer were estimated by conditional logistic regression, and the correlation between gene status and clinicopathological characteristics was assessed by Chi-square or Fisher’s exact test. Gene expression data was analyzed using nonparametric Mann–Whitney test. Results TP53 mutations were associated with an increased risk of acquiring a SOX2 copy number alteration (OR = 2.08, 95 % CI: 1.14–3.79, p = 0.017), which was more frequently occurring in tumor tissues (34 %) than in adjacent non-tumorous tissues (3 %). Moreover, SOX2 and TP53 expression levels were strongly correlated in tumor tissues. In vitro studies showed that a reduction in TP53 was associated with decreased SOX2 expression in A427 cells. Furthermore, TP53 knockdown reduced the miRNA hsa-miR-145, which has previously been shown to regulate SOX2 expression. Conclusions TP53 signaling may be important in the regulation of SOX2 copy number and expression in NSCLC tumors, and the miRNA hsa-miR-145-5p may be one potential driver. This prompts for further studies on the mechanisms behind the TP53-induced regulation of SOX2 expression and the possible importance of hsa-miR-145 in lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2061-3) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
42
|
Li Z, Yu X, Shen J. Long non-coding RNAs: emerging players in osteosarcoma. Tumour Biol 2015; 37:2811-6. [PMID: 26718212 DOI: 10.1007/s13277-015-4749-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/27/2015] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common kind of primary bone tumors with high morbidity in infants and adolescents. While the molecular mechanism of osteosarcoma has gained considerable attention, the mechanisms underlying its initiation and progression remain unclear. Recent studies have discovered that long non-coding RNAs (lncRNAs) play an important role in multiply biological processes including cell development, differentiation, proliferation, invasion, and migration. Deregulated expression of lncRNAs has been found in cancers including osteosarcoma. This review summarized the deregulation and functional role of lncRNAs in osteosarcoma and their potential application for diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
43
|
Das AV, Pillai RM. Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis. Cancer Cell Int 2015; 15:92. [PMID: 26425114 PMCID: PMC4588501 DOI: 10.1186/s12935-015-0247-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis is a multistep process, de-regulated due to the imbalance of oncogenes as well as anti-oncogenes, resulting in disruption of tissue homeostasis. In many cases the effect of oncogenes and anti-oncogenes are mediated by various other molecules such as microRNAs. microRNAs are small non-coding RNAs established to post-transcriptionally regulate more than half of the protein coding genes. miR cluster 143/145 is one such cancer-related microRNA cluster which is down-regulated in most of the cancers and is able to hinder tumorigenesis by targeting tumor-associated genes. The fact that they could sensitize drug-resistant cancer cells by targeting multidrug resistant genes makes them potent tools to target cancer cells. Their low levels precede events which lead to cancer progression and therefore could be considered also as biomarkers to stage the disease. Interestingly, evidence suggests the existence of several in vivo mechanisms by which this cluster is differentially regulated at the molecular level to keep their levels low in cancer. In this review, we summarize the roles of miR cluster 143/145 in cancer, their potential prognostic applications and also their regulation during tumorigenesis.
Collapse
Affiliation(s)
- Ani V Das
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O., Thiruvananthapuram-14, Kerala India
| | - Radhakrishna M Pillai
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O., Thiruvananthapuram-14, Kerala India
| |
Collapse
|
44
|
MicroRNAs in the pathobiology of sarcomas. J Transl Med 2015; 95:987-94. [PMID: 26121318 DOI: 10.1038/labinvest.2015.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/17/2015] [Accepted: 05/02/2015] [Indexed: 12/19/2022] Open
Abstract
Sarcomas are a rare and heterogeneous group of tumors. The last decade has witnessed extensive efforts to understand the pathobiology of many aggressive sarcoma types. In parallel, we have also begun to unravel the complex gene regulation processes mediated by microRNAs (miRNAs) in sarcomas and other cancers, discovering that microRNAs have critical roles in the majority of both oncogenic and tumor suppressor signaling networks. Expression profiles and a greater understanding of the biologic roles of microRNAs and other noncoding RNAs have considerably expanded our current knowledge and provided key pathobiological insights into many sarcomas, and helped identify novel therapeutic targets. The limited number of sarcoma patients in each sarcoma type and their heterogeneity pose distinct challenges in translating this knowledge into the clinic. It will be critical to prioritize these novel targets and choose those that have a broad applicability. A small group of microRNAs have conserved roles across many types of sarcomas and other cancers. Therapies that target these key microRNA-gene signaling and regulatory networks, in combination with standard of care treatment, may be the pivotal component in significantly improving treatment outcomes in patients with sarcoma or other cancers.
Collapse
|
45
|
Zhu T, Yuan J, Wang Y, Gong C, Xie Y, Li H. MiR-661 contributed to cell proliferation of human ovarian cancer cells by repressing INPP5J expression. Biomed Pharmacother 2015; 75:123-8. [PMID: 26282217 DOI: 10.1016/j.biopha.2015.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/26/2015] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence has emerged important roles for microRNAs (miRNAs) participating in oncogenesis and growth of various cancers. We hypothesized that miR-661 played an important role in cell growth of ovarian cancer. Here, we found miR-661 was upregulated in human ovarian cancer cell lines and clinical tumor tissues. Our results revealed that miR-661 directly targeted INPP5J, thereby acting as tumor promoter in ovarian cancer cells by blocking cell proliferation. Importantly, we identified miR-661 as a positive regulator of INPP5J-induced AKT pathway. Taken together, our study sheds light onto the role of miR-661 as tumor promoter by targeting the INPP5J gene, and then promoting cell proliferation of ovarian cancer.
Collapse
Affiliation(s)
- Tongyu Zhu
- Department of Obstetrics and Gynecology, General Hospital of Jinan Military Command, Shandong 250031, People's Republic of China.
| | - Jing Yuan
- Department of Medical Information, General Hospital of Jinan Military Command. Shandong 250031, People's Republic of China
| | - Yuzhi Wang
- Department of Obstetrics and Gynecology, General Hospital of Jinan Military Command, Shandong 250031, People's Republic of China
| | - Cuiping Gong
- Department of Obstetrics and Gynecology, General Hospital of Jinan Military Command, Shandong 250031, People's Republic of China
| | - Yudou Xie
- Department of Obstetrics and Gynecology, General Hospital of Jinan Military Command, Shandong 250031, People's Republic of China
| | - Hong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
46
|
Morrison JL, Zhang S, Tellam RL, Brooks DA, McMillen IC, Porrello ER, Botting KJ. Regulation of microRNA during cardiomyocyte maturation in sheep. BMC Genomics 2015. [PMID: 26198574 PMCID: PMC4509559 DOI: 10.1186/s12864-015-1693-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. Results The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of ‘pro-proliferative’ miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. Conclusion The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1693-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Song Zhang
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Ross L Tellam
- CSIRO Agriculture, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia.
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, University of South Australia, Adelaide, SA, Australia.
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Enzo R Porrello
- Laboratory for Cardiac Regeneration, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
47
|
Liu C, Tang X. Downregulation of microRNA-210 inhibits osteosarcoma growth in vitro and in vivo. Mol Med Rep 2015; 12:3674-3680. [PMID: 26044868 DOI: 10.3892/mmr.2015.3880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑210 (miR‑210), the master hypoxamir, has various roles in the development of certain cancer types. It has been reported that miR‑210 expression was upregulated in patients with osteosarcoma (OS). However, little is known regarding its role in the development of human OS. In the present study, to explore the feasibility of miR‑210 as an effective therapeutic target, miR‑210 inhibitor was transfected into the osteosarcoma cell line MG‑63 cells, and cell proliferation, colony formation, cycle, apoptosis, migration and invasion were assessed. It was found that miR‑210 downregulation significantly suppressed clonogenicity, migration and invasion, as well as induced cell apoptosis, increased the percentage of cells in G1 phrase and decreased the percentage of cells in S phase in vitro. In addition, the effect of miR‑210 on tumor growth was evaluated in vivo. The results indicated that miR‑210 downregulation significantly suppressed tumor growth in nude mouse models. In conclusion, the findings of the present study suggested that miR‑210 is a potential therapeutic agent for the treatment of OS.
Collapse
Affiliation(s)
- Changjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xin Tang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
48
|
miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumour Biol 2015; 36:8221-9. [DOI: 10.1007/s13277-015-3568-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022] Open
|
49
|
Chang L, Shrestha S, LaChaud G, Scott MA, James AW. Review of microRNA in osteosarcoma and chondrosarcoma. Med Oncol 2015; 32:613. [PMID: 25920607 DOI: 10.1007/s12032-015-0613-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs, which play a complex role in posttranscriptional gene expression and can theoretically be used as a diagnostic or prognostic tool, or therapeutic target for neoplasia. Despite advances in the diagnosis and treatment of skeletal sarcomas, including osteosarcoma and chondrosarcoma, much remains unknown regarding their underpinning molecular mechanisms. Given the recent increasing knowledge base of miRNA roles in neoplasia, both as oncogenes and tumor suppressor genes, this review will focus on the available literature regarding the expression profiles and potential roles of miRNA in skeletal sarcomas. Although this is an emerging field, miRNA profiling may be of use in clarifying competing diagnoses of skeletal sarcomas and possibly indicate patient risk of resistance to traditional chemotherapeutic agents. While detecting and targeting miRNAs is currently limited to experimental investigations, miRNA may be utilized for future clinical management of skeletal sarcomas.
Collapse
Affiliation(s)
- Le Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA, 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Zhang F, Huang W, Sheng M, Liu T. MiR-451 inhibits cell growth and invasion by targeting CXCL16 and is associated with prognosis of osteosarcoma patients. Tumour Biol 2014; 36:2041-8. [PMID: 25391425 DOI: 10.1007/s13277-014-2811-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown that microRNA-451 (miR-451) was significantly decreased in osteosarcoma tissues and was identified as a tumor suppressor in other types of human cancers. However, its clinical significance and molecular mechanisms in osteosarcoma are still not well understood. MiR-451 levels are evaluated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in osteosarcoma cell lines and in 68 pairs of osteosarcoma and adjacent noncancerous tissues. Then, the associations of miR-451 expression with clinicopathological features of patients were determined. The effects of miR-451 in osteosarcoma cells were examined by MTT and Matrigel invasion assay. The functional target of miR-451 were determined by bioinformatics analysis and validated by luciferase reporter analyses and Western blot assay. Our results showed that the expression of miR-451 was significantly downregulated in osteosarcoma tissues compared with corresponding noncancerous tissues (P < 0.01). Particularly, statistical analysis of primary human osteosarcoma indicated that decreased expression of miR-451 was correlated with metastasis and recurrence. Moreover, the miR-451 force-expression suppressed cell proliferation and invasion in vitro. Based on bioinformatics analysis, we found that chemokine ligand 16 (CXCL16) was identified as a direct functional target of miR-451. Consistent with the effects of miR-451, silencing CXCL16 could phenocopy the effects of miR-451 on phenotypes of osteosarcoma cells. Furthermore, CXCL16 expression was upregulated in osteosarcoma tissues and inversely associated with miR-451 in human osteosarcoma tissues. Our data reveal a downregulated expression of miR-451 in osteosarcoma tissues, which is inversely associated with CXCL16 levels. These observations demonstrated that miR-451 may play an important role in tumor growth and metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, Ningbo Development Zone Center Hospital, Ningbo, 315800, China
| | | | | | | |
Collapse
|