1
|
Qu J, Lu Z, Cheng Y, Deng S, Shi W, Liu Q, Ling Y. miR-484 in Hippocampal Astrocytes of Aged and Young Rats Targets CSF-1 to Regulate Neural Progenitor/Stem Cell Proliferation and Differentiation Into Neurons. CNS Neurosci Ther 2025; 31:e70415. [PMID: 40304412 PMCID: PMC12042212 DOI: 10.1111/cns.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/23/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
AIM Aging-related cognitive decline is closely linked to the reduced function of neural progenitor/stem cells (NPSCs), which can be influenced by the neural microenvironment, particularly astrocytes. The aim of this study was to explore how astrocytes affect NPSCs and cognitive function during aging. METHODS H2O2-treated astrocytes were used to mimic the aging phenotype of astrocytes. Proteomic analysis identified altered protein expression, revealing high levels of colony-stimulating factor-1 (CSF-1) in the supernatant of H2O2-treated astrocytes. Primary NPSCs were isolated and cultured in vitro, then stimulated with varying concentrations of recombinant CSF-1 protein to assess its effects on NPSC proliferation, differentiation, and apoptosis. Transcriptome sequencing identified miR-484 related to CSF-1 in H2O2-treated astrocytes, and a dual-luciferase assay verified the interaction between miR-484 and CSF-1. The impact of miR-484 overexpression on NPSC function and cognitive restoration was evaluated both in vitro and in vivo (in 20-month-old rats). RESULTS High concentration of CSF-1 inhibited the NPSC proliferation and differentiation into neurons while inducing apoptosis. Overexpression of miR-484 downregulated CSF-1 expression by binding to its 3' untranslated region, thereby promoting the NPSC proliferation and differentiation into neurons. In 20-month-old rats, miR-484 overexpression improved spatial learning and memory in the Morris water maze, increased NPSC proliferation, and reduced apoptosis. CONCLUSION Our findings reveal that miR-484 regulates CSF-1 to influence NPSC proliferation, differentiation into neurons, and apoptosis, consequently improving cognitive function in 20-month-old rats. This study provides a foundation for developing therapeutic strategies targeting age-related hippocampal cognitive impairments.
Collapse
Affiliation(s)
- Jiahua Qu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Zhichao Lu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yongbo Cheng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Song Deng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Wei Shi
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qianqian Liu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yuejuan Ling
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantongChina
| |
Collapse
|
2
|
Shang Q, Zhang P, Lei X, Du L, Qu B. Insights into CSF-1/CSF-1R signaling: the role of macrophage in radiotherapy. Front Immunol 2025; 16:1530890. [PMID: 40007537 PMCID: PMC11851012 DOI: 10.3389/fimmu.2025.1530890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Macrophage plays an important role in homeostasis and immunity, and dysfunctional macrophage polarization is believed to be associated with the pathogenesis of tissue fibrosis and tumor progression. Colony stimulating factor-1 (CSF-1), a polypeptide chain cytokine, through its receptor (CSF-1R) regulates the differentiation of macrophages. Recently, the promising therapeutic potential of CSF-1/CSF-1R signaling pathway inhibition in cancer treatment is widely used. Furthermore, inhibition of CSF-1/CSF-1R signaling combined with radiotherapy has been extensively studied to reduce immunosuppression and promote abscopal effect. In addition, cumulative evidence demonstrated that M2 phenotype macrophage is dominant in tissue fibrosis and the inhibition of CSF-1/CSF-1R signaling pathway ameliorated pulmonary fibrosis, including radiation-induced lung fibrosis. Herein, we provide a comprehensive review of the CSF-1/CSF-1R signaling pathway in radiotherapy, with a focus on advances in macrophage-targeted strategies in the treatment of cancer and pulmonary fibrosis.
Collapse
Affiliation(s)
- Qingchao Shang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Radiation Oncology, General Hospital of Southern Theatre Command of PLA, Guang Zhou, China
| | - Pei Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Lei
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Nuszkiewicz J, Wróblewska J, Budek M, Czuczejko J, Woźniak A, Maruszak-Parda M, Szewczyk-Golec K. Exploring the Link between Inflammatory Biomarkers and Head and Neck Cancer: Understanding the Impact of Smoking as a Cancer-Predisposing Factor. Biomedicines 2024; 12:748. [PMID: 38672104 PMCID: PMC11048483 DOI: 10.3390/biomedicines12040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Head and neck cancer (HNC) is associated with significant morbidity globally, with smoking recognized as a key risk factor. This study investigates the interplay between smoking and inflammatory biomarkers in HNC development. The study involved 50 HNC patients, divided into smoking and non-smoking groups, and a control group of 30 healthy individuals. Serum levels of 48 cytokines, chemokines, growth factors, and other inflammatory markers were meticulously assessed. Significant differences in the levels of an extensive panel of inflammatory markers were observed between the patient groups and healthy controls. Elevated macrophage colony-stimulating factor (M-CSF) in both HNC groups implicated increased activity in pathways known for immunomodulation, proliferation, and angiogenesis during HNC cancerogenesis. In contrast, non-smokers with HNC demonstrated higher levels of interleukin 10 (IL-10) and interleukin 15 (IL-15), suggesting a more robust immune response. Platelet-derived growth factor BB (PDGF-BB) levels were particularly high in smokers with HNC. Smoking seems to alter the levels of crucial biomarkers in HNC, potentially affecting disease progression and responses to treatment. The data indicate that smokers may experience a more aggressive cancer phenotype, while non-smokers maintain a profile suggestive of a more active and effective immune response against HNC.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland;
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, 2 Dr I. Romanowskiej St., 85-796 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Marta Maruszak-Parda
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, 2 Dr I. Romanowskiej St., 85-796 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| |
Collapse
|
4
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
5
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
6
|
Baillache DJ, Valero T, Lorente-Macías Á, Bennett DJ, Elliott RJR, Carragher NO, Unciti-Broceta A. Discovery of pyrazolopyrimidines that selectively inhibit CSF-1R kinase by iterative design, synthesis and screening against glioblastoma cells. RSC Med Chem 2023; 14:2611-2624. [PMID: 38099057 PMCID: PMC10718585 DOI: 10.1039/d3md00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer in adults, with an average life expectancy under treatment of approx. 15 months. GBM is characterised by a complex set of genetic alterations that results in significant disruption of receptor tyrosine kinase (RTK) signaling. We report here an exploration of the pyrazolo[3,4-d]pyrimidine scaffold in search for antiproliferative compounds directed to GBM treatment. Small compound libraries were synthesised and screened against GBM cells to build up structure-antiproliferative activity-relationships (SAARs) and inform further rounds of design, synthesis and screening. 76 novel compounds were generated through this iterative process that found low micromolar potencies against selected GBM lines, including patient-derived stem cells. Phenomics analysis demonstrated preferential activity against glioma cells of the mesenchymal subtype, whereas kinome screening identified colony stimulating factor-1 receptor (CSF-1R) as the lead's target, a RTK implicated in the tumourigenesis and progression of different cancers and the immunoregulation of the GBM microenvironment.
Collapse
Affiliation(s)
- Daniel J Baillache
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Teresa Valero
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Álvaro Lorente-Macías
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | | | - Richard J R Elliott
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Neil O Carragher
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| |
Collapse
|
7
|
Alkhawaldeh A, Bardaweel S. Molecular Investigation of the Antitumor Effects of Monoamine Oxidase Inhibitors in Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2592691. [PMID: 37841082 PMCID: PMC10569896 DOI: 10.1155/2023/2592691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
The catalytic activity of monoamine oxidase A (MAO-A) has been linked to tumorigenesis due to the production of reactive oxygen species (ROS) and the resulting oxidative stress. MAO-A inhibition revealed a beneficial role in prostate and lung cancer treatment. This study is aimed at evaluating the effect of different monoamine oxidase A inhibitors (MAO-AIs) on the proliferation and progression of breast cancer cell lines. The cell viability assay was used to evaluate the antiproliferative and combined effects of MAO-AIs. Cell migration was evaluated using wound healing, invasion, and colony formation assays. The underlying mechanism of cell death was studied using flow cytometry. The real-time polymerase chain reaction was used to determine the relative gene expression. Finally, MAO-A activity in breast cancer cells was evaluated using an MAO-A activity assay. According to the results, the examined MAO-AIs significantly inhibited the proliferation of breast cancer cells in a dose-dependent manner. In breast cancer cells, the combination of anticancer drugs (doxorubicin or raloxifene) with MAO-AIs resulted in a synergistic effect. MAO-AIs significantly reduced wound closure and invasion ability in breast cancer cells. Also, MAO-AIs reduced the colony count and size of breast cancer cells. MAO-AIs resulted in significant proapoptotic activity in breast cancer cells. Finally, the MAO-AIs suppressed MAO-A, Bcl-2, and VEGF gene expressions in breast cancer cells relative to untreated cells. This study provides solid evidence supporting the anticancer effect of MAO-A inhibitors in breast cancer cells.
Collapse
Affiliation(s)
- Aseel Alkhawaldeh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| |
Collapse
|
8
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y, Wang K. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol 2023; 14:1199631. [PMID: 37313405 PMCID: PMC10258331 DOI: 10.3389/fimmu.2023.1199631] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Unprecedented breakthroughs have been made in cancer immunotherapy in recent years. Particularly immune checkpoint inhibitors have fostered hope for patients with cancer. However, immunotherapy still exhibits certain limitations, such as a low response rate, limited efficacy in certain populations, and adverse events in certain tumors. Therefore, exploring strategies that can improve clinical response rates in patients is crucial. Tumor-associated macrophages (TAMs) are the predominant immune cells that infiltrate the tumor microenvironment and express a variety of immune checkpoints that impact immune functions. Mounting evidence indicates that immune checkpoints in TAMs are closely associated with the prognosis of patients with tumors receiving immunotherapy. This review centers on the regulatory mechanisms governing immune checkpoint expression in macrophages and strategies aimed at improving immune checkpoint therapies. Our review provides insights into potential therapeutic targets to improve the efficacy of immune checkpoint blockade and key clues to developing novel tumor immunotherapies.
Collapse
Affiliation(s)
- Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenyang Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengshu Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Peng Xiao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
9
|
Zhang D, Cui X, Li Y, Wang R, Wang H, Dai Y, Ren Q, Wang L, Zheng G. Sox13 and M2-like leukemia-associated macrophages contribute to endogenous IL-34 caused accelerated progression of acute myeloid leukemia. Cell Death Dis 2023; 14:308. [PMID: 37149693 PMCID: PMC10164149 DOI: 10.1038/s41419-023-05822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.
Collapse
Affiliation(s)
- Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
10
|
Reynaud D, Alfaidy N, Collet C, Lemaitre N, Sergent F, Miege C, Soleilhac E, Assi AA, Murthi P, Courtois G, Fauvarque MO, Slim R, Benharouga M, Abi Nahed R. NLRP7 Enhances Choriocarcinoma Cell Survival and Camouflage in an Inflammasome Independent Pathway. Cells 2023; 12:857. [PMID: 36980199 PMCID: PMC10099745 DOI: 10.3390/cells12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Gestational choriocarcinoma (GC) is a highly malignant trophoblastic tumor that often develops from a complete hydatidiform mole (HM). NLRP7 is the major gene responsible for recurrent HM and is involved in the innate immune response, inflammation and apoptosis. NLRP7 can function in an inflammasome-dependent or -independent pathway. Recently, we have demonstrated that NLRP7 is highly expressed in GC tumor cells and contributes to their tumorigenesis. However, the underlying mechanisms are still unknown. Here, we investigated the mechanism by which NLRP7 controls these processes in malignant (JEG-3) and non-tumor (HTR8/SVneo) trophoblastic cells. Cell survival, dedifferentiation, camouflage, and aggressiveness were compared between normal JEG-3 cells or knockdown for NLRP7, JEG-3 Sh NLRP7. In addition, HTR8/SVneo cells overexpressing NLRP7 were used to determine the impact of NLRP7 overexpression on non-tumor cells. NLRP7 involvement in tumor cell growth and tolerance was further characterized in vivo using the metastatic mouse model of GC. RESULTS We demonstrate that NLRP7 (i) functions in an inflammasome-dependent and -independent manners in HTR8/SVneo and JEG-3 cells, respectively; (ii) differentially regulates the activity of NF-κB in tumor and non-tumor cells; (iii) increases malignant cell survival, dedifferentiation, and camouflage; and (iv) facilitates tumor cells colonization of the lungs in the preclinical model of GC. CONCLUSIONS This study demonstrates for the first time the mechanism by which NLRP7, independently of its inflammasome machinery, contributes to GC growth and tumorigenesis. The clinical relevance of NLRP7 in this rare cancer highlights its potential therapeutic promise as a molecular target to treat resistant GC patients.
Collapse
Affiliation(s)
- Déborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Céline Miege
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | | | - Alaa Al Assi
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne VIC 3800, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Gilles Courtois
- University Grenoble Alpes, Inserm, CEA, UA13 BGE, 38000 Grenoble, France
| | | | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| |
Collapse
|
11
|
Zhang H, He F, Gao G, Lu S, Wei Q, Hu H, Wu Z, Fang M, Wang X. Approved Small-Molecule ATP-Competitive Kinases Drugs Containing Indole/Azaindole/Oxindole Scaffolds: R&D and Binding Patterns Profiling. Molecules 2023; 28:molecules28030943. [PMID: 36770611 PMCID: PMC9920796 DOI: 10.3390/molecules28030943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.
Collapse
Affiliation(s)
- Haofan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guiping Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Sheng Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qiaochu Wei
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Zhen Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| |
Collapse
|
12
|
A Review of Routine Laboratory Biomarkers for the Detection of Severe COVID-19 Disease. Int J Anal Chem 2022; 2022:9006487. [PMID: 36267156 PMCID: PMC9578918 DOI: 10.1155/2022/9006487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
As the COVID-19 pandemic continues, there is an urgent need to identify clinical and laboratory predictors of disease severity and prognosis. Once the coronavirus enters the cell, it triggers additional events via different signaling pathways. Cellular and molecular deregulation evoked by coronavirus infection can manifest as changes in laboratory findings. Understanding the relationship between laboratory biomarkers and COVID-19 outcomes would help in developing a risk-stratified approach to the treatment of patients with this disease. The purpose of this review is to investigate the role of hematological (white blood cell (WBC), lymphocyte, and neutrophil count, neutrophil-to-lymphocyte ratio (NLR), platelet, and red blood cell (RBC) count), inflammatory (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and lactate dehydrogenase (LDH)), and biochemical (Albumin, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, D-dimer, total Cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)) biomarkers in the pathogenesis of COVID-19 disease and how their levels vary according to disease severity.
Collapse
|
13
|
M-CSF as a therapeutic target in BRAF V600E melanoma resistant to BRAF inhibitors. Br J Cancer 2022; 127:1142-1152. [PMID: 35725813 DOI: 10.1038/s41416-022-01886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Disseminated BRAFV600E melanoma responds to BRAF inhibitors (BRAFi) but easily develops resistance with poor prognosis. Secretome plays a pivotal role during tumour progression causing profound effects on therapeutic efficacy. Secreted M-CSF is involved in both cytotoxicity suppression and tumour progression in melanoma. We aimed to analyse the M-CSF contribution in resistant metastatic melanoma to BRAF-targeted therapies. METHODS Conditioned media from melanoma cells were analysed by citoarray. Viability and migration/invasion assays were performed with paired melanoma cells and tumour growth in xenografted SCID mice. We evaluated the impact of M-CSF plasma levels with clinical prognosis from 35 metastatic BRAFV600E-mutant melanoma patients. RESULTS BRAFi-resistant melanoma cells secretome is rich in pro-tumour cytokines. M-CSF secretion is essential to induce a Vemurafenib-resistant phenotype in melanoma cells. Further, we demonstrated that M-CSF mAb in combination with Vemurafenib and autophagy blockers synergistically induce apoptosis, impair migration and reduce tumour growth in BRAFi-resistant melanoma cells. Interestingly, lower M-CSF plasma levels are associated with better prognosis in metastatic melanoma patients. CONCLUSIONS Secreted M-CSF induces a BRAFi-resistant phenotype and means worse prognosis in BRAFV600E metastatic melanoma patients. These results identify secreted M-CSF as a promising therapeutic target toward BRAFi-resistant melanomas.
Collapse
|
14
|
Nuñez-Borque E, Fernandez-Bravo S, Yuste-Montalvo A, Esteban V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front Immunol 2022; 13:836222. [PMID: 35371072 PMCID: PMC8965328 DOI: 10.3389/fimmu.2022.836222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Anaphylaxis is a systemic hypersensitivity reaction that can be life threatening. Mechanistically, it results from the immune activation and release of a variety of mediators that give rise to the signs and symptoms of this pathological event. For years, most of the research in anaphylaxis has focused on the contribution of the immune component. However, approaches that shed light on the participation of other cellular and molecular agents are necessary. Among them, the vascular niche receives the various signals (e.g., histamine) that elicit the range of anaphylactic events. Cardiovascular manifestations such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and cardiac alterations are crucial in the pathophysiology of anaphylaxis and are highly involved to the development of the most severe cases. Specifically, the endothelium, vascular smooth muscle cells, and their molecular signaling outcomes play an essential role downstream of the immune reaction. Therefore, in this review, we synthesized the vascular changes observed during anaphylaxis as well as its cellular and molecular components. As the risk of anaphylaxis exists both in clinical procedures and in routine life, increasing our knowledge of the vascular physiology and their molecular mechanism will enable us to improve the clinical management and how to treat or prevent anaphylaxis. Key Message Anaphylaxis, the most severe allergic reaction, involves a variety of immune and non-immune molecular signals that give rise to its pathophysiological manifestations. Importantly, the vascular system is engaged in processes relevant to anaphylactic events such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and decreased cardiac output. The novelty of this review focuses on the fact that new studies will greatly improve the understanding of anaphylaxis when viewed from a vascular molecular angle and specifically from the endothelium. This knowledge will improve therapeutic options to treat or prevent anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alma Yuste-Montalvo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
15
|
Chen SMY, Popolizio V, Woolaver RA, Ge H, Krinsky AL, John J, Danis E, Ke Y, Kramer Y, Bian L, Nicklawsky AG, Gao D, Liu S, Chen Z, Wang XJ, Wang JH. Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers. J Exp Clin Cancer Res 2022; 41:123. [PMID: 35366939 PMCID: PMC8976353 DOI: 10.1186/s13046-022-02337-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND While immune checkpoint inhibitors (ICI) were approved for head and neck squamous cell carcinomas (HNSCCs), the response rate remains relatively low. Mechanisms underlying ICI unresponsiveness versus sensitivity are not fully understood. METHOD To better delineate differential responses to ICI treatment, we employed mouse SCC models, termed KPPA tumors that were caused by deleting p53 and hyperactivating PIK3CA, two most frequently mutated genes in human HNSCCs. We transplanted two KPPA tumor lines (TAb2 versus TCh3) into C57BL/6 recipients and examined the immune tumor microenvironment using flow cytometry. Furthermore, we employed single-cell RNA sequencing to identify the difference in tumor infiltrating lymphocytes (TILs). RESULTS We found that different KPPA tumors exhibited heterogeneous immune profiles pre-existing treatment that dictated their sensitivity or unresponsiveness to anti-PD-L1. Unresponsive TAb2 tumors were highly enriched with functional tumor-associated macrophages (TAMs), especially M2-TAMs. In contrast, sensitive TCh3 tumors contained more CD8 TILs with better effector functions. TAb2 tumor cells drastically expanded F4/80+ TAMs from bone marrow precursors, requiring CSF1 and VEGF. Consistently, a higher combined expression of VEGF-C and CSF1 predicts worse survival in PIK3CAAmp/TP53Mutated HNSCC patients. Unresponsive TAb2 tumors upregulated distinct signaling pathways that correlate with aggressive tumor phenotypes. While anti-PD-L1 did not affect the TME of TAb2 tumors, it significantly increased the number of CD8 TILs in TCh3 tumors. CONCLUSIONS We uncovered tumor-intrinsic differences that may underlie the differential responses to ICI by establishing and employing two SCC tumor lines, TAb2 vs. TCh3, both of which harbor TP53 deletion and PIK3CA hyperactivation. Our study indicates the limitation of stratifying cancers according to their genetic alterations and suggests that evaluating HNSCC tumor-intrinsic cues along with immune profiles in the TME may help better predict ICI responses. Our experimental models may provide a platform for pinpointing tumor-intrinsic differences underlying an immunosuppressive TME in HNSCCs and for testing combined immunotherapies targeting either tumor-specific or TAM-specific players to improve ICI efficacy.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Yao Ke
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Yonatan Kramer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Andrew G Nicklawsky
- Department of Pediatrics and Department of Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Dexiang Gao
- Department of Pediatrics and Department of Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Nayeem N, Yeasmin A, Cobos SN, Younes A, Hubbard K, Contel M. Investigation of the Effects and Mechanisms of Anticancer Action of a Ru(II)-Arene Iminophosphorane Compound in Triple Negative Breast Cancer Cells. ChemMedChem 2021; 16:3280-3292. [PMID: 34329530 PMCID: PMC8571052 DOI: 10.1002/cmdc.202100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the breast cancers with poorer prognosis and survival rates. TNBC has a disproportionally high incidence and mortality in women of African descent. We report on the evaluation of Ru-IM (1), a water-soluble organometallic ruthenium compound, in TNBC cell lines derived from patients of European (MDA-MB-231) and African (HCC-1806) ancestry (including IC50 values, cellular and organelle uptake, cell death pathways, cell cycle, effects on migration, invasion, and angiogenesis, a preliminary proteomic analysis, and an NCI 60 cell-line panel screen). 1 was previously found highly efficacious in MDA-MB-231 cells and xenografts, with little systemic toxicity and preferential accumulation in the tumor. We observe a similar profile for this compound in the two cell lines studied, which includes high cytotoxicity, apoptotic behavior and potential antimetastatic and antiangiogenic properties. Cytokine M-CSF, involved in the PI3/AKT pathway, shows protein expression inhibition with exposure to 1. We also demonstrate a p53 independent mechanism of action.
Collapse
Affiliation(s)
- Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Arefa Yeasmin
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Samantha N Cobos
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Ali Younes
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - Karen Hubbard
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Biology Department, The City College of New York, The City University of New York, 160 Covent Avenue, New York, NY, 10031, USA
| | - Maria Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
17
|
Chadwick JW, Macdonald R, Ali AA, Glogauer M, Magalhaes MA. TNFα Signaling Is Increased in Progressing Oral Potentially Malignant Disorders and Regulates Malignant Transformation in an Oral Carcinogenesis Model. Front Oncol 2021; 11:741013. [PMID: 34650923 PMCID: PMC8507421 DOI: 10.3389/fonc.2021.741013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Oral carcinogenesis represents a multi-stage process which encompasses several genetic and molecular changes that promote the progression of oral potentially malignant disorders (OPMDs) to oral squamous cell carcinomas (OSCCs). A better understanding of critical pathways governing the progression of OMPDs to OSCCs is critical to improve oncologic outcomes in the future. Previous studies have identified an important role of tumor necrosis factor α (TNFα) and TNF receptor 1 (TNFR1) in the invasiveness of oral cancer cell lines. Here, we investigate the expression of TNFα and TNFR1 in human OPMDs that progress to OSCC compared to non-progressing OPMDs utilizing fluorescent immunohistochemistry (FIHC) to show increased TNFα/TNFR1 expression in progressing OPMDs. In order to interrogate the TNFα/TNFR1 signaling pathway, we utilized a 4-nitroquinoline 1-oxide (4-NQO) mouse model of oral carcinogenesis to demonstrate that TNFα/TNFR1 expression is upregulated in 4-NQO-induced OSCCs. TNFα neutralization decreased serum cytokines, inhibited the development of invasive lesions and reduced tumor-associated neutrophils in vivo. Combined, this data supports the role of TNFα in oral malignant transformation, suggesting that critical immunoregulatory events occur downstream of TNFR1 leading to malignant transformation. Our results advance the understanding of the mechanisms governing OSCC invasion and may serve as a basis for alternative diagnostic and therapeutic approaches to OPMDs and OSCC management.
Collapse
Affiliation(s)
- Jeffrey W Chadwick
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel Macdonald
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Aiman A Ali
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marco A Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
18
|
Bourgeais V, Zehraoui F, Ben Hamdoune M, Hanczar B. Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data. BMC Bioinformatics 2021; 22:455. [PMID: 34551707 PMCID: PMC8456586 DOI: 10.1186/s12859-021-04370-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With the rapid advancement of genomic sequencing techniques, massive production of gene expression data is becoming possible, which prompts the development of precision medicine. Deep learning is a promising approach for phenotype prediction (clinical diagnosis, prognosis, and drug response) based on gene expression profile. Existing deep learning models are usually considered as black-boxes that provide accurate predictions but are not interpretable. However, accuracy and interpretation are both essential for precision medicine. In addition, most models do not integrate the knowledge of the domain. Hence, making deep learning models interpretable for medical applications using prior biological knowledge is the main focus of this paper. RESULTS In this paper, we propose a new self-explainable deep learning model, called Deep GONet, integrating the Gene Ontology into the hierarchical architecture of the neural network. This model is based on a fully-connected architecture constrained by the Gene Ontology annotations, such that each neuron represents a biological function. The experiments on cancer diagnosis datasets demonstrate that Deep GONet is both easily interpretable and highly performant to discriminate cancer and non-cancer samples. CONCLUSIONS Our model provides an explanation to its predictions by identifying the most important neurons and associating them with biological functions, making the model understandable for biologists and physicians.
Collapse
Affiliation(s)
- Victoria Bourgeais
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| | - Farida Zehraoui
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| | | | - Blaise Hanczar
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| |
Collapse
|
19
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1262] [Impact Index Per Article: 315.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
20
|
Yang G, He Y, Yang H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 2021; 476:1813-1823. [PMID: 33459979 DOI: 10.1007/s11010-020-04028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
Collapse
Affiliation(s)
- Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China.
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
21
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
22
|
Hirawat R, Saifi MA, Godugu C. Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci 2021; 267:118923. [PMID: 33358906 PMCID: PMC7831473 DOI: 10.1016/j.lfs.2020.118923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Such testing and trying time probably never seen before in the human history. The novel coronavirus disease abbreviated as COVID-19 is the ongoing health crisis which entered into human life in late December 2019. The ease of transmission between humans and the undetectability in early stage makes COVID-19 frightening and unprecedented. The disease is characterised by pneumonia progressing to breathing difficulty, acute respiratory distress syndrome (ARDS) and multi-organ failure. Clinical studies suggest excessive release of inflammatory mediators leads to cytokine storm, a phenomenon which appears to be potentially life-threatening in COVID-19. Across the globe, when the world authorities are grappling to contain the virus, our review provides a glimpse on structure, pathophysiology of the virus and further sheds light on various clinical complications associated with the disease in order to open up/raise new horizons to explore various possible theoretical targets for COVID-19. The review also portrays a question and debates: Can targeting cytokine storm can be a feasible approach to combat COVID-19?
Collapse
Affiliation(s)
- Rishabh Hirawat
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
24
|
Smith LK, Arabi S, Lelliott EJ, McArthur GA, Sheppard KE. Obesity and the Impact on Cutaneous Melanoma: Friend or Foe? Cancers (Basel) 2020; 12:cancers12061583. [PMID: 32549336 PMCID: PMC7352630 DOI: 10.3390/cancers12061583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Excess body weight has been identified as a risk factor for many types of cancers, and for the majority of cancers, it is associated with poor outcomes. In contrast, there are cancers in which obesity is associated with favorable outcomes and this has been termed the “obesity paradox”. In melanoma, the connection between obesity and the increased incidence is not as strong as for other cancer types with some but not all studies showing an association. However, several recent studies have indicated that increased body mass index (BMI) improves survival outcomes in targeted and immune therapy treated melanoma patients. The mechanisms underlying how obesity leads to changes in therapeutic outcomes are not completely understood. This review discusses the current evidence implicating obesity in melanoma progression and patient response to targeted and immunotherapy, and discusses potential mechanisms underpinning these associations.
Collapse
Affiliation(s)
- Lorey K. Smith
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaghayegh Arabi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
| | - Emily J. Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
25
|
SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54:62-75. [PMID: 32513566 PMCID: PMC7265853 DOI: 10.1016/j.cytogfr.2020.06.001] [Citation(s) in RCA: 771] [Impact Index Per Article: 154.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
A wide range of cytokines are involved in the development of COVID-19 disease. Some of these biomolecules are related to the progression and even to the prognosis of the infection. Findings on the role of cytokine storm associated with SARS-CoV-2 infection can be useful in order to manage this highly virulent disease.
COVID-19 disease, caused by infection with SARS-CoV-2, is related to a series of physiopathological mechanisms that mobilize a wide variety of biomolecules, mainly immunological in nature. In the most severe cases, the prognosis can be markedly worsened by the hyperproduction of mainly proinflammatory cytokines, such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, preferentially targeting lung tissue. This study reviews published data on alterations in the expression of different cytokines in patients with COVID-19 who require admission to an intensive care unit. Data on the implication of cytokines in this disease and their effect on outcomes will support the design of more effective approaches to the management of COVID-19.
Collapse
|
26
|
Zhang J, Hu X, Dong X, Chen W, Zhang L, Chang Y, Wu Y, Wei W. Regulation of T Cell Activities in Rheumatoid Arthritis by the Novel Fusion Protein IgD-Fc-Ig. Front Immunol 2020; 11:755. [PMID: 32499775 PMCID: PMC7243948 DOI: 10.3389/fimmu.2020.00755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and T cell hyper-activation. Emerging evidence has shown that the stimulation of immunoglobulin D (IgD) induces T cell activation and may contribute to disease pathogenesis. In this study, the sIgD concentrations were positively associated with disease activity score in 28 joints (DAS28) and anti-cyclic citrullinated peptide (anti-CCP) in RA. We demonstrated that IgD-Fc-Ig (composed of human IgD Fc domain and IgG1 Fc domain, obtained through prokaryotic protein expression and chromatography purification) effectively inhibited the activation and proliferation of T cells in healthy controls and PBMCs in RA patients stimulated by IgD, recovered the Th17/Treg cell subset balance, and downregulated p-Lck and p-ZAP70 expression. Moreover, in vivo, IgD-Fc-Ig decreased the swollen joint counts and arthritis indices in mice with collagen-induced arthritis (CIA), and ameliorated histopathological changes in joint and spleen tissue. It also downregulated thymocyte proliferation and reduced the percentage of helper T cells (Th) and CD154+ T cells, reversed the imbalance of Th1/Th2 and Th17/Treg cell subsets, reduced cytokine and chemokine levels, and inhibited p-Lck and p-ZAP70 expression. Our data suggest that IgD-Fc-Ig fusion protein regulates T cell activity in RA. These findings have potential implications for IgD-targeted strategies to treat IgD-associated RA.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaoxi Hu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojie Dong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wensheng Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, Schäfers M, Grauer O, Jacobs AH, Zinnhardt B. Multimodal Molecular Imaging of the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:71-87. [PMID: 32030648 DOI: 10.1007/978-3-030-35727-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Philipp Backhaus
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Alexandra Winkeler
- UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas Viel
- Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris Descartes, Paris, France
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany. .,PET Imaging in Drug Design and Development (PET3D), Münster, Germany. .,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany.
| |
Collapse
|
28
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Xie Z, Wu B, Liu Y, Ren W, Tong L, Xiang C, Wei A, Gao Y, Zeng L, Xie H, Tang W, Hu Y. Novel Class of Colony-Stimulating Factor 1 Receptor Kinase Inhibitors Based on an o-Aminopyridyl Alkynyl Scaffold as Potential Treatment for Inflammatory Disorders. J Med Chem 2020; 63:1397-1414. [PMID: 31934767 DOI: 10.1021/acs.jmedchem.9b01912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF-1R) is involved in inflammatory disorders as well as in many types of cancer. Based on high-throughput screening and docking results, we performed a detailed structure-activity-relationship study, leading to the discovery of a new series of compounds with nanomolar IC50 values against CSF-1R without the inhibition of fibroblast growth factor receptors. One of the most promising hits, compound 29, potently inhibited CSF-1R kinase with an IC50 value of 0.7 nM, while it showed no inhibition to the same family member FMS-like tyrosine kinase 3. Compound 29 displayed excellent anti-inflammatory effects against RAW264.7 macrophages indicated by significant inhibition against the activation of the CSF-1R pathway with low cytotoxicity. In addition, compound 29 exhibited strong in vivo anti-inflammatory efficacy alongside favorable drug characteristics. This novel compound 29 may serve as a new drug candidate with promising applications in inflammatory disorders.
Collapse
Affiliation(s)
- Zhicheng Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Yingqiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China.,School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenming Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Linjiang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Caigui Xiang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Aihuan Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Yuanzhuo Gao
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Limin Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Hua Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , No. 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| |
Collapse
|
30
|
Ruan F, Wang YF, Chai Y. Diagnostic Values of miR-21, miR-124, and M-CSF in Patients With Early Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820914983. [PMID: 32356483 PMCID: PMC7225794 DOI: 10.1177/1533033820914983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the diagnostic values of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in patients with cervical cancer. METHODS A total of 68 patients with cervical cancer admitted in our hospital (cervical cancer group) and 57 healthy individuals undergoing physical examinations (healthy group, also control group) were enrolled in this study. The expression of serum microRNA-21 and microRNA-124 was detected by quantitative reverse transcription polymerase chain reaction. The expression of serum macrophage colony-stimulating factor was detected by enzyme-linked immunosorbent assay. The diagnostic values of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in cervical cancer were analyzed. The correlations between the expression of microRNA-21 and microRNA-124 with that of macrophage colony-stimulating factor were also analyzed. RESULTS Compared to those in the healthy group, patients in the cervical cancer group had a higher expression of microRNA-21 and macrophage colony-stimulating factor (P < .05) but lower expression of microRNA-124 (P < .05). The expression of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in the patients correlated with the tumor size, tumor node metastasis (TNM) staging, tumor differentiation, and the presence or absence of lymph node metastasis and human papillomavirus infection (P < .05). According to the receiver operating characteristic curves, the area under the curve of microRNA-21 for diagnosing cervical cancer was 0.723, the specificity was 58.82%, and the sensitivity was 91.23%. The area under the curve of microRNA-124 was 0.766, the specificity was 94.12%, and the sensitivity was 57.89%. The area under the curve of macrophage colony-stimulating factor was 0.754, the specificity was 64.71%, and the sensitivity was 87.72%. Pearson correlation analysis showed that the expression of microRNA-21 positively correlated with that of macrophage colony-stimulating factor (r = 0.6825, P < .001), and the expression of microRNA-124 negatively correlated with that of macrophage colony-stimulating factor (r = -0.6476, P < .001). CONCLUSION MicroRNA-21, microRNA-124, and macrophage colony-stimulating factor may be involved in the development and progression of cervical cancer. The detection of serum microRNA-21, microRNA-124, and macrophage colony-stimulating factor has good sensitivity and specificity in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fang Ruan
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Yun-fei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Yun Chai
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| |
Collapse
|
31
|
Tatar O, Ilhan N, Ilhan N, Susam S, Ozercan IH. Is there any potential anticancer effect of raloxifene and fluoxetine on DMBA-induced rat breast cancer? J Biochem Mol Toxicol 2019; 33:e22371. [PMID: 31332895 DOI: 10.1002/jbt.22371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women in the world and the incidence is increasing alarmingly. It was aimed to determine the effect of raloxifene (RAL) and fluoxetine (FLX) on selected parameters in 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinoma. Thirty-two female Wistar albino rats were assorted into four groups: DMBA (group I), DMBA+RAL (group II), DMBA+FLX (group III), and DMBA+RAL+FLX (group IV). Mammary tissue vascular endothelial growth factor (VEGF), macrophage colony-stimulating factor (M-CSF), matrix metalloproteinase-9 (MMP-9), and tissue inhibitors of matrix metalloproteinase-1 (TIMP-1) levels were determined by the enzyme-linked immunosorbent assay method. The tissue VEGF levels were lower in group IV compared with DMBA group. Decreased M-CSF levels were observed in all therapeutic groups rather than the DMBA group, but the most effective decrease was found in group IV. Compared with the DMBA group, MMP-9 levels were statistically significantly decreased in group II and group IV. However, TIMP-1 levels were higher in the whole therapeutic groups rather than the DMBA group and the most effective increase was observed in group IV. Results of the present study suggest that combined therapy of RAL with FLX might lead to a better outcome targeting breast tumor.
Collapse
Affiliation(s)
- Oguzhan Tatar
- Department of Medical Biochemistry, Faculty of Medicine, Firat University, Elazıg, Turkey
| | - Necip Ilhan
- Department of Medical Biochemistry, Faculty of Medicine, Firat University, Elazıg, Turkey
| | - Nevin Ilhan
- Department of Medical Biochemistry, Faculty of Medicine, Firat University, Elazıg, Turkey
| | - Solmaz Susam
- Department of Medical Biochemistry, Faculty of Medicine, Firat University, Elazıg, Turkey
| | | |
Collapse
|
32
|
Bertino P, Premeaux TA, Fujita T, Haun BK, Marciel MP, Hoffmann FW, Garcia A, Yiang H, Pastorino S, Carbone M, Niki T, Berestecky J, Hoffmann PR, Ndhlovu LC. Targeting the C-terminus of galectin-9 induces mesothelioma apoptosis and M2 macrophage depletion. Oncoimmunology 2019; 8:1601482. [PMID: 31413910 PMCID: PMC6682368 DOI: 10.1080/2162402x.2019.1601482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022] Open
Abstract
Galectin-9 has emerged as a promising biological target for cancer immunotherapy due to its role as a regulator of macrophage and T-cell differentiation. In addition, its expression in tumor cells modulates tumor cell adhesion, metastasis, and apoptosis. Malignant mesothelioma (MM) is an aggressive neoplasm of the mesothelial cells lining the pleural and peritoneal cavities, and in this study, we found that both human MM tissues and mouse MM cells express high levels of galectin-9. Using a novel monoclonal antibody (mAb) (Clone P4D2) that binds the C-terminal carbohydrate recognition domain (CRD) of galectin-9, we demonstrate unique agonistic properties resulting in MM cell apoptosis. Furthermore, the P4D2 mAb reduced tumor-associated macrophages differentiation toward a protumor phenotype. Importantly, these effects exerted by the P4D2 mAb were observed in both human and mouse in vitro experiments and not observed with another antigalectin-9 specific mAb (clone P1D9) that engages the N-terminus CRD of galectin-9. In syngeneic murine models of MM, P4D2 mAb treatment inhibited tumor growth and improved survival, with tumors from P4D2-treated mice exhibited reduced infiltration of tumor-associated M2 macrophages. This was consistent with an increased production of inducible nitric oxide synthase, which is a major enzyme-regulating macrophage inflammatory response to cancer. These data suggest that using an antigalectin 9 mAb with agonistic properties similar to those exerted by galectin-9 may provide a novel multitargeted strategy for the treatment of mesothelioma and possibly other galectin-9 expressing tumors.
Collapse
Affiliation(s)
- Pietro Bertino
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | - Thomas A. Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Brien K. Haun
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | | | | | - Alan Garcia
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | - Haining Yiang
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sandra Pastorino
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Michele Carbone
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Co., Ltd., Takamatsu, Japan
| | - John Berestecky
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | | | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
33
|
Saxena M, Bhardwaj N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018; 4:119-137. [PMID: 29458962 DOI: 10.1016/j.trecan.2017.12.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are essential in immunity owing to their role in activating T cells, thereby promoting antitumor responses. Tumor cells, however, hijack the immune system, causing T cell exhaustion and DC dysfunction. Tumor-induced T cell exhaustion may be reversed through immune checkpoint blockade (ICB); however, this treatment fails to show clinical benefit in many patients. While ICB serves to reverse T cell exhaustion, DCs are still necessary to prime, activate, and direct the T cells to target tumor cells. In this review we provide a brief overview of DC function, describe mechanisms by which DC functions are disrupted by the tumor microenvironment, and highlight recent developments in DC cancer vaccines.
Collapse
Affiliation(s)
- Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Parker Institute of Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
34
|
Lai Y, Xu X, Zhu Z, Hua Z. Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex. Int J Nanomedicine 2018; 13:6603-6623. [PMID: 30425477 PMCID: PMC6205523 DOI: 10.2147/ijn.s176991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The discovery and development of RNA interference has made a tremendous contribution to the biochemical and biomedical field. However, liposomal transfection protocols to deliver siRNAs to certain types of cells, eg, immune cells, are not viable due to exceedingly low transfection efficiency. While viral delivery and electroporation are two widely adopted approaches to transfect immune cells, they are associated with certain drawbacks such as complexity of preparation, biosafety issues, and high cytotoxicity. We believe amendments can be made to liposomal formulas and protocols to achieve a highly efficient knockdown of genes by liposome-loaded siRNAs. Aim The aim of this study was to use the apoptotic-mimic Ca-PS lipopolyplex to achieve highly efficient siRNA knockdown of genes in the hard-to-transfect macrophages with reduced cytotoxicity and more efficient cellular uptake. Results We devised an anionic liposomal formula containing phosphatidylserine to mimic the apoptotic body, the Ca-PS lipopolyplex. Ca-PS lipopolyplex was proven to be capable of delivering and effecting efficient gene knockdown in multiple cell lines at lowered cytotoxicity. Among the two types of macrophages, namely Ana-1 and bone-marrow derived macrophages, Ca-PS lipopolyplex showed an improvement in knockdown efficiency, as high as 157%, over Lipo2000. Further investigations revealed that Ca-PS promotes increased cellular uptake, lysosomal escape and localization of siRNAs to the perinuclear regions in macrophages. Lastly, transfection by Ca-PS lipopolyplex did not induce spontaneous polarization of macrophages. Conclusion The apoptotic body-mimic Ca-PS lipopolyplex is a stable, non-cytotoxic liposomal delivery system for siRNAs featuring vastly improved potency for macrophages and lowered cytotoxicity. It is speculated that Ca-PS lipopolyplex can be applied to other immune cells such as T cells and DC cells, but further research efforts are required to explore its promising potentials.
Collapse
Affiliation(s)
- Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Xuebo Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zhenyu Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China, .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China,
| |
Collapse
|
35
|
Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother 2018; 103:662-679. [PMID: 29679908 DOI: 10.1016/j.biopha.2018.04.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Colony stimulating factor-1 (CSF-1) is one of the most common proinflammatory cytokine responsible for various inflammatory disorders. It has a remarkable role in the development and progression of osteoarthritis, cancer and other autoimmune disease conditions. The CSF-1 acts by binding to the receptor, called colony stimulating factor-1 receptor (CSF-1R) also known as c-FMS resulting in the cascade of signalling pathway causing cell proliferation and differentiation. Interleukin-34 (IL-34), recently identified as another ligand for CSF-IR, is a cytokine protein. Both, CSF-1 and IL-34, although two distinct cytokines, follow the similar signalling pathway on binding to the same receptor, CSF-1R. Like CSF-1, IL-34 promotes the differentiation and survival of monocyte, macrophages and osteoclasts. This CSF-1R/c-FMS is over expressed in many cancers and on tumour associated macrophages, consequently, have been exploited as a drug target for promising treatment for cancer and inflammatory diseases. Some CSF-1R/c-FMS inhibitors such as ABT-869, Imatinib, AG013736, JNJ-40346527, PLX3397, DCC-3014 and Ki20227 have been successfully used in these disease conditions. Many c-FMS inhibitors have been the candidates of clinical trials, but suffer from some side effects like cardiotoxicity, vomiting, swollen eyes, diarrhoea, etc. If selectivity of cFMS inhibition is achieved successfully, side effects can be overruled and this approach may become a novel therapy for treatment of various therapeutic interventions. Thus, successful targeting of c-FMS may result in multifunctional therapy. With this background of information, the present review focuses on the recent developments in the area of CSF-1R/c-FMS inhibitors with emphasis on crystal structure, mechanism of action and various therapeutic implications in which c-FMS plays a pivotal role. The review on structure activity relationship of various compounds acting as the inhibitors of c-FMS which gives the selection criteria for the development of novel molecules is also being presented.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104, Punjab, India
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
36
|
Dang W, Qin Z, Fan S, Wen Q, Lu Y, Wang J, Zhang X, Wei L, He W, Ye Q, Yan Q, Li G, Ma J. miR-1207-5p suppresses lung cancer growth and metastasis by targeting CSF1. Oncotarget 2018; 7:32421-32. [PMID: 27107415 PMCID: PMC5078023 DOI: 10.18632/oncotarget.8718] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/29/2016] [Indexed: 12/26/2022] Open
Abstract
We previously reported that miR-1207-5p can inhibit epithelial-mesenchymal transition (EMT) induced by growth factors such as EGF and TGF-β, but the exact mechanism is unclear. Here we identified that Colony stimulating factor 1 (CSF1) is a target gene of miR-1207-5p. CSF1 controls the production, differentiation and function of macrophage and promotes the release of proinflammatory chemokines. We showed that miR-1207-5p inhibited lung cancer cell A549 proliferation, migration and invasion in vitro, and suppressed the STAT3 and AKT signalings. miR-1207-5p overexpression can increase HUVEC angiogenesis, and can modulate the M2 phenotype of macrophage. miR-1207-5p also significantly inhibited A549 cells metastasis in a nude mouse xenograft model. miR-1207-5p and CSF1 expression levels and their relationship with lung cancer survival and metastasis status were assayed by means of a lung cancer tissue microarray. Macrophage is an essential part of the tumor microenvironment, thus the miR-1207-5p-CSF1 axis maybe a new regulator of lung cancer development through modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Dang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Zailong Qin
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanjun Lu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jia Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Xuemei Zhang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Lingyu Wei
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Wei He
- Cancer Research Institute, Central South University, Changsha, Hunan, China.,Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Qiurong Ye
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jian Ma
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
37
|
El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem 2018; 61:5450-5466. [PMID: 29293000 DOI: 10.1021/acs.jmedchem.7b00873] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Shahad K Al-Ameen
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Dania M Al-Koumi
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Mawadda G Hamad
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Nouran A Jalal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Chang-Hyun Oh
- Center for Biomaterials , Korea Institute of Science and Technology , P.O. Box 131, Cheongryang , Seoul 130-650 , Republic of Korea.,Department of Biomolecular Science , University of Science and Technology , 113 Gwahangno, Yuseong-gu , Daejeon 305-333 , Republic of Korea
| |
Collapse
|
38
|
Zhang HG, Cao P, Teng Y, Hu X, Wang Q, Yeri AS, Zhuang X, Samykutty A, Mu J, Deng ZB, Zhang L, Mobley JA, Yan J, Van Keuren-Jensen K, Miller D. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2018; 7:41346-41362. [PMID: 27191656 PMCID: PMC5173064 DOI: 10.18632/oncotarget.9325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/16/2016] [Indexed: 12/12/2022] Open
Abstract
Extracellular microvesicles (EVs) have been recognized for many potential clinical applications including biomarkers for disease diagnosis. In this study, we identified a major population of EVs by simply screening fluid samples with a nanosizer. Unlike other EVs, this extracellular nanovesicle (named HG-NV, HG-NV stands for HomoGenous nanovesicle as well as for Huang-Ge- nanovesicle) can be detected with a nanosizer with minimal in vitro manipulation and are much more homogenous in size (8–12 nm) than other EVs. A simple filtration platform is capable of separating HG-NVs from peripheral blood or cell culture supernatants. In comparison with corresponding exosome profiles, HG-NVs released from both mouse and human breast tumor cells are enriched with RNAs. Tumor derived HG-NVs are more potent in promoting tumor progression than exosomes. In summary, we identified a major subset of EVs as a previously unrecognized nanovesicle. Tumor cell derived HG-NVs promote tumor progression. Molecules predominantly present in breast tumor HG-NVs have been identified and characterized. This discovery may have implications in advancing both microvesicle biology research and clinical management including potential used as a biomarker.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Louisville Veterans Administration Medical Center, Louisville, KY 40206, USA.,James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Pengxiao Cao
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Yun Teng
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Xin Hu
- Program in Biostatistics, Bioinformatics and Systems Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, TX 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qilong Wang
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA.,Department of Clinical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ashish S Yeri
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Xiaoying Zhuang
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Abhilash Samykutty
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Jingyao Mu
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - Zhong-Bin Deng
- Department of Medicine, University of Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
| | - James A Mobley
- Mass Spectrometry/Proteomics Shared Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Yan
- Department of Medicine, University of Louisville, KY 40202, USA
| | | | - Donald Miller
- Department of Medicine, University of Louisville, KY 40202, USA
| |
Collapse
|
39
|
Baghdadi M, Endo H, Takano A, Ishikawa K, Kameda Y, Wada H, Miyagi Y, Yokose T, Ito H, Nakayama H, Daigo Y, Suzuki N, Seino KI. High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Sci Rep 2018; 8:418. [PMID: 29323162 PMCID: PMC5765132 DOI: 10.1038/s41598-017-18796-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in diagnosis and treatment of lung cancers, the 5-year survival rate remains unsatisfactory, which necessitates the identification of novel factors that associates with disease progression and malignant degree for improving diagnostic and therapeutic strategies. Recent progress in cancer immunology research has unveiled critical roles for colony stimulating factor 1 receptor (CSF1R) in multiple aspects of the tumor microenvironment. CSF1R is expressed on tumor-associated macrophages (TAMs), and mediates important pro-tumorigenic functions. CSF1R also provides critical autocrine signals that promote cancer cell survival and proliferation. Activation of CSF1R can be achieved by two independent ligands; macrophage colony-stimulating factor (M-CSF) and interleukin 34 (IL-34). Accordingly, the expression of these ligands in cancer is expected to result in poor prognosis. In this study, we show that IL-34 and M-CSF expression correlates with poor survival in a cohort of lung cancer patients. Importantly, high co-expression of IL-34 and M-CSF associates with the poorest survival compared to cancers that show weak or absent expression of the two ligands. Furthermore, high expression of IL-34 and M-CSF associates with advanced stages of lung cancers. Together, these results indicate a correlation between IL-34/M-CSF expression with poor survival and disease progression in lung cancer patients.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Hiraku Endo
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki City, Kanagawa, 216-8512, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, 520-2192, Japan.,Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Kozo Ishikawa
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Yosuke Kameda
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, 241-0815, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, 520-2192, Japan.,Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki City, Kanagawa, 216-8512, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.
| |
Collapse
|
40
|
Wang R, Feng W, Yang F, Yang X, Wang L, Chen C, Hu Y, Ren Q, Zheng G. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia. Immunol Cell Biol 2017; 96:190-203. [PMID: 29363207 DOI: 10.1111/imcb.1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Spaw M, Anant S, Thomas SM. Stromal contributions to the carcinogenic process. Mol Carcinog 2017; 56:1199-1213. [PMID: 27787930 PMCID: PMC5354948 DOI: 10.1002/mc.22583] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Tumor-associated stromal cells are dynamic characters that endorse the carcinogenic process in a multitude of ways. The tumor microenvironment plays a crucial role throughout the tumor progression, which includes initiation, growth, invasion, and metastasis. The tumor microenvironment consists of cellular and non-cellular components. Tumor-associated stromal cell types include the microbiome, immune cells including macrophages, dendritic and T-cells, cells associated with blood and lymphatic vessels including pericytes and endothelial cells, fibroblasts, neuronal cells, and adipocytes. The non-cellular components of the microenvironment include matrix proteins and secreted factors. The development of therapies that target the mechanisms by which stromal cells contribute to successful tumorigenesis is major goal of upcoming cancer research. The purpose of this review is to present a comprehensive discussion of the role of each of the tumor-associated stromal cell types in the carcinogenic process with a special focus on target development and therapeutic intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark Spaw
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
42
|
Zhang M, Zhang H, Tang F, Wang Y, Mo Z, Lei X, Tang S. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Exp Biol Med (Maywood) 2016; 241:2086-2093. [PMID: 27439542 DOI: 10.1177/1535370216660399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte-macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death.
Collapse
Affiliation(s)
- Mengxia Zhang
- 1 Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China.,2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hailiang Zhang
- 2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Fan Tang
- 2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Yuhua Wang
- 2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- 2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Xiaoyong Lei
- 2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Shengsong Tang
- 1 Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China.,2 Department of Histology and Embryology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
43
|
Diagnostic Power of Vascular Endothelial Growth Factor and Macrophage Colony-Stimulating Factor in Breast Cancer Patients Based on ROC Analysis. Mediators Inflamm 2016; 2016:5962946. [PMID: 27445439 PMCID: PMC4947496 DOI: 10.1155/2016/5962946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/12/2016] [Indexed: 01/25/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. Vascular endothelial growth factor (VEGF) has been described as an important regulator of angiogenesis which plays a vital role in the progression of tumor. Macrophage colony-stimulating factor (M-CSF) is a cytokine whose functions include regulation of hematopoietic lineages cells growth, proliferation, and differentiation. We investigated the diagnostic significance of these parameters in comparison to CA15-3 in BC patients and in relation to the control group (benign breast tumor and healthy women). Plasma levels of the tested parameters were determined by ELISA and CA15-3 was determined by CMIA. VEGF was shown to be comparable to CA15-3 values of sensitivity in BC group and, what is more important, higher values in early stages of BC. VEGF was also the only parameter which has statistically significant AUC in all stages of cancer. M-CSF has been shown to be comparable to CA15-3 and VEGF, specificity, and AUC values only in stages III and IV of BC. These results indicate the usefulness and high diagnostic power of VEGF in the detection of BC. Also, it occurred to be the best candidate for cancer diagnostics in stages I and II of BC and in the differentiation between BC and benign cases.
Collapse
|
44
|
Wang H, Shao Q, Sun J, Ma C, Gao W, Wang Q, Zhao L, Qu X. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology 2016; 5:e1122157. [PMID: 27141406 DOI: 10.1080/2162402x.2015.1122157] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrated macrophages were potential targets of the immune therapy for patients with colon cancer. Colony stimulating factor 1 (CSF1) is a primary chemoattractant and functional regulator for macrophages, and therefore would be a feasible intervention for the macrophage-targeting therapeutics. However, the expression of CSF1 in colon cancer microenvironment and its roles in cancer development is largely unknown. In the present study, we found that CSF1 was over-expressed exclusively in colon cancer cells and was correlated with macrophages infiltration. The high CSF1 expression and macrophages infiltration were related to the tumor-node-metastasis (TNM) stage of colon cancer, and suggested to be positively associated with survival of colon cancer patients. In the in vitro studies based on an indirect Transwell system, we found that co-culture with macrophage promoted CSF1 production in colon cancer cells. Further investigation on regulatory mechanisms suggested that CSF1 production in colon cancer cells was dependent on PKC pathway, which was activated by IL-8, mainly produced by macrophages. Moreover, colon cancer cell-derived CSF1 drove the recruitment of macrophages and re-educated their secretion profile, including the augment of IL-8 production. The mice tumor xenografts study also found that over-expression of CSF1 in colon cancer cells promoted intratumoral infiltration of macrophages, and partially suppressed tumor growth. In all, our results demonstrated that CSF1 was an important factor in the colon cancer microenvironment, involving in the interactions between colon cancer cells and tumor-infiltrated macrophages.
Collapse
Affiliation(s)
- Huayang Wang
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Qianqian Shao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Wenjuan Gao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Lei Zhao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University , Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China; Biotherapy Research Center, Shandong University Nanshan Branch of Qilu Hospital, Yantai, Shandong, China
| |
Collapse
|
45
|
Rosenfeld L, Shirian J, Zur Y, Levaot N, Shifman JM, Papo N. Combinatorial and Computational Approaches to Identify Interactions of Macrophage Colony-stimulating Factor (M-CSF) and Its Receptor c-FMS. J Biol Chem 2015; 290:26180-93. [PMID: 26359491 PMCID: PMC4646268 DOI: 10.1074/jbc.m115.671271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/06/2015] [Indexed: 01/06/2023] Open
Abstract
The molecular interactions between macrophage colony-stimulating factor (M-CSF) and the tyrosine kinase receptor c-FMS play a key role in the immune response, bone metabolism, and the development of some cancers. Because no x-ray structure is available for the human M-CSF · c-FMS complex, the binding epitope for this complex is largely unknown. Our goal was to identify the residues that are essential for binding of the human M-CSF to c-FMS. For this purpose, we used a yeast surface display (YSD) approach. We expressed a combinatorial library of monomeric M-CSF (M-CSFM) single mutants and screened this library to isolate variants with reduced affinity for c-FMS using FACS. Sequencing yielded a number of single M-CSFM variants with mutations both in the direct binding interface and distant from the binding site. In addition, we used computational modeling to map the identified mutations onto the M-CSFM structure and to classify the mutations into three groups as follows: those that significantly decrease protein stability; those that destroy favorable intermolecular interactions; and those that decrease affinity through allosteric effects. To validate the YSD and computational data, M-CSFM and three variants were produced as soluble proteins; their affinity and structure were analyzed; and very good correlations with both YSD data and computational predictions were obtained. By identifying the M-CSFM residues critical for M-CSF · c-FMS interactions, we have laid down the basis for a deeper understanding of the M-CSF · c-FMS signaling mechanism and for the development of target-specific therapeutic agents with the ability to sterically occlude the M-CSF·c-FMS binding interface.
Collapse
Affiliation(s)
- Lior Rosenfeld
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| | - Jason Shirian
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Zur
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Noam Levaot
- the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Julia M Shifman
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| |
Collapse
|
46
|
Hu HL, Bai HS, Pan HX. Correlation between TAMs and proliferation and invasion of type I endometrial carcinoma. ASIAN PAC J TROP MED 2015; 8:643-50. [PMID: 26321518 DOI: 10.1016/j.apjtm.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To explore the correlation between tumor-associated macrophages and the proliferation and invasion of type I endometrial carcinoma. METHODS Immunohistochemistry was used to investigate the infiltration of macrophages in normal and different types of hyperplastic endometrial lesions. The proliferation and invasion ability of type I endometrial carcinoma cell line RL95-2 influenced by mononuclear macrophage cell line THP-1 (constructed M2 type macrophages) was detected by CCK8 and transwell technologies respectively. Transwell was used to evaluate the recruiting ability of RL95-2 on THP-1 cells. Otherwise, the western blot was also used to detect the expression of CyclinD1 and MMP-2 in RL95-2 with the influence of THP-1. RESULTS Immunohistochemistry result showed a positive correlation between the number of infiltrating macrophages and the progression of endometrial hyperplasia. THP-1 recruited by RL95-2 could promote its proliferation and invasion and enhance the expression of the CyclinD1 and MMP-2 protein in a time dependent manner (P < 0.05). CONCLUSIONS Increase of the number of infiltrating macrophages and its contribution to the tumor inflammatory microenvironment may result in the development of the type I endometrial carcinoma.
Collapse
Affiliation(s)
- Hong-Lin Hu
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Han-Song Bai
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Graduate School, Zunyi Medical College, Zunyi 563000, China
| | - Hai-Xia Pan
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|