1
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
2
|
Duan S, Tian Z, Hu R, Long H. NEDD4L inhibits epithelial-mesenchymal transition in gastric cancer by mediating BICC1 ubiquitination. Kaohsiung J Med Sci 2025; 41:e12924. [PMID: 39717922 PMCID: PMC11827545 DOI: 10.1002/kjm2.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical stage in the metastasis of gastric cancer (GC). Further clarification of the EMT process in GC is still needed. This study examined the effects of the NEDD4L/BICC1 axis on GC proliferation and the EMT process. Thirty GC patients were enrolled in this study to assess the expression of BICC1 and NEDD4L in tumor samples. A xenograft tumor model in mice was created to investigate BICC1's function in vivo. The proliferation, migration, and invasion of GC cells were evaluated using colony formation, transwell, and wound healing assays. Western blot determined the expression levels of EMT-associated proteins. Co-immunoprecipitation (Co-IP) elucidated the mechanism by which NEDD4L regulates BICC1. BICC1 was found to be overexpressed in tumors. Additionally, BICC1 knockdown inhibited the growth of GC cells in vivo and prevented their migration, invasion, proliferation, and EMT. Furthermore, BICC1 activated the PI3K/AKT pathway, which facilitated cancer progression. Tumor tissues and GC cells exhibited low expression levels of NEDD4L. Conversely, NEDD4L overexpression promoted the ubiquitination and degradation of BICC1 protein, thereby inhibiting GC cell proliferation, migration, invasion, and EMT processes. Our study demonstrated that NEDD4L acts as a tumor suppressor in GC, while BICC1 functions as a pro-tumorigenic factor. The NEDD4L/BICC1 axis plays a significant role in the metastasis and progression of GC.
Collapse
Affiliation(s)
- Shaoyi Duan
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Zhiliang Tian
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Rong Hu
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Heng Long
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| |
Collapse
|
3
|
Napoletano S, Dannhauser D, Netti PA, Causa F. Integrative analysis of miRNA expression data reveals a minimal signature for tumour cells classification. Comput Struct Biotechnol J 2024; 27:233-242. [PMID: 39866665 PMCID: PMC11760817 DOI: 10.1016/j.csbj.2024.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
MicroRNAs (miRNAs) are pivotal biomarkers for cancer screening. Identifying distinctive expression patterns of miRNAs in specific cancer types can serve as an effective strategy for classification and characterization. However, the development of a minimal signature of miRNAs for accurate cancer classification remains challenging, hindered by the lack of integrated approaches that systematically analyse miRNA expression levels of miRNAs alongside their associated biological pathways. In this study, we present a comprehensive integrative approach that utilizes transcriptomic data from lung, breast, and melanoma cancer cell lines to identify specific expression patterns. By combining bioinformatics, dimensionality reduction techniques, machine learning, and experimental validation, we pinpoint miRNAs linked to critical biological pathways. Our results demonstrate a highly significant differentiation of cancer types, achieving 100 % classification accuracy with minimal training time using a streamlined miRNA signature. Validation of the miRNA profile confirms that each of the three identified miRNAs regulates distinct biological pathways with minimal overlap. This specificity highlights their unique roles in tumour biology and set the stage for further exploration of miRNAs interactions and their contributions to tumourigenesis across diverse cancer types. Our work paves the way for multi-cancer classification, emphasizing the transformative potential of miRNA research in oncology. Beyond advancing the understanding of tumour biology, our step-by-step guide offers a robust tool for a wide range of users to investigate precise diagnostics and promising therapeutic strategies.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - David Dannhauser
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, Naples 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, Naples 80125, Italy
| |
Collapse
|
4
|
Blackburn DM, Sahinyan K, Hernández-Corchado A, Lazure F, Richard V, Raco L, Perron G, Zahedi RP, Borchers CH, Lepper C, Kawabe H, Jahani-Asl A, Najafabadi HS, Soleimani VD. The E3 ubiquitin ligase Nedd4L preserves skeletal muscle stem cell quiescence by inhibiting their activation. iScience 2024; 27:110241. [PMID: 39015146 PMCID: PMC11250905 DOI: 10.1016/j.isci.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.
Collapse
Affiliation(s)
- Darren M. Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Laura Raco
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine 37075 Göttingen, Germany
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Vahab D. Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Chen SY, Liu PQ, Qin DX, Lv H, Zhou HQ, Xu Y. E3 ubiquitin ligase NEDD4L inhibits epithelial-mesenchymal transition by suppressing the β-catenin/HIF-1α positive feedback loop in chronic rhinosinusitis with nasal polyps. Acta Pharmacol Sin 2024; 45:831-843. [PMID: 38052867 PMCID: PMC10943232 DOI: 10.1038/s41401-023-01190-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a refractory inflammatory disease with epithelial-mesenchymal transition (EMT) as one of the key features. Since ubiquitin modification has been shown to regulate the EMT process in other diseases, targeting ubiquitin ligases may be a potential strategy for the treatment of CRSwNP. In this study we investigated whether certain E3 ubiquitin ligases could regulate the EMT process in CRSwNP, and whether these regulations could be the potential drug targets as well as the underlying mechanisms. After screening the potential drug target by bioinformatic analyses, the expression levels of three potential E3 ubiquitin ligases were compared among the control, eosinophilic nasal polyp (ENP) and non-eosinophilic nasal polyp (NENP) group in clinical samples, and the significant decrement of the expression level of NEDD4L was found. Then, IP-MS, bioinformatics and immunohistochemistry studies suggested that low NEDD4L expression may be associated with the EMT process. In human nasal epithelial cells (hNECs) and human nasal epithelial cell line RPMI 2650, knockdown of NEDD4L promoted EMT, while upregulating NEDD4L reversed this effect, suggesting that NEDD4L inhibited EMT in nasal epithelial cells. IP-MS and Co-IP studies revealed that NEDD4L mediated the degradation of DDR1. We demonstrated that NEDD4L inhibited the β-catenin/HIF-1α positive feedback loop either directly (degrading β-catenin and HIF-1α) or indirectly (mediating DDR1 degradation). These results were confirmed in a murine NP model in vivo. This study for the first time reveals the regulatory role of ubiquitin in the EMT process of nasal epithelial cells, and identifies a novel drug target NEDD4L, which has promising efficacy against both ENP and NENP by suppressing β-catenin/HIF-1α positive feedback loop.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Pei-Qiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan-Xue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Qin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Alrosan AZ, Alrosan K, Heilat GB, Alsharedeh R, Abudalo R, Oqal M, Alqudah A, Elmaghrabi YA. Potential roles of NEDD4 and NEDD4L and their utility as therapeutic targets in high‑incidence adult male cancers (Review). Mol Clin Oncol 2023; 19:68. [PMID: 37614371 PMCID: PMC10442760 DOI: 10.3892/mco.2023.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The term 'cancer' refers to >100 disorders that progressively manifest over time and are characterized by uncontrolled cell division. Although malignant growth can occur in virtually any human tissue, the underlying mechanisms underlying all forms of cancer are consistent. The International Agency for Research on Cancer's annual GLOBOCAN 2020 report provided an update on the global cancer incidence and mortality. Excluding non-melanoma skin cancer, the report predicts that there will be 19.3 million new cancer cases and >10 million cancer-related fatalities in 2023. Lung, prostate, and colon cancers are the most prevalent and lethal cancers in males. It was recognized that post-translational modifications (PTMs) of proteins are necessary for almost all cellular biological processes, as well as in cancer development and metastasis to other bodily organs. Thus, PTMs have a considerable impact on how proteins behave. Various PTMs may have harmful roles by affecting the hallmarks of cancer, metabolism and the regulation of the tumor microenvironment. PTMs and genetic changes/mutations are essential in carcinogenesis and cancer development. A pivotal PTM mechanism is protein ubiquitination. Of note, the rate-limiting stage of the protein ubiquitination cascade is hypothesized to be E3-ligase-mediated ubiquitination. Numerous studies revealed that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) E3 ligase is among the E3 ubiquitin ligases that have essential roles in cellular processes. It regulates protein degradation and substrate ubiquitination. In addition, it has been shown that NEDD4 primarily functions as an oncogene in various malignancies but can also act as a tumor suppressor in certain types of tumor. In the present review, the roles of NEDD4 as an anticancer protein in various high-incidence male malignancies and the significance of NEDD4 as a potential cancer therapeutic target are discussed. In addition, the targeting of NEDD4 as a therapeutic strategy for the treatment of human malignancies is explored.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rawan Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The Yarmouk University, Irbid 21163, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | |
Collapse
|
8
|
Mokhtari H, Ebrahimi A, Nejati M, Barartabar Z, Damchi M, Khonakdar-Tarsi A, Zahedi M. The effect of encomir-93 mimic transfection on the expression of miR-93 and PSA and androgen receptor in prostate cancer LNcap cell line. Horm Mol Biol Clin Investig 2023; 44:237-241. [PMID: 36995990 DOI: 10.1515/hmbci-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Prostate cancer (PCa) is one of the most common cancers in men with high mortality rate which is a major concern for men's health. However, the molecular mechanisms remain poorly understood. miR-93 is an important oncogene which may have important function in prostate cancer.So, this study aimed to predict that encomir-93 mimic transfection on the expression of miR-93 and PSA and AR in prostate cancer LNcap cell line. METHODS Lymph node carcinoma of the prostate (LNCaP) was cultured and then miR-93 mimics was designed, synthesized and the transfected to LNCaP. The expression level of prostate-specific antigen (PSA) and androgen receptor (AR) was determined via Real-time PCR after treated with 15 pmol of miR-93 mimics. RESULTS miR-93 mimic transfection led to significant increase in PSA and AR expression in comparison with control group (p≤0.05). CONCLUSIONS The miR-93 and its target genes has important role in PCa progression via enhancement in PSA and AR expression. Further research on the function of the miR-93 and its target genes in tumorgenesis and progression PCa could be helpful for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hossein Mokhtari
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Ebrahimi
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Mohaddeseh Nejati
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Zeinab Barartabar
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mehdi Damchi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Datkhayev UM, Rakhmetova V, Shepetov AM, Kodasbayev A, Datkayeva GM, Pazilov SB, Farooqi AA. Unraveling the Complex Web of Mechanistic Regulation of Versatile NEDD4 Family by Non-Coding RNAs in Carcinogenesis and Metastasis: From Cell Culture Studies to Animal Models. Cancers (Basel) 2023; 15:3971. [PMID: 37568787 PMCID: PMC10417118 DOI: 10.3390/cancers15153971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023] Open
Abstract
Discoveries related to an intriguing feature of ubiquitination have prompted a detailed analysis of the ubiquitination patterns in malignant cells. How the "ubiquitinome" is reshaped during multistage carcinogenesis has garnered significant attention. Seminal studies related to the structural and functional characterization of NEDD4 (Neuronal precursor cell-expressed developmentally downregulated-4) have consolidated our understanding at a new level of maturity. Additionally, regulatory roles of non-coding RNAs have further complicated the complex interplay between non-coding RNAs and the members of NEDD4 family. These mechanisms range from the miRNA-mediated targeting of NEDD4 family members to the regulation of transcriptional factors for a broader range of non-coding RNAs. Additionally, the NEDD4-mediated degradation of different proteins is modulated by lncRNAs and circRNAs. The miRNA-mediated targeting of NEDD4 family members is also regulated by circRNAs. Tremendous advancements have been made in the identification of different substrates of NEDD4 family and in the comprehensive analysis of the molecular mechanisms by which various members of NEDD4 family catalyze the ubiquitination of substrates. In this review, we have attempted to summarize the multifunctional roles of the NEDD4 family in cancer biology, and how different non-coding RNAs modulate these NEDD4 family members in the regulation of cancer. Future molecular studies should focus on the investigation of a broader drug design space and expand the scope of accessible targets for the inhibition/prevention of metastasis.
Collapse
Affiliation(s)
- Ubaidilla M. Datkhayev
- Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan;
| | - Almat Kodasbayev
- Department of Cardiovascular Surgery, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Sabit B. Pazilov
- Department of Healthcare of Kyzylorda Region, Kyzylorda, Abay Avenue, 27, Kyzylorda 120008, Kazakhstan;
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
10
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
11
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
13
|
FENG JIAFU, XU BEI, DAI CHUNMEI, WANG YAODONG, XIE GANG, YANG WENYU, ZHANG BIN, LI XIAOHAN, WANG JUN. Macrophage-derived exosomal miR-342-3p promotes the progression of renal cell carcinoma through the NEDD4L/CEP55 axis. Oncol Res 2022; 29:331-349. [PMID: 37305161 PMCID: PMC10208006 DOI: 10.32604/or.2022.03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/19/2022] [Indexed: 03/08/2023] Open
Abstract
Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy, renal cell carcinoma (RCC) remains to be a frequent cause of cancer-related death. Here, we probed into new targets for its early diagnosis and treatment for RCC. microRNA (miRNA) data of M2-EVs and RCC were searched on the Gene Expression Omnibus database, followed by the prediction of the potential downstream target. Expression of target genes was measured via RT-qPCR and Western blot, respectively. M2 macrophage was obtained via flow cytometry with M2-EVs extracted. The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed. Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes. M2-EVs induced RCC growth and metastasis. miR-342-3p showed high expression in both M2-EVs and RCC cells. M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate, invade and migrate. In RCC cells, M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L, thereby exerting tumor-promoting effects. CEP55 could be degraded by ubiquitination under the function of NEDD4L, and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway. In conclusion, M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway, strongly driving the proliferative, migratory and invasive of RCC cells.
Collapse
Affiliation(s)
- JIAFU FENG
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - BEI XU
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - CHUNMEI DAI
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - YAODONG WANG
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Urology Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - GANG XIE
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - WENYU YANG
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - BIN ZHANG
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - XIAOHAN LI
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - JUN WANG
- Medical Technology Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
14
|
Li G, Song Z, Wu C, Li X, Zhao L, Tong B, Guo Z, Sun M, Zhao J, Zhang H, Jia L, Li S, Wang L. Downregulation of NEDD4L by EGFR signaling promotes the development of lung adenocarcinoma. J Transl Med 2022; 20:47. [PMID: 35090513 PMCID: PMC8800232 DOI: 10.1186/s12967-022-03247-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Cumulative evidence indicates that the abnormal regulation of the NEDD4 family of E3-ubiquitin ligases participates in the tumorigenesis and development of cancer. However, their role in lung adenocarcinoma (LUAD) remains unclear. This study comprehensively analyzed the NEDD4 family in LUAD data sets from public databases and found only NEDD4L was associated with the overall survival of LUAD patients. Gene set enrichment analysis (GSEA) indicated that NEDD4L might be involved in the regulation of mTORC1 pathway. Both cytological and clinical assays showed that NEDD4L inhibited the activity of the mTOR signaling pathway. In vivo and in vitro experiments showed that NEDD4L could significantly inhibit the proliferation of LUAD cells. In addition, this study also found that the expression of NEDD4L was regulated by EGFR signaling. These findings firstly revealed that NEDD4L mediates an interplay between EGFR and mTOR pathways in LUAD, and suggest that NEDD4L held great potential as a novel biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changjing Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - XiaoYan Li
- Department of Blood Transfusion, Shanxi Province People's Hospital, Taiyuan, China
| | - Liping Zhao
- Department of Pathology, Shanxi Province People's Hospital, Taiyuan, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jin Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Huina Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Xie S, Xia L, Song Y, Liu H, Wang ZW, Zhu X. Insights Into the Biological Role of NEDD4L E3 Ubiquitin Ligase in Human Cancers. Front Oncol 2021; 11:774648. [PMID: 34869021 PMCID: PMC8634104 DOI: 10.3389/fonc.2021.774648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is an E3 ubiquitin ligase that has been reported to participate in multiple cellular procedures by regulating of substrate ubiquitination and subsequent protein degradation. A great amount of evidence has demonstrated that NEDD4L mainly functions as a tumor suppressor in most cancer types, while it also acts as an oncogene in a few cancers. In this review, we summarize the potential role of NEDD4L in carcinogenesis and the related underlying molecular mechanism to improve our understanding of its functions in the tumorigenesis of human malignancies. Developing clinical drugs targeting NEDD4L could be a potential therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
- Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
The regulation of CPNE1 ubiquitination by the NEDD4L is involved in the pathogenesis of non-small cell lung cancer. Cell Death Discov 2021; 7:336. [PMID: 34743202 PMCID: PMC8572224 DOI: 10.1038/s41420-021-00736-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Our previous studies revealed that oncogene CPNE1 is positively correlated with the occurrence, TNM stage, lymph node metastasis, and distant metastasis of non-small-cell lung cancer (NSCLC), and it could be regulated by micro RNAs. But no direct role of post-translational modification of CPNE1 in NSCLC has been reported. This study confirms that CPNE1 is degraded by two pathways: the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. CPNE1 binds with the ubiquitin molecule via its K157 residue. Moreover, we determined that the ubiquitin ligase NEDD4L can mediate the ubiquitination of CPNE1 and promote its degradation. In addition, we find that NEDD4L knockdown promotes the proliferation and metastasis of NSCLC cells by regulating CPNE1 in vitro and vivo. This study aims to further investigate the mechanism of CPNE1 ubiquitination in the occurrence and development of NSCLC and provide a new potential target for NSCLC treatment.
Collapse
|
17
|
Dong H, Zhu L, Sun J, Zhang Y, Cui Q, Wu L, Chen S, Lu J. Pan-cancer Analysis of NEDD4L and Its Tumor Suppressor Effects in Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:6242-6253. [PMID: 34539897 PMCID: PMC8425189 DOI: 10.7150/jca.58004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
The expression level of NEDD4L, an E3 ubiquitin ligase, has changed significantly in human cancers. In this study, we aimed to study the expression of NEDD4L in pan-carcinoma and its function in malignant tumors. We analyzed the gene expression level of NEDD4L in pan-cancer from The Cancer Genome Atlas (TCGA) microarray data set, the correlation between gene expression and overall survival, disease-specific survival, and tumor immune microenvironment changes. NEDD4L expression changes in half of the cancer types. Low expression of NEDD4L gene predicts poor overall survival and disease-specific survival (DSS) in renal clear cell carcinoma (KIRC) and renal chromophobe cell carcinoma (KIRP). NEDD4L is negatively related to interstitial cell infiltration and immune cell infiltration in most common cancers. Furthermore, the low expression of NEDD4L was verified in our clear cell renal cell carcinoma (ccRCC) clinical tissues. In ccRCC cells, NEDD4L overexpression significantly reduced cell proliferation and migration. In the functional analysis, we proved that NEDD4L could inhibit ERBB3 and MAPK signaling pathways. When cells are deficient in nutrition, NEDD4L promoted the degradation of the autophagy regulatory protein ULK1. Our study provides novel insights into the role of NEDD4L in pan-cancer. NEDD4L may play a tumor suppressor effect in ccRCC, through tumor immune regulation and ubiquitination of key intracellular kinases.
Collapse
Affiliation(s)
- Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Ling Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Jingjing Sun
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Yi Zhang
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Qiang Cui
- Nephrology and Urology Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lin Wu
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Shushang Chen
- Department of Urology, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, Fujian, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| |
Collapse
|
18
|
Wang H, Cao X, Wen X, Li D, Ouyang Y, Bao B, Zhong Y, Qin Z, Yin M, Chen Z, Yin X. Transforming growth factor‑β1 functions as a competitive endogenous RNA that ameliorates intracranial hemorrhage injury by sponging microRNA‑93‑5p. Mol Med Rep 2021; 24:499. [PMID: 33955515 PMCID: PMC8127068 DOI: 10.3892/mmr.2021.12138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) has the highest mortality rate of all stroke subtypes but an effective treatment has yet to be clinically implemented. Transforming growth factor-β1 (TGF-β1) has been reported to modulate microglia-mediated neuroinflammation after ICH and promote functional recovery; however, the underlying mechanisms remain unclear. Non-coding RNAs such as microRNAs (miRNAs) and competitive endogenous RNAs (ceRNAs) have surfaced as critical regulators in human disease. A known miR-93 target, nuclear factor erythroid 2-related factor 2 (Nrf2), has been shown to be neuroprotective after ICH. It was hypothesized that TGF-β1 functions as a ceRNA that sponges miR-93-5p and thereby ameliorates ICH injury in the brain. Short interfering RNA (siRNA) was used to knock down TGF-β1 and miR-93 expression was also pharmacologically manipulated to elucidate the mechanistic association between miR-93-5p, Nrf2, and TGF-β1 in an in vitro model of ICH (thrombin-treated human microglial HMO6 cells). Bioinformatics predictive analyses showed that miR-93-5p could bind to both TGF-β1 and Nrf2. It was found that neuronal miR-93-5p was dramatically decreased in these HMO6 cells, and similar changes were observed in fresh brain tissue from patients with ICH. Most importantly, luciferase reporter assays were used to demonstrate that miR-93-5p directly targeted Nrf2 to inhibit its expression and the addition of the TGF-β1 untranslated region restored the levels of Nrf2. Moreover, an miR-93-5p inhibitor increased the expression of TGF-β1 and Nrf2 and decreased apoptosis. Collectively, these results identified a novel function of TGF-β1 as a ceRNA that sponges miR-93-5p to increase the expression of neuroprotective Nrf2 and decrease cell death after ICH. The present findings provided evidence to support miR-93-5p as a potential therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Han Wang
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xianming Cao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoqing Wen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Dongling Li
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Yetong Ouyang
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bing Bao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Yuqin Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengfang Qin
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Min Yin
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
19
|
Zeng Y, Feng Z, Liao Y, Yang M, Bai Y, He Z. Diminution of microRNA-98 alleviates renal fibrosis in diabetic nephropathy by elevating Nedd4L and inactivating TGF-β/Smad2/3 pathway. Cell Cycle 2020; 19:3406-3418. [PMID: 33315506 DOI: 10.1080/15384101.2020.1838780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have already been documented to function in diabetic nephropathy (DN), yet little research has focused on the role of miR-98 in this disease. Here, we discuss the mechanism of miR-98 on the renal fibrosis in DN. Recombinant adeno-associated virus carrying miR-98 inhibitor or Nedd4L overexpression plasmid was injected into DN modeled rats to explore their roles in DN. Renal tubular epithelial cell injury models (NRK-52E cells) were induced by high glucose (HG). HG-treated NRK-52E cells were transfected with miR-98 inhibitor or Nedd4L overexpression plasmid for further verification. MiR-98 was upregulated, Nedd4L was downregulated and TGF-β/Smad2/3 signaling was activated in kidney tissues of DN rats and HG-treated NRK-52E cells. miR-98 targeted Nedd4L mRNA 3'UTR. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, alleviated pathological damage and fibrosis, ameliorated inflammation, and depressed cell apoptosis of kidney tissues of DN rats. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, strengthened viability, and limited apoptosis of HG-treated renal tubular epithelial cells. Nedd4L overexpression reversed the effect of up-regulating miR-98 on DN rats and HG-treated renal tubular epithelial cells. Altogether, we find that miR-98 is upregulated in kidney tissues of DN rats, and miR-98 diminution and Nedd4L elevation attenuate renal fibrosis through inactivation of the TGF-β/Smad2/3 pathway, which provides a novel therapy for DN.
Collapse
Affiliation(s)
- Yi Zeng
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Zhijian Feng
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Yunjuan Liao
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Ming Yang
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Yihua Bai
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Zhenkun He
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| |
Collapse
|
20
|
Liu S, Tian Y, Zheng Y, Cheng Y, Zhang D, Jiang J, Li S. TRIM27 acts as an oncogene and regulates cell proliferation and metastasis in non-small cell lung cancer through SIX3-β-catenin signaling. Aging (Albany NY) 2020; 12:25564-25580. [PMID: 33264103 PMCID: PMC7803540 DOI: 10.18632/aging.104163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway plays vital roles in diverse biological processes, including cell differentiation, proliferation, migration, and insulin sensitivity. A recent study reported that the DNA-binding transcriptional factor SIX3 is essential during embryonic development in vertebrates and capable of downregulating target genes of the Wnt/β-catenin pathway in lung cancer, indicating negative regulation of Wnt/β-catenin activation. However, regulation of the SIX3-Wnt/β-catenin pathway axis remains unknown. We measured the expression of TRIM27 and SIX3 as well as investigated whether there was a correlation between them in lung cancer tissue samples. Herein, we found that the E3 ubiquitin ligase, TRIM27, ubiquitinates, and degrades SIX3. TRIM27 induces non-small cell lung cancer (NSCLC) cell proliferation and metastasis, and the expression of β-catenin, S100P, TGFB3, and MMP-9 were significantly inhibited by SIX3. Furthermore, XAV939 is a selective β-catenin-mediated transcription inhibitor that inhibited TRIM27- and SIX3-mediated NSCLC cell proliferation, migration, and invasion. Clinically, lung tissue samples of cancer patients showed increased TRIM27 expression and decreased SIX3 expression. Taken together, these data demonstrate that TRIM27 acts as an oncogene regulating cell proliferation and metastasis in NSCLC through SIX3-β-catenin signaling.
Collapse
Affiliation(s)
- Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Tian
- Xi'an Jiaotong University Press, Xi'an 710049, China
| | - Ying Zheng
- Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
21
|
Fuchs HR, Meister R, Lotke R, Framme C. The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells. Exp Eye Res 2020; 201:108258. [PMID: 32980316 DOI: 10.1016/j.exer.2020.108258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023]
Abstract
The transforming growth factor-beta (TGFB) plays an essential role in the pathogenesis of some ophthalmologic diseases, including neovascular age-related macular degeneration (nAMD) and proliferative vitreoretinopathy (PVR). TGFB activates the transcription factors SMAD2 and SMAD3 via the TGFB receptor, which together activate several genes, including VEGFA. TGFB treated ARPE-19 cells show an increased proliferation rate and undergo epithelial to mesenchymal transition (EMT). Since microRNAs (miRNAs) are capable of inhibiting the translation of multiple genes, we screened for miRNAs that regulate the TGFB signalling pathways at multiple levels. In this study, we focused on two miRNAs, miR-302d and miR-93, which inhibit TGFB signalling pathway and therefore TGFB-induced EMT transition as well as VEGFA secretion from ARPE-19 cells. Furthermore, we could show that both miRNAs can retransform TGFB-stimulated mesenchymal ARPE-19 cells towards the morphological epithelial-like state. Taken together, transient overexpression of these miRNAs in RPE cells might be a promising approach for further translational strategies.
Collapse
Affiliation(s)
- Heiko R Fuchs
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany.
| | - Roland Meister
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Rishikesh Lotke
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Framme
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
22
|
Yang S, Tang D, Zhao YC, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Shen S, Christiani DC, Wang Q, Wei Q. Novel genetic variants in KIF16B and NEDD4L in the endosome-related genes are associated with nonsmall cell lung cancer survival. Int J Cancer 2020; 147:392-403. [PMID: 31618441 PMCID: PMC8096203 DOI: 10.1002/ijc.32739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The endosome is a membrane-bound organ inside most eukaryotic cells, playing an important role in adaptive immunity by delivering endocytosed antigens to both MHC class I and II pathways. Here, by analyzing genotyping data from two published genome-wide association studies (GWASs), we evaluated associations between genetic variants in the endosome-related gene-set and survival of patients with nonsmall cell lung cancer (NSCLC). The discovery included 44,112 (3,478 genotyped and 40,634 imputed) single-nucleotide polymorphisms (SNPs) in 220 genes in a singlelocus analysis for their associations with survival of 1,185 NSCLC patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. After validation of the 821 survival-associated significant SNPs in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study, 14 SNPs remained significant. The final multivariate stepwise Cox proportional hazards regression modeling of the PLCO dataset identified three potentially functional and independent SNPs (i.e., KIF16B rs1555195 C>T, NEDD4L rs11660748 A>G and rs73440898 A>G) with an adjusted hazards ratio (HR) of 0.86 (95% confidence interval [CI] = 0.79-0.94, p = 0.0007), 1.31 (1.16-1.47, p = 6.0 × 10-5 ) and 1.27 (1.12-1.44, p = 0.0001) for overall survival (OS), respectively. Combined analysis of the adverse genotypes of these three SNPs revealed a trend in the genotype-survival association (ptrend < 0.0001 for OS and ptrend < 0.0001 for disease-specific survival). Furthermore, the survival-associated KIF16B rs1555195T allele was significantly associated with decreased mRNA expression levels of KIF16B in both lung tissues and blood cells. Therefore, genetic variants of the endosome-related genes may be biomarker for NSCLC survival, possibly through modulating the expression of corresponding genes.
Collapse
Affiliation(s)
- Sen Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dongfang Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas E. Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
24
|
Shibuya N, Kakeji Y, Shimono Y. MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. Cancer Sci 2020; 111:2093-2103. [PMID: 32307765 PMCID: PMC7293106 DOI: 10.1111/cas.14423] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells with cancer stem cell (CSC) properties initiate both primary tumor formation and metastases at distant sites. Acquisition of CSC properties is highly associated with epigenetic alterations, including those mediated by microRNAs (miRNAs). We have previously established the breast cancer patient‐derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, we found that the expression levels of 3 miRNAs (miR‐25, miR‐93, and miR‐106b) in the miR‐106b‐25 cluster were much lower in the CD44+ human cancer cells metastasized to the liver than those at the primary site. Constitutive overexpression of miR‐93 suppressed invasive ability and 3D‐organoid formation capacity of breast cancer cells in vitro and significantly suppressed their metastatic ability to the liver in vivo. Wiskott‐Aldrich syndrome protein family member 3 (WASF3), a regulator of both cytoskeleton remodeling and CSC properties, was identified as a functional target of miR‐93: overexpression of miR‐93 reduced the protein level of WASF3 in breast cancer cells and WASF3 rescued the miR‐93‐mediated suppression of breast cancer cell invasion. These findings suggest that miR‐93 functions as a metastasis suppressor by suppressing both invasion ability and CSC properties in breast cancers.
Collapse
Affiliation(s)
- Naoki Shibuya
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
25
|
Li Y, Liang M, Zhang Y, Yuan B, Gao W, Shi Z, Bai J. miR-93, miR-373, and miR-17-5p Negatively Regulate the Expression of TBP2 in Lung Cancer. Front Oncol 2020; 10:526. [PMID: 32426273 PMCID: PMC7212423 DOI: 10.3389/fonc.2020.00526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Recently, several miRNAs have been revealed to play critical roles in oncogenesis and tumor progression of many cancers. Thioredoxin-1 (Trx-1) binding protein-2 (TBP-2) is an internal inhibitor of Trx-1, which plays the role in regulating oxidative stress, inhibiting cell growth, and promoting apoptosis. The expression of TBP-2 is usually decreased in cancer tissues. However, whether the miRNAs regulate the TBP-2 expression in lung cancer is still unclear. In this study, we examined the levels of TBP-2, miR-93, miR-373, and miR-17-5p in lung cancer tissues and their adjacent normal lung tissues of 36 patients. We found that the expressions of miR-93, miR-373, and miR-17-5p were higher, whereas the expression of TBP-2 mRNA and protein was significantly lower in lung cancer tissues compared with adjacent normal lung tissues. After the three miRNA mimics were transfected in the lung cancer cells, NCI-H460, the level of TBP-2 mRNA and TBP-2 protein was decreased. Then, the anti-cancer drug 5-fluorouracil was used to stimulate the NCI-H460 cells; the mRNA levels of miR-93, miR-373, and miR-17-5p were decreased, and the level of TBP-2 mRNA and protein was increased. Collectively, the above results suggest that miR-93, miR-373, and miR-17-5p negatively regulate the TBP-2 expression in lung cancer. This study may provide therapeutic targets with lung cancer.
Collapse
Affiliation(s)
- Ye Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Min Liang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Yunhui Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Bing Yuan
- First People's Hospital of Yunnan Province, Kunming, China
| | - Wenchao Gao
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Zhizhou Shi
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
26
|
Zhang S, He Y, Liu C, Li G, Lu S, Jing Q, Chen X, Ma H, Zhang D, Wang Y, Huang D, Tan P, Chen J, Zhang X, Liu Y, Qiu Y. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. J Cancer 2020; 11:3871-3881. [PMID: 32328191 PMCID: PMC7171485 DOI: 10.7150/jca.43854] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with squamous cell carcinoma of the head and neck (SCCHN). Therefore, disease prediction and inhibition of invasion and metastasis are critical for enhancing the survival of patients with SCCHN. Our previous study revealed that increased expression of miR-93-5p is associated with poor prognosis in SCCHN; however, the mechanism underlying the oncogenic functions of miR-93-5p in SCCHN migration and invasion remains unclear. Using qPCR analyses, transwell assays, and scratch tests, we demonstrated that expression of ectopic miR-93-5p induced the migration and invasion of SCCHN, and this was accompanied by corresponding alterations in biomarkers and transcription factors specific for epithelial-mesenchymal transition (EMT). Luciferase reporter assays were used to demonstrate that miR-93-5p directly targeted the 3' UTR of RGMB, and we further found that the tumor-promoting functions of miR-93-5p were partly mediated by targeting RGMB, whose downregulation also promoted the migration and invasion of SCCHN. Overall, our results indicate that miR-93-5p acts as an oncogene in the regulation of migration and invasion by suppressing RGMB in SCCHN. These findings provide novel evidence that miR-93-5p may serve as a valuable predictive biomarker and potential intervention target in patients with SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Changsha Central Hospital,161 Shaoshan Road, University of South China, Changsha, Hunan 410004, People's Republic of China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Pingqing Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Jie Chen
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
27
|
RSP5 Positively Regulates the Osteogenic Differentiation of Mesenchymal Stem Cells by Activating the K63-Linked Ubiquitination of Akt. Stem Cells Int 2020; 2020:7073805. [PMID: 32322280 PMCID: PMC7165343 DOI: 10.1155/2020/7073805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have a strong osteogenic differentiation capacity. However, the molecular mechanism underlying the osteogenic differentiation of MSCs remains largely unknown and thus hinders further development of MSC-based cell therapies for bone repair in the clinic. RSP5, also called NEDD4L (NEDD4-like E3 ubiquitin protein ligase), belongs to the HECT (homologous to E6-AP carboxyl terminus) domain-containing E3 ligase family. Nevertheless, although many studies have been conducted to elucidate the role of RSP5 in various biological processes, its effect on osteogenesis remains elusive. In this study, we demonstrated that the expression of RSP5 was elevated during the osteogenesis of MSCs and positively regulated the osteogenic capacity of MSCs by inducing K63-linked polyubiquitination and activation of the Akt pathway. Taken together, our findings suggest that RSP5 may be a promising target to improve therapeutic efficiency by using MSCs for bone regeneration and repair.
Collapse
|
28
|
An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed Pharmacother 2020; 125:109983. [PMID: 32092816 DOI: 10.1016/j.biopha.2020.109983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (Nedd4-1 and Nedd4-2) is a member of the HECT E3 ubiquitin ligase family. It has been shown to mediate numerous pathophysiological processes, including the regulation of synaptic plasticity and Wnt-associated signaling, via promoting the ubiquitination of its substrates, such as cyclic adenosine monophosphate (cAMP)-response element binding protein regulated transcription coactivator 3 (CRTC3), alpha-amino-3-hydroxy-5-methyl-4-isoxazo-lepropionic acid receptor (AMPAR), and Dishevelled2 (Dvl2). In the respiratory system, both Nedd4-1 and Nedd4-2 are expressed in epithelial cells and functionally associated with lung cancer development and alveolar fluid regulation. Nedd4-1 mediates lung cancer migration, metastasis, or drug resistance mainly through inducing phosphate and tension homology deleted on chromsome ten (PTEN) degradation or promoting cathepsin B secretion. Unlike Nedd4-1, Nedd4-2 displays more complex effects in lung cancers. On one hand it suppresses lung cancer cell migration and metastasis, and on the other hand it has been shown to promote lung cancer survival via inducing general control nonrepressed 2 (GCN2) degradation. Another important function of Nedd4-2 is to regulate the activity of epithelial sodium channel (ENaC), a membrane channel which mediates the clearance of fluid from the alveolar space at birth or during pulmonary edema. Here, we make an outlined review for the expression and function of Nedd4-1 and Nedd4-2 in the respiratory system in hope of getting an in-depth insight into their roles in lung disorders.
Collapse
|
29
|
MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer. Int J Mol Sci 2020; 21:ijms21041193. [PMID: 32054031 PMCID: PMC7072809 DOI: 10.3390/ijms21041193] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Collapse
|
30
|
Sun J, Yong J, Zhang H. microRNA-93, upregulated in serum of nasopharyngeal carcinoma patients, promotes tumor cell proliferation by targeting PDCD4. Exp Ther Med 2020; 19:2579-2587. [PMID: 32256737 PMCID: PMC7086147 DOI: 10.3892/etm.2020.8520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Deregulation of microRNAs (miRs) has been demonstrated to contribute to the development and malignant progression of nasopharyngeal carcinoma (NPC). Recently, miR-93 was reported to be significantly upregulated in NPC tissues and cell lines, and promote the proliferation, migration and invasion of NPC cells in vitro, as well as tumor growth in vivo. However, whether there is any clinical value of serum miR-93 expression in NPC still remains unclear. Therefore, the present study aimed to explore the clinical significance of serum miR-93 expression in NPC. A total of 85 serum samples from NPC patients and 30 from healthy controls were collected. Reverse transcription-quantitative polymerase chain reaction data demonstrated that the serum expression of miR-93 was significantly increased in NPC patients, when compared with those in healthy controls. Following receiving chemo-radiotherapy, the serum miR-93 levels were significantly decreased in NPC patients. Furthermore, the increased serum levels of miR-93 were significantly associated with advanced grade, clinical stage, lymph node metastasis, as well as worse 5-year overall survival of NPC patients. Furthermore, the serum miR-93 expression was demonstrated to be an independent factor for predicating the prognosis of NPC. In vitro experiments demonstrated that knockdown of miR-93 caused a decrease in NPC cell proliferation, whereas overexpression of miR-93 promoted NPC cell proliferation. PDCD4 was then identified as a direct target of miR-93 in NPC cells. Overexpression of PDCD4 significantly eliminated the promoting effects of miR-93 overexpression on NPC cell proliferation. Taken together, these findings suggest that the serum miR-93 expression could be used as a predicator for the clinical outcome of NPC patients, and suggest that miR-93 may also become a potential therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Jie Sun
- Department of Otolaryngology-Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-Senl University, Shenzhen, Guangdong 518000, P.R. China
| | - Jun Yong
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hua Zhang
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
31
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
32
|
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH, Lee CC. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One 2019; 14:e0225913. [PMID: 31805126 PMCID: PMC6894868 DOI: 10.1371/journal.pone.0225913] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Temozolomide (TMZ) is a first-line alkylating agent for glioblastoma multiforme (GBM). Clarifying the mechanisms inducing TMZ insensitivity may be helpful in improving its therapeutic effectiveness against GBM. Insulin-like growth factor (IGF)-1 signaling and micro (mi)RNAs are relevant in mediating GBM progression. However, their roles in desensitizing GBM cells to TMZ are still unclear. We aimed to identify IGF-1-mediated miRNA regulatory networks that elicit TMZ insensitivity for GBM. IGF-1 treatment attenuated TMZ cytotoxicity via WNT/β-catenin signaling, but did not influence glioma cell growth. By miRNA array analyses, 93 upregulated and 148 downregulated miRNAs were identified in IGF-1-treated glioma cells. miR-513a-5p from the miR-513a-2 gene locus was upregulated by IGF-1-mediated phosphoinositide 3-kinase (PI3K) signaling. Its elevated levels were also observed in gliomas versus normal cells, in array data of The Cancer Genome Atlas (TCGA), and the GSE61710, GSE37366, and GSE41032 datasets. In addition, lower levels of neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin protein ligase that inhibits WNT signaling, were found in gliomas by analyzing cells, arrays, and RNA sequencing data of TCGA glioma patients. Furthermore, a negative correlation was identified between miR-513a-5p and NEDD4L in glioma. NEDD4L was also validated as a direct target gene of miR-513a-5p, and it was reduced by IGF-1 treatment. Overexpression of NEDD4L inhibited glioma cell viability and reversed IGF-1-repressed TMZ cytotoxicity. In contrast, miR-513a-5p significantly affected NEDD4L-inhibited WNT signaling and reduced TMZ cytotoxicity. These findings demonstrate a distinct role of IGF-1 signaling through miR-513a-5p-inhibited NEDD4L networks in influencing GBM's drug sensitivity to TMZ.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
33
|
Qu Q, Li Y, Fang X, Zhang L, Xue C, Ge X, Wang X, Jiang Y. Differentially expressed tRFs in CD5 positive relapsed & refractory diffuse large B cell lymphoma and the bioinformatic analysis for their potential clinical use. Biol Direct 2019; 14:23. [PMID: 31775867 PMCID: PMC6882323 DOI: 10.1186/s13062-019-0255-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 02/14/2023] Open
Abstract
Background Patients diagnosed as diffuse large B cell lymphoma (DLBCL) with CD5 positive normally have a worse outcome and poorly respond to the regulatory treatment strategy. Results We recently reported differently expressed tRFs and their potential target-genes of tRFs in patients with CD5+ R/R DLBCL. Differently expressed tRFs were detected by Illumina NextSeq instrument and the results were verified by quantitative real-time reverse transcription-PCR. tRF2Cancer database was searched to compared with the results. Further research was performed through bio-informatic analysis including gene ontology (GO) and pathway enrichment analyses, etc. A total of 308 tRFs were identified. Two sequences (AS-tDR-008946, AS-tDR-013492) were chosen for further investigated. Conclusions The results of Bioinformatics analysis revealed that the target genes including NEDD4L and UBA52 and several associated pathways including PI3K/AKT and MAPK/ERK might be involved in the development of CD5+ R/R DLBCL. Our preliminary study on the associated tRFs might provide a valuable measure to explore the pathogenesis and progression of CD5+ R/R DLBCL. Reviewers This article was reviewed by Zhen Qing Ye, Nagarajan Raju and Jin Zhuang Dou.
Collapse
Affiliation(s)
- Qingyuan Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Chao Xue
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
34
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Cooke M, Baker MJ, Kazanietz MG, Casado-Medrano V. PKCε regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases 2019; 12:202-208. [PMID: 31648598 DOI: 10.1080/21541248.2019.1684785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oncogenic protein kinase C epsilon (PKCε) promotes the formation of membrane ruffles and motility in non-small cell lung cancer (NSCLC) cells. We found that PKCε is down-regulated when NSCLC cells undergo epithelial-to-mesenchymal transition (EMT) in response to TGF-β, thus becoming dispensable for migration and invasion in the mesenchymal state. PKCε silencing or inhibition leads to stress fibre formation, suggesting that this kinase negatively regulates RhoA activity. Ruffle formation induced by PKCε activation in the epithelial state is dependent on PI3K, but does not involve the PI3K-dependent Rac-GEFs Ect2, Trio, Vav2 or Tiam1, suggesting alternative Rac-GEFs as mediators of this response. In the proposed model, PKCε acts as a rheostat for Rho GTPases that differs in the epithelial and mesenchymal states.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Weigle S, Martin E, Voegtle A, Wahl B, Schuler M. Primary cell-based phenotypic assays to pharmacologically and genetically study fibrotic diseases in vitro. J Biol Methods 2019; 6:e115. [PMID: 31453262 PMCID: PMC6706098 DOI: 10.14440/jbm.2019.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
Ongoing tissue repair and formation and deposition of collagen-rich extracellular matrix in tissues and organs finally lead to fibrotic lesions and destruction of normal tissue/organ architecture and function. In the lung, scarring is observed in asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis to various degrees. At the cellular level immune cells, fibroblasts and epithelial cells are all involved in fibrotic processes. Mechanistically, fibroblast to myofibroblast transformation and epithelial to mesenchymal transition are major drivers of fibrosis. Amongst others, both processes are controlled by transforming growth factor beta-1 (TGFβ-1), a growth factor upregulated in idiopathic pulmonary fibrosis lungs. Phenotypic assays with primary human cells and complex disease-relevant readouts become increasingly important in modern drug discovery processes. We describe high-content screening based phenotypic assays with primary normal human lung fibroblasts and primary human airway epithelial cells. For both cell types, TGFβ-1 stimulation is used to induce fibrotic phenotypes in vitro, with alpha smooth muscle actin and collagen-I as readouts for FMT and E-cadherin as a readout for EMT. For each assay, a detailed image analysis protocols is described. Treatment of both cell types with TGFβ-1 and a transforming growth factor beta receptor inhibitor verifies the suitability of the assays for pharmacological interventions. In addition, the assays are compatible for siRNA and Cas9-ribonucleoprotein transfections, and thus are useful for genetic target identification/validation by modulating gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Drug Discovery Sciences, 88397 Biberach an der Riss, Germany
| |
Collapse
|
37
|
Wang X, Duan J, Fu W, Yin Z, Sheng J, Lei Z, Wang H. Decreased expression of NEDD4L contributes to NSCLC progression and metastasis. Biochem Biophys Res Commun 2019; 513:398-404. [PMID: 30967264 DOI: 10.1016/j.bbrc.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023]
Abstract
Recent evidence indicated that neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L) has a critical role in the regulation of cellular processes such as apoptosis, transport and metastasis, and is downregulated in several types of cancers. However, the role of NEDD4L in non-small cell lung cancer (NSCLC) has not been fully elucidated. In this study, we demonstrated that NEDD4L was downregulated in NSCLCs. This downregulation correlated with lymph node invasion, advanced stage and poor survival. In vitro experiments revealed that NEDD4L significantly suppressed cell proliferation, migration and invasion abilities. Further in vivo assay demonstrated that knocking down of NEDD4L enhanced the tumor metastasis of NSCLC cells. Moreover, we found that Polycomb group protein enhancer of zeste homologue 2 (EZH2) mediated H3K27 methylation was involved in the downregulation of NEDD4L. Knocking down of EZH2 restored the expression of NEDD4L. Further examined by luciferase reporter assay indicated the EZH2 regulated the transcription activity of NEDD4L. In clinical samples, EZH2 was inversely correlated with NEDD4L expression. In summary, NEDD4L acted as a tumor suppressor gene in NSCLC and targeting EZH2 could upregulate NEDD4L expression, which might serve as a novel approach for NSCLC.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weiping Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhaowu Yin
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China
| | - Jianing Sheng
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China
| | - Zhuyun Lei
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China.
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
38
|
Hu B, Mao Z, Du Q, Jiang X, Wang Z, Xiao Z, Zhu D, Wang X, Zhu Y, Wang H. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull 2019; 149:21-31. [PMID: 30946881 DOI: 10.1016/j.brainresbull.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Prolactinoma is a common subtype of pituitary tumors. Dopamine receptor agonists are the preferred treatment for prolactinoma; however, with this therapy, drug resistance often occurs. In our previous work, we found that partial resistant prolactinomas showed increased fibrosis and that the transforming growth factor (TGF)-β1/Smad3 signaling pathway mediated fibrosis and was involved in drug resistance. Additionally, the success of surgery is known to be heavily influenced by the consistency of the pituitary adenoma. Therefore, in this study, we aimed to clarify the mechanisms of fibrosis in prolactinoma. Using high-throughput sequencing for analysis of microRNAs, we found that miR-93-5p was significantly upregulated in prolactinoma samples with a high degree of fibrosis compared with that in samples without fibrosis. Furthermore, we found that miR-93-5p was negatively correlated with the relative expression of Smad7 and positively correlated with the relative expression of TGF-β1 in clinical prolactinoma samples. In addition, luciferase reporter assays showed that miR-93-5p could downregulate the Smad7 gene, an important inhibitor of the TGF-β1/Smad3 signaling pathway, and activate TGF-β1/Smad3 signaling-mediated fibrosis in a feed-forward loop. Moreover, miR-93-5p could enhance the drug resistance of prolactinoma cells by regulation of TGF-β1/Smad3-dependent fibrosis. Taken together, our findings demonstrated that miR-93-5p may be a potential therapeutic target for inhibiting fibrosis and reducing drug resistance in prolactinoma cells.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiu Du
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Elbracht M, Kraft F, Begemann M, Holschbach P, Mull M, Kabat IM, Müller B, Häusler M, Kurth I, Hehr U. Familial NEDD4L variant in periventricular nodular heterotopia and in a fetus with hypokinesia and flexion contractures. Mol Genet Genomic Med 2018; 6:1255-1260. [PMID: 30393983 PMCID: PMC6305664 DOI: 10.1002/mgg3.490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background Mutations in the HECT domain of NEDD4L have recently been identified in a cohort of eight patients with a syndromic form of bilateral periventricular nodular heterotopia (PVNH) in association with neurodevelopmental delay, cleft palate, and toe syndactyly (PVNH7). Methods Case report based on NGS sequencing. Results Here, we describe a girl with a novel heterozygous NEDD4L missense variant, p.Tyr679His, and characteristic clinical findings, including bilateral periventricular nodular heterotopia, cleft palate and mild toe syndactyly. Molecular testing from peripheral blood identified the healthy father to carry the NEDD4L variant in mosaic state. Notably, a previous pregnancy of the couple had been terminated due to a complex fetal developmental disorder, including hypokinesia and flexion contractures. Upon review, this affected fetus was also shown to carry the familial NEDD4L variant. Conclusion Our findings may suggest a broader spectrum of NEDD4L‐associated phenotypes, including severe prenatal neurodevelopmental manifestations, which might represent yet another genetic form of fetal hypokinesia with flexion contractures.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Petra Holschbach
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Mull
- Department of Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ildiko M Kabat
- Department of Radiology, Radiologie Universität Bonn Ildiko M. Kabat, University Hospital Bonn, Bonn, Germany
| | - Britta Müller
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ute Hehr
- Department of Human Genetics, Medical Center, University of Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Gao Y, Deng K, Liu X, Dai M, Chen X, Chen J, Chen J, Huang Y, Dai S, Chen J. Molecular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reaction validation. J Cell Biochem 2018; 120:6370-6383. [PMID: 30390344 DOI: 10.1002/jcb.27924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, studies have shown that microRNA-93 (miR-93) can be an oncogene or a tumor suppressor in different kinds of cancers. The role of miR-93 in human cancers is inconsistent and the underlying mechanism on the aberrant expression of miR-93 is complicated. METHODS We first conducted gene enrichment analysis to give insight into the prospective mechanism of miR-93. Second, we performed a meta-analysis to evaluate the clinical value of miR-93. Finally, a validation test based on quantitative polymerase chain reaction (qPCR) was performed to further investigate the role of miR-93 in pan-cancer. RESULTS Gene Ontology (GO) enrichment analysis results showed that the target genes of miR-93 were closely related to transcription, and MAPK1, RBBP7 and Smad7 became the hub genes. In the diagnostic meta-analysis, the overall sensitivity, specificity, and area under the curve were 0.76 (0.64-0.85), 0.82 (0.64-0.92), and 0.85 (0.82-0.88), respectively, which suggested that miR-93 had excellent performance on the diagnosis for human cancers. In the prognostic meta-analysis, dysregulated miR-93 was found to be associated with poor OS in cancer patients. In the qPCR validation test, the serum levels of miR-93 were upregulated in breast cancer, breast hyperplasia, lung cancer, chronic obstructive pulmonary disease, nasopharyngeal cancer, hepatocellular cancer, gastric ulcer, endometrial cancer, esophageal cancer, laryngeal cancer, and prostate cancer compared with healthy controls. CONCLUSIONS miR-93 could act as an effective diagnostic and prognostic factor for cancer patients. Its clinical value for cancer early diagnosis and survival prediction is promising.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Kaifeng Deng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meiyu Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jifei Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianming Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yujie Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jingfan Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
41
|
Xi W, Zhao X, Wu M, Jia W, Li H. Lack of microRNA-155 ameliorates renal fibrosis by targeting PDE3A/TGF-β1/Smad signaling in mice with obstructive nephropathy. Cell Biol Int 2018; 42:1523-1532. [PMID: 30080287 DOI: 10.1002/cbin.11038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/29/2018] [Indexed: 11/06/2022]
Abstract
Although microRNA-155 (miR-155) is implicated in the pathogenesis of several fibrotic diseases, information regarding its functional role in renal fibrosis is limited. The current study aims to investigate the effects of miR-155 on renal fibrosis in unilateral ureteral occlusion (UUO) mice. MiR-155 level was significantly increased in renal tissues of UUO mice and TGF-β1-treated HK2 cells. Masson's trichrome staining showed that delivery of adeno-associated virus encoding miR-155 inhibitor led to a decrease in renal fibrosis induced by UUO. The increased expression of plasminogen activator inhibitor type 1, collagen III and collagen IV was also inhibited after miR-155 inhibition. In addition, miR-155 knockdown also prevented TGF-β1-induced epithelial-mesenchymal transition, concomitantly with a restoration of E-cadherin expression and a decrease of vimentin expression. Computational analysis revealed that miR-155 directly targets at 3'UTR of PDE3A. Overexpression of miR-155 suppressed the luciferase activity and protein expression of PDE3A, whereas inhibition of miR-155 increased PDE3A luciferase activity and expression. Furthermore, miR-155 inhibited TGF-β1-induced the increase of TGF-β1 expression and Smad-2/3 phosphorylation in HK2 cells. In contrast, knockdown of PDE3A reversed the effect of miR-155 inhibition on TGF-β1 expression. This study demonstrates that knockdown of miR-155 attenuates renal fibrosis via inhibiting TGF-β1/Smad signaling activation by targeting the upstream molecule PDE3A. This study suggests that miR-155 inhibition may be a novel therapeutic approach for preventing fibrotic kidney diseases.
Collapse
Affiliation(s)
- Weiwei Xi
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Qingchun Road 3rd, Hangzhou 310016, Zhejiang Province, China
| | - Xuming Zhao
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Qingchun Road 3rd, Hangzhou 310016, Zhejiang Province, China
| | - Meijun Wu
- Department of Comprehensive Health Care, The First People's Hospital of Hangzhou, Hangzhou 310016, Zhejiang Province, China
| | - Wenjuan Jia
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Qingchun Road 3rd, Hangzhou 310016, Zhejiang Province, China
| | - Hua Li
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Qingchun Road 3rd, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
42
|
Mehlich D, Garbicz F, Włodarski PK. The emerging roles of the polycistronic miR-106b∼25 cluster in cancer - A comprehensive review. Biomed Pharmacother 2018; 107:1183-1195. [PMID: 30257332 DOI: 10.1016/j.biopha.2018.08.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776 Warsaw, Poland
| | - Paweł K Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland.
| |
Collapse
|
43
|
Guarnieri AL, Towers CG, Drasin DJ, Oliphant MUJ, Andrysik Z, Hotz TJ, Vartuli RL, Linklater ES, Pandey A, Khanal S, Espinosa JM, Ford HL. The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene 2018; 37:3879-3893. [PMID: 29662198 PMCID: PMC6043359 DOI: 10.1038/s41388-018-0239-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023]
Abstract
Tumor-initiating cells (TIC) represent a subset of tumor cells with increased self-renewal capability. TICs display resistance to frontline cancer treatment and retain the ability to repopulate a tumor after therapy, leading to cancer relapse. NOTCH signaling has been identified as an important driver of the TIC population, yet mechanisms governing regulation of this pathway in cancer remain to be fully elucidated. Here we identify a novel mechanism of NOTCH regulation and TIC induction in breast cancer via the miR-106b-25 miRNA cluster. We show that the miR-106b-25 cluster upregulates NOTCH1 in multiple breast cancer cell lines, representing both estrogen receptor (ER+) and triple negative breast cancer (TNBC) through direct repression of the E3 ubiquitin ligase, NEDD4L. We further show that upregulation of NOTCH1 is necessary for TIC induction downstream of miR-106b-25 in both ER + and TNBC breast cancer cells, and that re-expression of NEDD4L is sufficient to reverse miR106b-25-mediated NOTCH1 upregulation and TIC induction. Importantly, we demonstrate a significant positive correlation between miR-106b-25 and NOTCH1 protein, yet a significant inverse correlation between miR-106b-25 and NEDD4L mRNA in human breast cancer, suggesting a critical role for the miR106b-25/NEDD4L/NOTCH1 axis in the disease. Further, we show for the first time that NEDD4L expression alone is significantly associated with a better relapse-free prognosis for breast cancer patients. These data expand our knowledge of the mechanisms underlying NOTCH activation and TIC induction in breast cancer, and may provide new avenues for the development of therapies targeting this resistant subset of tumor cells.
Collapse
Affiliation(s)
- A L Guarnieri
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C G Towers
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - D J Drasin
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - M U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Z Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T J Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - R L Vartuli
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - E S Linklater
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - A Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - H L Ford
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
44
|
MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell Signal 2018; 46:145-153. [DOI: 10.1016/j.cellsig.2018.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
45
|
Ma J, Zhang L, Hao J, Li N, Tang J, Hao L. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J Pharmacol Sci 2018; 136:218-227. [DOI: 10.1016/j.jphs.2017.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
|
46
|
MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene 2018; 647:13-20. [DOI: 10.1016/j.gene.2018.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/10/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
|
47
|
Zhang Z, Ursin R, Mahapatra S, Gallicano GI. CRISPR/CAS9 ablation of individual miRNAs from a miRNA family reveals their individual efficacies for regulating cardiac differentiation. Mech Dev 2018; 150:10-20. [PMID: 29427756 DOI: 10.1016/j.mod.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Although it is well understood that genetic mutations, chromosomal abnormalities, and epigenetic miscues can cause congenital birth defects, many defects are still labeled idiopathic, meaning their origin is not yet understood. microRNAs are quickly entering the causal fray of developmental defects. miRNAs use a 7-8 base-pair seed sequence to target a corresponding sequence on one or multiple mRNAs resulting in rapid down-regulation of translation. miRNAs can also control protein 'amounts' in cells. As a result if miRNAs are over or under expressed during development protein homeostasis can be compromised resulting in defects in the development of organ systems. Here, we show that during differentiation of embryonic stem cells, individual miRNAs that reside in the miRNA17 family (composed of 14 miRNAs) do not share the same function even though they have the same seed sequence. The advent of CRISPR/CAS9 technology has not only yielded a true observation of individual miRNA function, it has also reconnected advanced molecular biology approaches to classical cell biology approaches such as gene rescue. We show that miRNA106a and to a lesser extent miR17 and 93 target the cardiac suppressor gene Fog2, which specifically suppress Gata-4 and Coup-TF2. However, when each miRNA is knocked out, we find that their targeting efficacies for Fog2 differ resulting in varying degrees of cardiac differentiation.
Collapse
Affiliation(s)
- Ziyao Zhang
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20057-145, United States
| | - Rebecca Ursin
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20057-145, United States
| | - Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20057-145, United States
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20057-145, United States.
| |
Collapse
|
48
|
MicroRNA-93-5p may participate in the formation of morphine tolerance in bone cancer pain mouse model by targeting Smad5. Oncotarget 2018; 7:52104-52114. [PMID: 27438143 PMCID: PMC5239538 DOI: 10.18632/oncotarget.10524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE In this study, we aim to find out the role of microRNA-93-5p (miR-93) and Smad5 in morphine tolerance in mouse models of bone cancer pain (BCP). RESULTS At 7 days after injection of morphine, the PMWT showed no significant difference between the morphine model group and the saline model group (P < 0.05), suggesting that morphine tolerance had formed in the morphine model group. The morphine model group had higher miR-93 expression and lower Smad5 mRNA expression than the saline model group. Smad5 is a downstream target gene of miR-93. At 7, 9 and 14 days after injection of lentiviruses, the L/anti-miR-93 group had the lowest PMWTs, while the Smad5 shRNA group presented the highest PMWTs among these five groups (all P < 0.05). METHODS We built mouse models of BCP and morphine tolerance and recorded 50% PMWT. After 6 days of modeling, we set saline control group, morphine control, saline model group and morphine model group (morphine tolerance emerged). We performed luciferase reporter gene assay to verify the relation between miR-93 and Smad5. After lentivirus transfection, the mice with morphine tolerance were assigned into L/anti-miR-93 group, Smad5 shRNA group, L/anti-miR-93 + Smad5 shRNA group, blank group and PBS control group. RT-qPCR, Western Blot assay and immumohistochemical staining were performed to observe the changes of miR-93 and Smad5. CONCLUSION Up-regulation of miR-93 may contribute to the progression of morphine tolerance by targeting Smad5 in mouse model of BCP.
Collapse
|
49
|
Wang Y, Qin T, Hu W, Chen B, Dai M, Xu G. Genome-Wide Methylation Patterns in Androgen-Independent Prostate Cancer Cells: A Comprehensive Analysis Combining MeDIP-Bisulfite, RNA, and microRNA Sequencing Data. Genes (Basel) 2018; 9:genes9010032. [PMID: 29324665 PMCID: PMC5793184 DOI: 10.3390/genes9010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the mechanisms underlying the development of the androgen-independent phenotype in prostate cancer. Methylation patterns were detected in androgen-independent and androgen-dependent lymph node carcinoma of the prostate (LNCaP) prostate carcinoma cells based on methylated DNA immunoprecipitation-bisulfite sequencing data and differentially methylated regions (DMRs) were identified. Differentially expressed genes (DEGs) and micro RNAs (miRNAs) with DMRs (named MDEGs and MDEmiRNAs) were identified by combining transcriptome and methylation data, and transcription factor (TF)-DEGs with DMRs in promoter (PMDEGs) and MDEmiRNA-MDEGs networks were constructed. Furthermore, a time-course analysis of gene transcription during androgen deprivation was performed based on microarray data and DMRs, MDEGs, and DEmiRNAs were validated. In total, 18,447 DMRs, 3369 MDEGs, 850 PMDEGs, and 1 MDEmiRNA (miR-429) were identified. A TF-target network (94 PMDEGs and 5 TFs) and a miRNA–target network (172 MDEGs and miR-429) were constructed. Based on the time-course analysis of genes in the networks, NEDD4L and PBX3 were targeted by SOX5, while GNAQ, ANLN, and KIF11 were targeted by miR-429. The expression levels of these genes and miR-429 were confirmed by quantitative real-time polymerase chain reaction. Additionally, 109 DMRs were confirmed using additional public datasets. The regulatory pathways SOX5-NEDD4L/PBX3, miR429-GNAQ/ANLN—RHOA, and miR429-ANLN—KIF11 may participate in the progression of the androgen-independent phenotype in prostate cancer.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Tingting Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Wangqiang Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Binghua Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Meijie Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Gang Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| |
Collapse
|
50
|
Ke ZP, Xu P, Shi Y, Gao AM. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget 2018; 7:28796-805. [PMID: 27119510 PMCID: PMC5045357 DOI: 10.18632/oncotarget.8941] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs have been implicated in some biological and pathological processes, including the myocardial ischemia/reperfusion (I/R) injury. Recent findings demonstrated that miR-93 might provide a potential cardioprotective effect on ischemic heart disease. This study was to investigate the role of miR-93 in I/R-induced cardiomyocyte injury and the potential mechanism. In this study, we found that hypoxia/reoxygenation (H/R) dramatically increased LDH release, MDA contents, ROS generation, and endoplasmic reticulum stress (ERS)-mediated cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-93 mimic. Phosphatase and tensin homolog (PTEN) was identified as the target gene of miR-93. Furthermore, miR-93 mimic significantly increased p-Akt levels under H/R, which was partially released by LY294002. In addtion, Ad-miR-93 also attenuated myocardial I/R injury in vivo, manifested by reduced LDH and CK levels, infarct area and cell apoptosis. Taken together, our findings indicates that miR-93 could protect against I/R-induced cardiomyocyte apoptosis by inhibiting PI3K/AKT/PTEN signaling.
Collapse
Affiliation(s)
- Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ai-Mei Gao
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|