1
|
Zhang X, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Diversity of Microbial Functional Genes Promotes Soil Nitrogen Mineralization in Boreal Forests. Microorganisms 2024; 12:1577. [PMID: 39203419 PMCID: PMC11355967 DOI: 10.3390/microorganisms12081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Soil nitrogen (N) mineralization typically governs the availability and movement of soil N. Understanding how factors, especially functional genes, affect N transformations is essential for the protection and restoration of forest ecosystems. To uncover the underlying mechanisms driving soil N mineralization, this study investigated the effects of edaphic environments, substrates, and soil microbial assemblages on net soil N mineralization in boreal forests. Field studies were conducted in five representative forests: Larix principis-rupprechtii forest (LF), Betula platyphylla forest (BF), mixed forest of Larix principis-rupprechtii and Betula platyphylla (MF), Picea asperata forest (SF), and Pinus sylvestris var. mongolica forest (MPF). Results showed that soil N mineralization rates (Rmin) differed significantly among forests, with the highest rate in BF (p < 0.05). Soil properties and microbial assemblages accounted for over 50% of the variability in N mineralization. This study indicated that soil environmental factors influenced N mineralization through their regulatory impact on microbial assemblages. Compared with microbial community assemblages (α-diversity, Shannon and Richness), functional genes assemblages were the most important indexes to regulate N mineralization. It was thus determined that microbial functional genes controlled N mineralization in boreal forests. This study clarified the mechanisms of N mineralization and provided a mechanistic understanding to enhance biogeochemical models for forecasting soil N availability, alongside aiding species diversity conservation and fragile ecosystem revitalization in boreal forests.
Collapse
Affiliation(s)
- Xiumin Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Zhao Liu
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
2
|
Liao YCZ, Pu HX, Jiao ZW, Palviainen M, Zhou X, Heinonsalo J, Berninger F, Pumpanen J, Köster K, Sun H. Enhancing boreal forest resilience: A four-year impact of biochar on soil quality and fungal communities. Microbiol Res 2024; 283:127696. [PMID: 38518453 DOI: 10.1016/j.micres.2024.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme β-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.
Collapse
Affiliation(s)
- Yang-Chun-Zi Liao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Xiu Pu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Wen Jiao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland.
| |
Collapse
|
3
|
Futter MN, Dirnböck T, Forsius M, Bäck JK, Cools N, Diaz-Pines E, Dick J, Gaube V, Gillespie LM, Högbom L, Laudon H, Mirtl M, Nikolaidis N, Poppe Terán C, Skiba U, Vereecken H, Villwock H, Weldon J, Wohner C, Alam SA. Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests. AMBIO 2023; 52:1819-1831. [PMID: 37725249 PMCID: PMC10562320 DOI: 10.1007/s13280-023-01930-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.
Collapse
Affiliation(s)
- Martyn N. Futter
- Institutionen för vatten och miljö, Lennart Hjelms Väg 9, Box 7050, 75007 Uppsala, Sweden
| | | | - Martin Forsius
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | | | | | - Eugenio Diaz-Pines
- Institute of Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Jan Dick
- University of Helsinki, Helsinki, Finland
| | | | - Lauren M. Gillespie
- Institute of Soil Research (IBF), Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Lars Högbom
- Skogforsk, Uppsala Science Park, 751 83 Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | | | | | | | - Ute Skiba
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB UK
| | - Harry Vereecken
- Agropshere Institute (IBG-3), Forschungszentrum Jülich Gmbh, 52425 Jülich, Germany
| | - Holger Villwock
- Institutionen för vatten och miljö, Lennart Hjelms Väg 9, Box 7050, 75007 Uppsala, Sweden
| | - James Weldon
- Institutionen för vatten och miljö, Lennart Hjelms Väg 9, Box 7050, 75007 Uppsala, Sweden
| | | | - Syed Ashraful Alam
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Cheng G, Zhang X, Zhu M, Zhang Z, Jing L, Wang L, Li Q, Zhang X, Wang H, Wang W. Tree diversity, growth status, and spatial distribution affected soil N availability and N 2O efflux: Interaction with soil physiochemical properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118375. [PMID: 37356331 DOI: 10.1016/j.jenvman.2023.118375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Soil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO3--N), ammonium N (NH4+-N) in a 7.2 ha experimental forest in northeast China. Four plant diversity indices, seven structural metrics, four soil properties, and in situ N2O efflux were also measured. We found that: 1) high tree diversity had 1.3-1.4-fold NO3--N, 1.1-fold NH4+-N, and 1.5-1.8-fold N2O efflux (p < 0.05). 2) Tree growth decreased soil TN, AN, and NO3--N by more than 13%, and tree mixing and un-uniform distribution increased TN, AN, and NH4+-N by 11-22%. 3) Soil organic carbon (SOC) explained 34.3% of the N variations, followed by soil water content (1.5%), tree diameter (1.5%) and pH (1%), and soil bulk density (0.5%). SOC had the most robust linear relations to TN (R2 = 0.59) and AN (R2 = 0.5). 4) The partial least squares path model revealed that the tree diversity directly increased NO3--N, NH4+-N, and N2O efflux, and they were strengthened indirectly from soil properties by 1%-4%. The effects of tree size-density (-0.24) and spatial structure (0.16) were mainly achieved via their soil interaction and thus indirectly decreased NH4+-N, AN, and TN. Overall, high tree diversity forests improved soil N availability and N2O efflux, and un-uniform spatial tree assemblages could partially balance the soil N consumed by tree growth. Our data support soil N management in high northern hemisphere temperate forests from tree diversity and forest structural regulations.
Collapse
Affiliation(s)
- Guanchao Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Meina Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lixin Jing
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiting Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun, 130102, China.
| |
Collapse
|
5
|
Duan B, Xiao R, Cai T, Man X, Ge Z, Gao M, Mencuccini M. Understory species composition mediates soil greenhouse gas fluxes by affecting bacterial community diversity in boreal forests. Front Microbiol 2023; 13:1090169. [PMID: 36741883 PMCID: PMC9894877 DOI: 10.3389/fmicb.2022.1090169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Plant species composition in forest ecosystems can alter soil greenhouse gas (GHG) budgets by affecting soil properties and microbial communities. However, little attention has been paid to the forest types characterized by understory vegetation, especially in boreal forests where understory species contribute significantly to carbon and nitrogen cycling. Method In the present study, soil GHG fluxes, soil properties and bacterial community, and soil environmental conditions were investigated among three types of larch forest [Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL), and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL)] in the typical boreal region of northeast China to explore whether the forest types characterized by different understory species can affect soil GHG fluxes. Results The results showed that differences in understory species significantly affected soil GHG fluxes, properties, and bacterial composition among types of larch forest. Soil CO2 and N2O fluxes were significantly higher in LL (347.12 mg m-2 h-1 and 20.71 μg m-2 h-1) and RL (335.54 mg m-2 h-1 and 20.73 μg m-2 h-1) than that in SLL (295.58 mg m-2 h-1 and 17.65 μg m-2 h-1), while lower soil CH4 uptake (-21.07 μg m-2 h-1) were found in SLL than in RL (-35.21 μg m-2 h-1) and LL (-35.85 μg m-2 h-1). No significant differences between LL and RL were found in soil CO2, CH4, and N2O fluxes. Soil bacterial composition was mainly dominated by Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi among the three types of larch forest, while their abundances differed significantly. Soil environmental variables, soil properties, bacterial composition, and their interactions significantly affected the variations in GHG fluxes with understory species. Specifically, structural equation modeling suggested that soil bacterial composition and temperature had direct close links with variations in soil GHG fluxes among types of larch forest. Moreover, soil NO3 --N and NH4 + - N content also affected soil CO2, CH4, and N2O fluxes indirectly, via their effects on soil bacterial composition. Discussion Our study highlights the importance of understory species in regulating soil GHG fluxes in boreal forests, which furthers our understanding of the role of boreal forests in sustainable development and climate change mitigation.
Collapse
Affiliation(s)
- Beixing Duan
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China,CREAF, Barcelona, Spain
| | - Ruihan Xiao
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tijiu Cai
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China,*Correspondence: Tijiu Cai,
| | - Xiuling Man
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhaoxin Ge
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minglei Gao
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | | |
Collapse
|
6
|
Razgulin SM. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Qu ZL, Li XL, Ge Y, Palviainen M, Zhou X, Heinonsalo J, Berninger F, Pumpanen J, Köster K, Sun H. The impact of biochar on wood-inhabiting bacterial community and its function in a boreal pine forest. ENVIRONMENTAL MICROBIOME 2022; 17:45. [PMID: 36042528 PMCID: PMC9429645 DOI: 10.1186/s40793-022-00439-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 05/31/2023]
Abstract
Biochar is considered to be a possible means of carbon sequestration to alleviate climate change. However, the dynamics of the microbial community during wood decomposition after biochar application remain poorly understood. In this study, the wood-inhabiting bacterial community composition and its potential functions during a two-year decomposition period after the addition of different amounts of biochar (0.5 kg m-2 and 1.0 kg m-2), and at different biochar pyrolysis temperatures (500 °C and 650 °C), in a boreal Scots pine forest, were analyzed using Illumina NovaSeq sequencing combined with Functional Annotation of Prokaryotic Taxa (FAPROTAX). The results showed that the wood decomposition rates increased after biochar addition to the soil surface in the second year. Treatment with biochar produced at high temperatures increased the diversity of wood-inhabiting bacteria more than that produced at low temperatures (P < 0.05). The wood-inhabiting bacterial diversity and species richness decreased with decomposition time. The biochar treatments changed the wood-inhabiting bacterial community structure during the decomposition period. The pyrolysis temperature and the amount of applied biochar had no effect on the bacterial community structure but shifted the abundance of certain bacterial taxa. Similarly, biochar application shifted the wood-inhabiting bacterial community function in the first year, but not in the second year. The wood-inhabiting bacterial community and function were affected by soil pH, soil water content, and soil total nitrogen. The results provide useful information on biochar application for future forest management practices. Long-term monitoring is needed to better understand the effects of biochar application on nutrient cycling in boreal forests.
Collapse
Affiliation(s)
- Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Li Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Ge
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Razgulin SM. Trophic Role of the Moose (Alces alces L.) Population and Its Effect on the Nitrogen and Carbon Cycles in a Southern Taiga Spruce–Birch Forest. BIOL BULL+ 2022. [DOI: 10.1134/s106235902203013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gaiser EE, Kominoski JS, McKnight DM, Bahlai CA, Cheng C, Record S, Wollheim WM, Christianson KR, Downs MR, Hawman PA, Holbrook SJ, Kumar A, Mishra DR, Molotch NP, Primack RB, Rassweiler A, Schmitt RJ, Sutter LA. Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance. Ecosphere 2022; 13:e4019. [PMID: 35573027 PMCID: PMC9087370 DOI: 10.1002/ecs2.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022] Open
Abstract
The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.
Collapse
Affiliation(s)
- Evelyn E. Gaiser
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - John S. Kominoski
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - Diane M. McKnight
- Institute of Arctic and Alpine Research and Environmental Studies ProgramUniversity of ColoradoBoulderColoradoUSA
| | | | - Chingwen Cheng
- The Design SchoolArizona State UniversityTempeArizonaUSA
| | - Sydne Record
- Department of BiologyBryn Mawr CollegeBryn MawrPennsylvaniaUSA
| | - Wilfred M. Wollheim
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | | | - Martha R. Downs
- National Center for Ecological Analysis and SynthesisUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Peter A. Hawman
- Department of GeographyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sally J. Holbrook
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Abhishek Kumar
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | | | - Noah P. Molotch
- Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderColoradoUSA
| | | | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Russell J. Schmitt
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Lori A. Sutter
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
10
|
Burnett MS, Schütte UM, Harms TK. WIDESPREAD CAPACITY FOR DENITRIFICATION ACROSS A BOREAL FOREST LANDSCAPE. BIOGEOCHEMISTRY 2022; 158:215-232. [PMID: 36186670 PMCID: PMC9518932 DOI: 10.1007/s10533-022-00895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/18/2022] [Indexed: 06/16/2023]
Abstract
A warming climate combined with frequent and severe fires cause permafrost to thaw, especially in the region of discontinuous permafrost, where soil temperatures may only be a few degrees below 0 °C. Soil thaw releases carbon (C) and nitrogen (N) into the actively cycling pools, and whereas C emissions following permafrost thaw are well documented, the fates of N remain unclear. Denitrification could release N from ecosystems as nitrous oxide (N2O) or nitrogen gas (N2), but the contributions of these processes to the high-latitude N cycle remain uncertain. We quantified microbial capacity for denitrification and N2O production in boreal soils, lakes, and streams using anoxic C- and N-amended assays, and assessed correlates of denitrifying enzyme activity (DEA) in Interior Alaska. Riparian soils and stream sediments supported the highest potential rates of denitrification, upland soils were intermediate, and lakes supported lower rates, whereas deep permafrost soils supported little denitrification. Time since fire had no effect on denitrification potential in upland soils. Across all landscape positions, DEA was negatively correlated with ammonium pools. Within each landscape position, potential rate of denitrification increased with soil or sediment organic matter content. Widespread N loss to denitrification in boreal forests could constrain the capacity for N-limited primary producers to maintain C stocks in soils following permafrost thaw.
Collapse
Affiliation(s)
- Melanie S. Burnett
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
- Department of Earth and Planetary Science, McGill University, Montréal, Quebec H3A 2A7, Canada
| | - Ursel M.E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| | - Tamara K. Harms
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| |
Collapse
|
11
|
Lepistö A, Räike A, Sallantaus T, Finér L. Increases in organic carbon and nitrogen concentrations in boreal forested catchments - Changes driven by climate and deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146627. [PMID: 34030343 DOI: 10.1016/j.scitotenv.2021.146627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Brownification, caused by increasing dissolved organic carbon (DOC) concentrations is a threat to aquatic ecosystems over large areas in Europe. The increasing concentrations of DOC in northern boreal streams and lakes have attracted considerable attention with proposed important drivers such as climate, deposition and land-use, and complex interactions between them. Changes in total organic N (TON) concentrations have received less attention, even though carbon and nitrogen losses are highly related to each other. We used long-term (1990-2019) monitoring records of 12 small data-rich headwater forested catchments in a large gradient of climate and deposition. We found that total organic carbon (TOC) concentrations were significantly increasing in almost all study catchments. The mean air temperature and change in sulphate concentrations had a strong, significant correlation to TOC change-%. Both explained, alone, more than 65% of the change in TOC concentrations, and, together, up to 83% of the variation. Sulphur deposition has already decreased to low levels, our results indicate that its importance as a driver of TOC leaching has decreased but is still clearly detected, while the impact of climate warming as a driver of TOC leaching will be even more pronounced in the future. A positive correlation was found between drainage-% and increases in TON, suggesting also importance of land management. TON trends were tightly connected to changes in TOC, but not directly linked to decreasing S deposition.
Collapse
Affiliation(s)
- Ahti Lepistö
- Finnish Environment Institute SYKE, Latokartanonkaari 11, FI-00790 Helsinki, Finland.
| | - Antti Räike
- Finnish Environment Institute SYKE, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Tapani Sallantaus
- Finnish Environment Institute SYKE, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Leena Finér
- Natural Resources Institute Finland, Yliopistokatu 6b, FI 80 100 Joensuu, Finland
| |
Collapse
|
12
|
NutSpaFHy—A Distributed Nutrient Balance Model to Predict Nutrient Export from Managed Boreal Headwater Catchments. FORESTS 2021. [DOI: 10.3390/f12060808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Responsible forest management requires accounting for adverse environmental effects, such as increased nutrient export to water courses. We constructed a spatially-distributed nutrient balance model NutSpaFHy that extends the hydrological model SpaFHy by introducing a grid-based nutrient balance sub-model and a conceptual solute transport routine to approximate total nitrogen (N) and phosphorus (P) export to streams. NutSpaFHy uses openly-available Multi-Source National Forest Inventory data, soil maps, topographic databases, location of water bodies, and meteorological variables as input, and computes nutrient processes in monthly time-steps. NutSpaFHy contains two calibrated parameters both for N and P, which were optimized against measured N and P concentrations in runoff from twelve forested catchments distributed across Finland. NutSpaFHy was independently tested against six catchments. The model produced realistic nutrient exports. For one catchment, we simulated 25 scenarios, where clear-cuts were located differently with respect to distance to water body, location on mineral or peat soil, and on sites with different fertility. Results indicate that NutSpaFHy can be used to identify current and future nutrient export hot spots, allowing comparison of logging scenarios with variable harvesting area, location and harvest techniques, and to identify acceptable scenarios that preserve the wood supply whilst maintaining acceptable level of nutrient export.
Collapse
|
13
|
Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle. FORESTS 2021. [DOI: 10.3390/f12040410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stand-replacing disturbances are a key element of the Norway spruce (Picea abies) forest life cycle. While the effect of a natural disturbance regime on forest physiognomy, spatial structure and pedocomplexity was well described in the literature, its impact on the microbiome, a crucial soil component that mediates nutrient cycling and stand productivity, remains largely unknown. For this purpose, we conducted research on a chronosequence of sites representing the post-disturbance development of a primeval Norway spruce forest in the Calimani Mts., Romania. The sites were selected along a gradient of duration from 16 to 160 years that ranges from ecosystem regeneration phases of recently disturbed open gaps to old-growth forest stands. Based on DNA amplicon sequencing, we followed bacterial and fungal community composition separately in organic, upper mineral and spodic horizons of present Podzol soils. We observed that the canopy opening and subsequent expansion of the grass-dominated understorey increased soil N availability and soil pH, which was reflected in enlarged bacterial abundance and diversity, namely due to the contribution of copiotrophic bacteria that prefer nutrient-richer conditions. The fungal community composition was affected by the disturbance as well but, contrary to our expectations, with no obvious effect on the relative abundance of ectomycorrhizal fungi. Once the mature stand was re-established, the N availability was reduced, the pH gradually decreased and the original old-growth forest microbial community dominated by acidotolerant oligotrophs recovered. The effect of the disturbance and forest regeneration was most evident in organic horizons, while the manifestation of these events was weaker and delayed in deeper soil horizons.
Collapse
|
14
|
Short-Term Litter Manipulations have Strong Impact on Soil Nitrogen Dynamics in Larix gmelinii Forest of Northeast China. FORESTS 2020. [DOI: 10.3390/f11111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests, which substantially impacts soil nitrogen (N) and nutrient cycling. However, how these soil processes respond to the litter manipulation is complex and poorly understood, especially in the N-limiting boreal forest. We aimed to examine how soil N dynamics respond to litter manipulations in a boreal larch forest. A litter manipulation experiment including control, litter exclusion, and litter addition was performed in the Larix gmelinii forest on the north of the Daxing’an Mountains in China. Monthly soil inorganic N, microbial biomass and the rate of net N mineralization in both 0–10 cm and 10–20 cm layers, and N2O flux were analyzed from May 2018 to October 2018. In 0–20 cm soil layer the average soil inorganic N contents, microbial biomass N (MBN) contents, the rate of net N mineralization (Rmin), and the soil N2O emission in the litter addition plot were approximately 40.58%, 54.16%, 128.57%, and 38.52% greater, respectively than those in the control. While litter exclusion reduced those indexes about 29.04%, 19.84%, 80.98%, and 31.45%, respectively. Compared with the dynamics of the 10–20 cm soil layer, the N dynamics in 0–10 cm soil were more sensitive to litter manipulation. Rmin and N2O emissions were significantly correlated with MBN in most cases. Our results highlight the short-term effects of litter manipulations on soil N dynamics, which suggests that the influence of litter on soil N process should be considered in the future defoliation management of the boreal larch forest.
Collapse
|
15
|
Deininger A, Kaste Ø, Frigstad H, Austnes K. Organic nitrogen steadily increasing in Norwegian rivers draining to the Skagerrak coast. Sci Rep 2020; 10:18451. [PMID: 33116239 PMCID: PMC7595164 DOI: 10.1038/s41598-020-75532-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
Declining atmospheric nitrogen (N) deposition, through reduction in the direct input of inorganic N, may result in less inorganic N being leached from soils to freshwaters (dissolved inorganic N = DIN). Declining sulphur deposition, through reducing the ionic strength in soil water, increases the solubility and mobility of organic soil compounds and may result in increased leaching of organically bound N to freshwaters (total organic N = TON). It is unknown to which extent these two independents and opposing trends, i.e. DIN decline versus TON increase, may affect the nutrient balance (load, stoichiometry) of river water draining into coastal zones. By combining long-term atmospheric and riverine monitoring data of the five major Norwegian rivers draining to the Skagerrak coast, we show that over the past 27 years (1990-2017) river water nutrient composition, and specifically N stoichiometry has been steadily shifting from inorganic to organic fractions, with correlations to changes in human pressures (air pollution), but especially climate (precipitation, temperature, discharge). This shift in nutrient quality may have large consequences on the nutrient cycling in both freshwater and coastal ecosystems and illustrates the complex interactions of multiple stressors (here: N deposition, S deposition, and climate change) on aquatic ecosystems.
Collapse
Affiliation(s)
- A Deininger
- Centre for Coastal Research, University of Agder, Kristiansand, Norway.
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Ø Kaste
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - H Frigstad
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - K Austnes
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
16
|
Törmänen T, Lindroos AJ, Kitunen V, Smolander A. Logging residue piles of Norway spruce, Scots pine and silver birch in a clear-cut: Effects on nitrous oxide emissions and soil percolate water nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139743. [PMID: 32540601 DOI: 10.1016/j.scitotenv.2020.139743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
We analysed how logging residue (LR) piles of common tree species in Finland, Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth), affect nitrogen (N) losses in forest soil after final felling. A Norway spruce dominated stand was clear-cut and followed by two experimental setups to study the nitrous oxide (N2O) emissions and leaching of carbon (C) and N. Experiments consisted of four treatments: tree species treatments consisting of 40 kg m-2 of LR and a control treatment without residues. The C losses were monitored as dissolved organic carbon (DOC), the N losses as ammonium (NH4-N), nitrate (NO3-N) and dissolved organic nitrogen (DON) fluxes and concentrations in soil percolation waters and the N2O emissions as fluxes from the forest soil to the atmosphere. In addition the soil temperatures, the molecular size distribution of the DOC from the soil percolation waters and the origin of the N2O production were determined. The LR piles lowered the soil temperatures and, especially those of birch, increased the concentrations of NO3-N in the soil percolation waters already 1 year after the establishment of the piles. The LR piles increased the NH4-N concentrations. The smallest molecular size fraction (<1 kD) of DOC predominated in all treatments. The N2O fluxes peaked under the piles during the second and third growing seasons; however, the inconsistent fluxes tended to be low. The production of N2O was driven by both nitrification and denitrification processes, the proportion depending on the tree species. Our results indicate that LR piles accelerate N losses 1 year after the clear-cutting, especially NO3-N, which predominates in the soil percolation waters under the birch residues, whereas spruce residues tend to stimulate N2O emissions longer. These results have implications for sustainable forest management practices and nutrition of regrowing vegetation.
Collapse
Affiliation(s)
- Tiina Törmänen
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Antti-Jussi Lindroos
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Veikko Kitunen
- Natural Resources Institute Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Aino Smolander
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
17
|
Jean M, Holland-Moritz H, Melvin AM, Johnstone JF, Mack MC. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. THE NEW PHYTOLOGIST 2020; 227:1335-1349. [PMID: 32299141 DOI: 10.1111/nph.16611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.
Collapse
Affiliation(s)
- Mélanie Jean
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences and Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - April M Melvin
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Independent researcher, Washington, DC, 20001, USA
| | - Jill F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
18
|
MacKenzie MD, Dietrich ST. Atmospheric sulfur and nitrogen deposition in the Athabasca oil sands region is correlated with foliar nutrient levels and soil chemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134737. [PMID: 31812381 DOI: 10.1016/j.scitotenv.2019.134737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 05/05/2023]
Abstract
The oil extraction industry and human activity in north eastern Alberta has been growing steadily since the 1960's and is a source of air pollution. In the late 1990's the Wood Buffalo Environmental Association was established to monitor air quality for both public and environmental health. A primary environmental concern was soil acidification caused by sulfur (S) and nitrogen (N) deposition. A network of forest health monitoring (FHM) sites was established in dry jack pine ecosystems to serve as an early indicator of negative impacts. A sampling campaign was executed in 2011 and this study examines soil properties and foliar nutrients in the context of measured and modeled acid deposition. Total N (TN), SO42-, pH, base cation to aluminum ratio (BC:Al), and base saturation (% BS) are reported for the organic layer (LFH) and 3 depths in the mineral soil, while foliar nutrients were analysed from current annual growth in jack pine needles. Atmospheric deposition of S, N, BC, and potential acid input (PAI) in the study area was recently provided by Edgerton et al. (2020) and soil and foliar chemistry was evaluated based on deposition estimates and measurements. Inverse distance weighting was used to examine spatial patterns and regression analysis was used to quantify relationships between variables. The results indicated that S deposition is spatially correlated with foliar SO42- concentration, and LFH SO42-, but not mineral topsoil (0-5 cm) SO42-. Nitrogen deposition was spatially correlated with foliar N concentration, but not LFH or topsoil TN indicating potential uptake by the foliage or rapid uptake by roots in the LFH layer. High BC deposition in the same areas with the highest potential acid inputs (PAI) did not correlate significantly with changes in soil pH. However, LFH pH was significantly related to dry NH3 deposition, which has not been reported previously and requires further investigation.
Collapse
Affiliation(s)
- M Derek MacKenzie
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sebastian T Dietrich
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
19
|
Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. FORESTS 2020. [DOI: 10.3390/f11030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studying carbon and nitrogen stocks in different types of larch forest ecosystems is of great significance for assessing the carbon sink capacity and nitrogen level in larch forests. To evaluate the effects of the differences of forest type on the carbon and nitrogen stock capacity of the larch forest ecosystem, we selected three typical types of larch forest ecosystems in the northern part of Daxing’an Mountains, which were the Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL) and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL), to determine the carbon and nitrogen stocks in the vegetation (trees and understories), litter and soil. Results showed that there were significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems, showing a sequence of SLL (288.01 Mg·ha−1 and 25.19 Mg·ha−1) > LL (176.52 Mg·ha−1 and 14.85 Mg·ha−1) > RL (153.93 Mg·ha−1 and 10.00 Mg·ha−1) (P < 0.05). The largest proportions of carbon and nitrogen stocks were found in soils, accounting for 83.20%, 72.89% and 64.61% of carbon stocks and 98.61%, 97.58% and 96.00% of nitrogen stocks in the SLL, LL and RL, respectively. Also, it was found that significant differences among the three types of larch forest ecosystems in terms of soil carbon and nitrogen stocks (SLL > LL > RL) (P < 0.05) were the primary reasons for the differences in the ecosystem carbon and nitrogen stocks. More than 79% of soil carbon and 51% of soil nitrogen at a depth of 0–100 cm were stored in the upper 50 cm of the soil pool. In the vegetation layer, due to the similar tree biomass carbon and nitrogen stocks, there were no significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems. The litter carbon stock in the SLL was significantly higher than that in the LL and RL (P < 0.05), but no significant differences in nitrogen stock were found among them (P > 0.05). These findings suggest that different forest types with the same tree layer and different understory vegetation can greatly affect the carbon and nitrogen stock capacity of the forest ecosystem. This indicates that understory vegetation may have significant effects on the carbon and nitrogen stocks in soil and litter, which highlights the need to consider the effects of understory in future research into the carbon and nitrogen stock capacity of forest ecosystems.
Collapse
|
20
|
Audet J, Bastviken D, Bundschuh M, Buffam I, Feckler A, Klemedtsson L, Laudon H, Löfgren S, Natchimuthu S, Öquist M, Peacock M, Wallin MB. Forest streams are important sources for nitrous oxide emissions. GLOBAL CHANGE BIOLOGY 2020; 26:629-641. [PMID: 31465582 PMCID: PMC7027446 DOI: 10.1111/gcb.14812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/15/2019] [Indexed: 05/28/2023]
Abstract
Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2 O). N2 O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2 O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2 O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2 O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2 O concentrations and environmental variables were difficult to discern, the percent saturation of N2 O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2 O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2 O emissions. An estimate of the N2 O emission from low-order streams at the national scale revealed that ~1.8 × 109 g N2 O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2 O sources in the landscape with 800 × 109 g CO2 -eq emitted annually in Sweden, equivalent to 25% of the total N2 O emissions from the Swedish agricultural sector.
Collapse
Affiliation(s)
- Joachim Audet
- Department of BioscienceAarhus UniversitySilkeborgDenmark
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - David Bastviken
- Department of Thematic Studies – Environmental ChangeLinköping UniversityLinköpingSweden
| | - Mirco Bundschuh
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
- Institute for Environmental SciencesUniversity of Koblenz‐LandauLandauGermany
| | - Ishi Buffam
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOHUSA
| | - Alexander Feckler
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Leif Klemedtsson
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
| | - Hjalmar Laudon
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Stefan Löfgren
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Mats Öquist
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Mike Peacock
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Marcus B. Wallin
- Department of Earth Sciences, Air, Water and Landscape SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
21
|
Deininger A, Jonsson A, Karlsson J, Bergström AK. Pelagic food webs of humic lakes show low short-term response to forest harvesting. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01813. [PMID: 30312509 DOI: 10.1002/eap.1813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Forest harvest in the boreal zone can increase the input of terrestrial materials such as dissolved organic carbon (DOC) and nitrate (NO3- ) into nearby aquatic ecosystems, with potential effects on phytoplankton growth through enhanced nutrient (i.e., positive) or reduced light availability (i.e., negative), which may affect ecosystem productivity and consumer resource use. Here, we conducted forest clear-cutting experiments in the catchments of four small, humic, and nitrogen-limited unproductive boreal lakes (two controls and two clear-cut, 18% and 44% of area cut) with one reference and two impact years. Our aim was to assess the effects of forest clear-cutting on pelagic biomass production and consumer resource use. We found that pelagic biomass production did not change after two years of forest clear-cutting: Pelagic primary and bacterial production (PP, BP), PP:BP ratio, chl a, and seston carbon (seston C) were unaffected by clear-cutting; neither did tree harvest affect seston stoichiometry (i.e., N:phosphorus [P], C:P) nor induce changes in zooplankton resource use, biomass, or community composition. In conclusion, our findings suggest that pelagic food webs of humic lakes (DOC > 15 mg/L) might be resilient to a moderate form of forest clear-cutting, at least two years after tree removal, before mechanical site preparation (e.g., mounding, plowing) and when leaving buffer strips along lakes and incoming streams. Thus, pelagic food web responses to forest clear-cutting might not be universal, but could depend on factors such as the time scale, share of catchment logged, and the forest practices involved, including the application of buffer strips and site preparation.
Collapse
Affiliation(s)
- A Deininger
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - A Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - J Karlsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - A-K Bergström
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Fan X, Ding S, Gong M, Chen M, Gao S, Jin Z, Tsang DCW. Different Influences of Bacterial Communities on Fe (III) Reduction and Phosphorus Availability in Sediments of the Cyanobacteria- and Macrophyte-Dominated Zones. Front Microbiol 2018; 9:2636. [PMID: 30487778 PMCID: PMC6247781 DOI: 10.3389/fmicb.2018.02636] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/16/2018] [Indexed: 12/05/2022] Open
Abstract
Little is known about the effects of bacterial community on iron (Fe) and phosphorus (P) cycles in sediments under different primary producer habitats in different seasons. Lake Taihu has both the cyanobacteria- and macrophyte-dominated lake zones. In this work, the abundance and structure of bacterial community was investigated using qPCR and 16S rRNA gene high throughput sequencing, respectively. Compared with the sediments in the cyanobacteria-dominated lake zone, sediments in the macrophyte-dominated lake zone had higher TP, TOC and TN contents but lower DO and Eh values. Dissolved reactive P, dissolved Fe, and their molar ratios (Fe/P) were lower in the sediments of the cyanobacteria-dominated lake zone than those in the macrophyte-dominated lake zone. Consistent with this was the significantly lower abundance of total and typical Fe redox transforming bacteria in the sediment of the cyanobacteria-dominated lake zone than those in the macrophyte-dominated lake zone. Correlation analyses also revealed positive influence of abundances of total bacteria and typical Fe reducing bacteria on dissolved Fe and Fe/P ratio. The results showed that, in the cyanobacteria-dominated open water zone, Acidimicrobiaceae was capable of Fe metabolism, contributing to higher P flux in summer. In the cyanobacteria-dominated bay, Sva0081 sediment group and Desulfobulbaceae could transform sulfate to sulfide, which resulted in the reduction of Fe (III), while in the macrophyte-dominated zones, Clostridium sensu stricto 1 could couple oxidation of organic carbon with the reduction of Fe (III). The present study adds new knowledge linking the bacterial communities with the physicochemical cycles of Fe and P in sediments under different primary producer habitats.
Collapse
Affiliation(s)
- Xianfang Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengdan Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - ShuaiShuai Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Zengfeng Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Kowloon, China
| |
Collapse
|
23
|
Jiang X, Yanbin L. A bibliometric analysis for global research trends on ectomycorrhizae over the past thirty years. ELECTRONIC LIBRARY 2018. [DOI: 10.1108/el-05-2017-0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose
Based on the significance of ectomycorrhizae (ECM) and increased publication activity on this subject, it was decided to carry out a bibliometric analysis of scientific outputs in this area. The purpose of this study is to reveal the research trends of scientific outputs on ECM for the past 30 years and provide a potential guide for future research.
Design/methodology/approach
A method of bibliometric analysis was performed, based on the online version of the Science Citation Index Expanded, Web of Science, from 1986 to 2017. The authors evaluated the publication types, languages, source countries, journals, the patterns of publication outputs, most-cited articles, most-productive authors, institutional distributions, subject categories, high-frequency keywords and keywords plus and high-frequency terms in the title and abstract of ectomycorrhizal research. Keywords, keywords plus and high-frequency terms in the title and abstract were analyzed via VOSviewer to illustrate the extent of co-occurrence. This study further describes the recent research priority or hotspots and reveals the research trends.
Findings
From 1986 to 2017, the publication output on ECM showed a rising trend; the number of articles has rapidly increased after 2003. Based on co-occurrence analysis for keywords, keywords plus and terms in the title and abstract, “ectomycorrhizal fungi” is the most popular keyword and keywords plus; “concentration” is the most high-frequency terms in the title and abstracts. Plant biology, mycology and ecology are the hotspots in the ectomycorrhizal research. Ectomycorrhizal taxonomy, the molecular mechanisms of ectomycorrhizal symbioses and the common mycorrhizal networks are the future direction.
Originality/value
A bibliometric analysis has been carried out to analyze the trends of ECM research with 30 years. This study provides a potential guide for future research related to ectomycorrhizae.
Collapse
|
24
|
Gritcan I, Duxbury M, Leuzinger S, Alfaro AC. Leaf Stable Isotope and Nutrient Status of Temperate Mangroves As Ecological Indicators to Assess Anthropogenic Activity and Recovery from Eutrophication. FRONTIERS IN PLANT SCIENCE 2016; 7:1922. [PMID: 28066477 PMCID: PMC5179504 DOI: 10.3389/fpls.2016.01922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
We measured nitrogen stable isotope values (δ15N), and total phosphorus (%P) and total nitrogen (%N) contents in leaves of the temperate mangrove (Avicennia marina sp. australasica) from three coastal ecosystems exposed to various levels of human impact (Manukau, high; Mangawhai, low; and Waitemata, intermediate) in northern New Zealand. We measured δ15N values around 10‰ in environments where the major terrestrial water inputs are sewage. The highest average total nitrogen contents and δ15N values were found in the Auckland city region (Manukau Harbour) at 2.2%N and 9.9‰, respectively. The lowest values were found in Mangawhai Harbour, situated about 80 km north of Auckland city, at 2.0%N and 5.2‰, respectively. In the Waitemata Harbour, also located in Auckland city but with less exposure to human derived sewage inputs, both parameters were intermediate, at 2.1%N and 6.4‰. Total phosphorus contents did not vary significantly. Additionally, analysis of historical mangrove leaf herbarium samples obtained from the Auckland War Memorial Museum indicated that a reduction in both leaf total nitrogen and δ15N content has occurred over the past 100 years in Auckland's harbors. Collectively, these results suggest that anthropogenically derived nitrogen has had a significant impact on mangrove nutrient status in Auckland harbors over the last 100 years. The observed decrease in nitrogenous nutrients probably occurred due to sewage system improvements. We suggest that mangrove plant physiological response to nutrient excess could be used as an indicator of long-term eutrophication trends. Monitoring leaf nutrient status in mangroves can be used to assess environmental stress (sewage, eutrophication) on coastal ecosystems heavily impacted by human activities. Moreover, nitrogen and phosphorus leaf contents can be used to assess levels of available nutrients in the surrounding environments.
Collapse
Affiliation(s)
| | | | | | - Andrea C. Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of TechnologyAuckland, New Zealand
| |
Collapse
|
25
|
Futter MN, Högbom L, Valinia S, Sponseller RA, Laudon H. Conceptualizing and communicating management effects on forest water quality. AMBIO 2016; 45 Suppl 2:188-202. [PMID: 26744053 PMCID: PMC4705064 DOI: 10.1007/s13280-015-0753-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a framework for evaluating and communicating effects of human activity on water quality in managed forests. The framework is based on the following processes: atmospheric deposition, weathering, accumulation, recirculation and flux. Impairments to water quality are characterized in terms of their extent, longevity and frequency. Impacts are communicated using a "traffic lights" metaphor for characterizing severity of water quality impairments arising from forestry and other anthropogenic pressures. The most serious impairments to water quality in managed boreal forests include (i) forestry activities causing excessive sediment mobilization and extirpation of aquatic species and (ii) other anthropogenic pressures caused by long-range transport of mercury and acidifying pollutants. The framework and tool presented here can help evaluate, summarize and communicate the most important issues in circumstances where land management and other anthropogenic pressures combine to impair water quality and may also assist in implementing the "polluter pays" principle.
Collapse
Affiliation(s)
- Martyn N Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Lars Högbom
- Skogforsk, Uppsala Science Park, 751 83, Uppsala, Sweden.
| | - Salar Valinia
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349, Oslo, Norway.
| | - Ryan A Sponseller
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden.
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, SLU, Skogsmarksgränd, 901 83, Umeå, Sweden.
| |
Collapse
|
26
|
Nordin A, Sandström C. Interdisciplinary science for future governance and management of forests. AMBIO 2016; 45 Suppl 2:69-73. [PMID: 26744043 PMCID: PMC4705063 DOI: 10.1007/s13280-015-0743-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The sustainable use of forests constitutes one of the great challenges for the future due to forests' large spatial coverage, long-term planning horizons and inclusion of many ecosystem services. The mission of the Future Forests programme is to provide a scientifically robust knowledge base for sustainable governance and management of forests preparing for a future characterized by globalization and climate change. In this introduction to the Special Issue, we describe the interdisciplinary science approach developed in close collaboration with actors in the Future Forests programme, and discuss the potential impacts of this science on society. In addition, we introduce the 13 scientific articles and present results produced by the programme.
Collapse
Affiliation(s)
| | - Camilla Sandström
- Department of Political Science, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|