1
|
Zhang W, Xiong W, Wang M, Zhao D, Guo X, Zhan A. Vertical exchange versus horizontal dispersal in structuring local planktonic and sedimentary bacterial communities in polluted lotic ecosystems. J Environ Sci (China) 2025; 156:859-870. [PMID: 40412982 DOI: 10.1016/j.jes.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 05/27/2025]
Abstract
Elucidating the mechanisms underlying community assembly remains a central question in community ecology, especially in aquatic ecosystems disrupted by human activities. Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration. While stochastic dispersal and species sorting are known to influence local biological communities, most studies have focused on horizontal dispersal, often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal. We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution, as well as two components of stochastic dispersal, vertical exchange and horizontal dispersal, in structuring local bacterial communities. Our integrated analyses of planktonic and sedimentary bacterial communities revealed that, despite different spatial patterns along the river, both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient. Notably, in addition to the effect of horizontal dispersal along the river, the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities. These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.
Collapse
Affiliation(s)
- Wei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Dongliang Zhao
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China.
| |
Collapse
|
2
|
Muñoz-Delgado A, de Anda J, Lugo-Melchor OY, González-Díaz RL, Shear H, Meza-Rodríguez D, Bravo-Madrigal J. Microbial risk assessment of fecal indicator bacteria in a highly polluted river: Santiago-Guadalajara River Basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:663. [PMID: 40392376 DOI: 10.1007/s10661-025-14023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/15/2025] [Indexed: 05/22/2025]
Abstract
The Santiago-Guadalajara River, located in western Mexico, is one of the most polluted rivers in the country, with widespread fecal contamination that presents a potential risk to public health, food safety, and biodiversity. This study investigated the spatial and seasonal behavior of fecal indicator bacteria (FIB) in the Santiago-Guadalajara River Basin (SGRB) using the most probable number (MPN) microbiological quantification technique and measuring the tributary flow rates in the main stem of the river and tributaries. Twenty-five sampling sites were monitored from July 2021 to April 2022. The mean of the microbial counts (MPN/100 mL) at the basin was as follows: total coliforms 2.5 × 107, fecal coliforms 2.2 × 107, and E. coli 2.1 × 107. These FIB values position the Santiago-Guadalajara River as one of the most polluted rivers globally since it significantly exceeds the regulatory limits at the monitored sites, indicating insufficient sanitation infrastructure throughout the basin. A high level of correlation was found between FIB concentrations and monitored stream tributary flows, which allowed modeling the behavior of the FIB with respect to the flow regime throughout the basin. Quantitative microbial risk assessment revealed specific stations with elevated infection risks from Escherichia coli exposure. This field-based study provides valuable insights into the relationship between the variables that influence FIB concentrations in a highly polluted river and the potential risk to the exposed population.
Collapse
Affiliation(s)
- Alexia Muñoz-Delgado
- Posgrado en Innovación Biotecnológica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Avenida Normalistas 800, CP 44270, Guadalajara, Jalisco, México
| | - José de Anda
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Avenida Normalistas 800, CP 44270, Guadalajara, Jalisco, México.
| | - Ofelia Yadira Lugo-Melchor
- Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Avenida Normalistas 800, CP 44270, Guadalajara, Jalisco, México
| | - Rosa Leonor González-Díaz
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. General Ramón Corona 2514, CP 45201, Zapopan, Jalisco, México
| | - Harvey Shear
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1 C6, Canada
| | - Demetrio Meza-Rodríguez
- Departamento de Ecología y Recursos Naturales, Centro Universitario de La Costa Sur, Universidad de Guadalajara (CUCSUR), Av. Independencia Nacional 151, CP 48900, Autlán de Navarro, Jalisco, México
| | - Jorge Bravo-Madrigal
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Avenida Normalistas 800, CP 44270, Guadalajara, Jalisco, México
| |
Collapse
|
3
|
Goldenberg‐Vilar A, Morán‐Luis M, Vieites DR, Álvarez‐Martínez JM, Silió A, Mony C, Varandas S, Monteiro SM, Burgess D, Cabecinha E, Barquín J. Biogeographical Distribution of River Microbial Communities in Atlantic Catchments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70065. [PMID: 39776267 PMCID: PMC11707552 DOI: 10.1111/1758-2229.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing. Our findings reveal different drivers for diversity and composition: land use is pivotal for eukaryotes, while climate and geology are crucial for prokaryotes. A strong regional influence shapes these communities, with warmer, drier regions (Portugal and France) differing from cooler, wetter ones (Northern Spain, Ireland and the United Kingdom). These patterns suggest potential indicators for global change, such as taxa resistant to temperature increases and water scarcity, or those sensitive to land use changes.
Collapse
Affiliation(s)
- Alejandra Goldenberg‐Vilar
- IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversidad de CantabriaSantanderSpain
| | - María Morán‐Luis
- IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversidad de CantabriaSantanderSpain
| | - David R. Vieites
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones CientíficasVigoSpain
| | - José Manuel Álvarez‐Martínez
- IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversidad de CantabriaSantanderSpain
- Biodiversity Research InstituteIMIB (Univ. Oviedo‐CSIC‐Princ. Asturias)MieresSpain
| | - Ana Silió
- IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversidad de CantabriaSantanderSpain
| | - Cendrine Mony
- University of Rennes, UMR CNRS EcobioRennes CedexFrance
| | - Simone Varandas
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences, CITAB/Inov4AgroUniversidade de Trás‐Os‐Montes e Alto Douro, UTADVila RealPortugal
- BIOPOLIS Program in Genomics, Biodiversity and EcosystemsUniversidade do PortoVairãoPortugal
- CIBIO Research Centre in Biodiversity and Genetic ResourcesUniversidade do PortoVairãoPortugal
- InBIO Research Network in Biodiversity and Evolutionary BiologyUniversidade do PortoVairãoPortugal
| | - Sandra Mariza Monteiro
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences, CITAB/Inov4AgroUniversidade de Trás‐Os‐Montes e Alto Douro, UTADVila RealPortugal
| | - Diane Burgess
- Agriculture and Food Bioscience InstituteBelfastNorthern Ireland, UK
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences, CITAB/Inov4AgroUniversidade de Trás‐Os‐Montes e Alto Douro, UTADVila RealPortugal
- BIOPOLIS Program in Genomics, Biodiversity and EcosystemsUniversidade do PortoVairãoPortugal
- CIBIO Research Centre in Biodiversity and Genetic ResourcesUniversidade do PortoVairãoPortugal
- InBIO Research Network in Biodiversity and Evolutionary BiologyUniversidade do PortoVairãoPortugal
| | - José Barquín
- IHCantabria—Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversidad de CantabriaSantanderSpain
| |
Collapse
|
4
|
Zeng J, Nakanishi T, Hara A, Itoh S. Influence of sewage effluent discharge on putative pathogen community in drinking water sources: insights from full-length 16S rRNA gene amplicon sequencing. JOURNAL OF WATER AND HEALTH 2025; 23:43-57. [PMID: 39882853 DOI: 10.2166/wh.2024.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed. Mountain streams primarily harbored environmental pathogens, whereas urban rivers exhibited significantly higher concentrations of fecal indicator bacteria (FIB) (i.e., Escherichia coli and Clostridium perfringens) along with markedly more diverse enteric pathogens with a higher relative abundance. Furthermore, within urban rivers, the putative pathogen communities displayed significant variation, closely aligning with the sewage effluent mixing ratios. The effectiveness of FIBs as indicators of enteric pathogens was found to be largely dependent on the levels of fecal pollution. This study offers novel insights into the impact of sewage effluent discharge on putative pathogenic bacterial communities with enhanced species-level resolution.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Tomohiro Nakanishi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan E-mail:
| | - Ayato Hara
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| |
Collapse
|
5
|
Zeng Z, Huang R, Li W. Elevation Determines Fungal Diversity, and Land Use Governs Community Composition: A Dual Perspective from Gaoligong Mountains. Microorganisms 2024; 12:2378. [PMID: 39597766 PMCID: PMC11596228 DOI: 10.3390/microorganisms12112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In the present study, by collecting soil samples from four different land uses in the Gaoligong Mountain area, namely shrublands (SLs), coffee plantations (CPs), cornfields (CFs), and citrus orchards (COs), and combining them with the changes in altitude gradients (low: 900 m, medium: 1200 m, high: 1500 m), high-throughput sequencing technology was used to analyze the composition and diversity of soil fungal communities based on the collected soil samples. The results showed that the interaction between land-use types and elevation significantly influenced the structure and diversity of fungal communities, although their relative importance in shaping fungal diversity or community structure varied. Specifically, elevation posed a stronger effect on fungal community alpha-diversity and functional guilds, whereas land-use types had a greater influence over fungal community composition. Our study reveals the individual and combined effects of land-use practices and elevation on the structure and diversity of soil fungal communities in the Gaoligong Mountain region, enhancing our understanding of the distribution patterns and driving mechanisms of soil fungal communities in this biodiversity-rich region.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (Z.Z.); (R.H.)
| |
Collapse
|
6
|
Li T, Feng K, Wang S, Yang X, Peng X, Tu Q, Deng Y. Beyond water and soil: Air emerges as a major reservoir of human pathogens. ENVIRONMENT INTERNATIONAL 2024; 190:108869. [PMID: 38968831 DOI: 10.1016/j.envint.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.
Collapse
Affiliation(s)
- Tong Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Chao J, Li J, Kong M, Shao K, Tang X. Bacterioplankton diversity and potential health risks in volcanic lakes: A study from Arxan Geopark, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123058. [PMID: 38042466 DOI: 10.1016/j.envpol.2023.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bacterioplankton play a vital role in maintaining the functions and services of lake ecosystems. Understanding the diversity and distribution patterns of bacterioplankton, particularly the presence of potential pathogenic bacterial communities, is crucial for safeguarding human health. In this study, we employed 16S rRNA gene amplicon sequencing to investigate the diversity and geographic patterns of bacterioplankton communities, as well as potential pathogens, in eight volcanic lakes located in the Arxan UNESCO Global Geopark (in the Greater Khingan Mountains of China). Our results revealed that the bacterial communities primarily comprised Bacteroidota (45.3%), Proteobacteria (33.1%), and Actinobacteria (9.0%) at the phylum level. At the genus level, prominent taxa included Flavobacterium (31.5%), Acinetobacter (11.0%), Chryseobacterium (7.9%), and CL500-29 marine group (5.6%). Among the bacterioplankton, we identified 34 pathogen genera (165 amplicon sequence variants [ASVs]), with Acinetobacter (59.8%), Rahnella (18.3%), Brevundimonas (9.6%), and Pseudomonas (5.8%) being the most dominant. Our findings demonstrated distinct biogeographic patterns in the bacterial communities at the local scale, driven by a combination of dispersal limitation and environmental factors influenced by human activities. Notably, approximately 15.3% of the bacterioplankton reads in the Arxan lakes were identified as potential pathogens, underscoring the potential risks to public health in these popular tourist destinations. This study provides the first comprehensive insight into the diversity of bacterioplankton in mountain lake ecosystems affected by high tourist activity, laying the groundwork for effective control measures against bacterial pathogens.
Collapse
Affiliation(s)
- Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jian Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Basili M, Perini L, Zaggia L, Luna GM, Quero GM. Integrating culture-based and molecular methods provides an improved assessment of microbial quality in a coastal lagoon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122140. [PMID: 37414126 DOI: 10.1016/j.envpol.2023.122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Faecal pollution in aquatic environments is a worldwide public health concern, yet the reliability and comprehensiveness of the methods used to assess faecal contamination are still debated. We compared three approaches, namely a culture-based method to enumerate Faecal Indicator Bacteria (FIB), a FIB-targeting qPCR assay, and High-Throughput Sequencing (HTS) to detect faeces- and sewage-associated taxa in water and sediment samples of an impacted model lagoon and its adjacent sea across one year. Despite at different levels, all approaches agreed in showing a higher contamination in the lagoon than in the sea, and higher in sediments than water. FIB significantly correlated when considering separately sediment and water, and when using both cultivation and qPCR. Similarly, FIB correlated between cultivation and qPCR, but qPCR provided consistently higher estimates of FIB. Faeces-associated bacteria positively correlated with cultivated FIB in both compartments, whereas sewage-associated bacteria did only in water. Considering their benefits and limitations, we conclude that, in our study site, improved quali-quantitative information on contamination is provided when at least two approaches are combined (e.g., cultivation and qPCR or HTS data). Our results provide insights to move beyond the use of FIB to improve faecal pollution management in aquatic environments and to incorporate HTS analysis into routine monitoring.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Laura Perini
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131, Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy.
| |
Collapse
|
9
|
Adhikari NP, Adhikari S. First report on the bacterial community composition, diversity, and functions in Ramsar site of Central Himalayas, Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:573. [PMID: 37060391 DOI: 10.1007/s10661-023-11158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Wetland bacterial communities are highly sensitive to altered hydrology and the associated change in water physicochemical and biological properties leading to shifts in community composition and diversity, hence affecting the ecological roles. However, relevant studies are lacking in the wetlands of central Himalayas Nepal. Thus, we aimed to explore the variation of bacterial communities, diversity, and ecologic functions in the wet and dry periods of a wetland (designed as Ramsar site, Ramsar no 2257) by using 16S rRNA gene-based Illumina MiSeq sequencing. We reported a pronounced variation in water physicochemical and biological properties (temperature, pH, Chla, DOC, and TN), bacterial diversity, and community composition. Bacterial communities in the dry season harbored significantly higher alpha diversity, while significantly higher richness and abundance were reflected in the wet season. Our results uncovered the effect of nutrients on bacterial abundance, richness, and community composition. Fourteen percent of the total OTUs were shared in two hydrological periods, and the largest portion of unique OTUs (58%) was observed in the dry season. Planctomycetes and Bacteroidetes dominated the wet season exclusive OTUs; meanwhile, Actinobacteria dominated the dry season exclusive OTUs. Bacteria in these wetlands exhibited divergent ecological functions during the dry and wet seasons. By disclosing the variation of water bacterial communities in different hydrologic periods and their relationship with environmental factors, this first-hand work in the Ramsar site of Nepal will develop a baseline dataset for the scientific community that will assist in understanding the wetland's microbial ecology and biogeography.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Tibetan Plateau Research Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Adhikari
- Policy and Planning Commission, Government of Gandaki Province, Pokhara, 33700, Nepal.
| |
Collapse
|
10
|
Chen W, Sang S, Shao L, Li Y, Li T, Gan L, Liu L, Wang D, Zhou L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol Spectr 2023; 11:e0368322. [PMID: 36507672 PMCID: PMC9927264 DOI: 10.1128/spectrum.03683-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Liyi Shao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yusen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Tongzhou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lihong Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Wan X, Li J, Wang S, Fan F, McLaughlin RW, Wang K, Wang D, Zheng J. Biogeographic patterns of potential pathogenic bacteria in the middle and lower reaches of the Yangtze River as well as its two adjoining lakes, China. Front Microbiol 2022; 13:972243. [PMID: 36118197 PMCID: PMC9479215 DOI: 10.3389/fmicb.2022.972243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the distribution patterns and shaping factors of bacterial pathogens in aquatic ecosystems, especially in natural waters, are critical to the control of pathogen transmission. In this study, using 16S rRNA gene amplicon sequencing, we explored the composition and biogeographic dynamics of potential bacterial pathogens in the middle and lower reaches of the Yangtze River, as well as its two vast adjoining lakes (Dongting Lake and Poyang Lake). The pathogen community belonged to 12 potential pathogenic groups, with “intracellular parasites,” “animal parasites or symbionts” and “human pathogens all” occupying 97.5% in total. The potential pathogen community covered seven phyla with Proteobacteria (69.8%) and Bacteroidetes (13.5%) the most predominant. In addition, 53 genera were identified with Legionella (15.2%) and Roseomonas (14.2%) the most dominant. The average relative abundance, alpha diversity and microbial composition of the potential bacterial pathogens exhibited significant biogeographical variations among the different sections. An in-depth analysis reflected that environmental variables significantly structured the potential bacterial pathogens, including water physiochemical properties (i.e., chlorophyll-a, total nitrogen and transparency), heavy metals (i.e., As and Ni), climate (i.e., air temperature) and land use type (i.e., waters). Compared to the overall bacterial community which was composed of both pathogenic and non-pathogenic bacteria, the pathogen community exhibited distinct microbial diversity patterns and shaping factors. This signifies the importance of different variables for shaping the pathogen community. This study represents one attempt to explore pathogen diversity patterns and their underlying drivers in the Yangtze River, which provides a foundation for the management of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyong Wang
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan, China
- Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Wuhan, China
- *Correspondence: Shiyong Wang
| | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Kexiong Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Jinsong Zheng
| |
Collapse
|
12
|
Basili M, Campanelli A, Frapiccini E, Luna GM, Quero GM. Occurrence and distribution of microbial pollutants in coastal areas of the Adriatic Sea influenced by river discharge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117672. [PMID: 34380232 DOI: 10.1016/j.envpol.2021.117672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The transport of a variety of pollutants from agricultural, industrial and urbanised areas makes rivers major contributors to the contamination of coastal marine environments. Too little is known of their role in carrying pathogens to the coast. We used DNA-based metabarcoding data to describe the microbial community composition in seawater and sediment collected in front of the estuary of the Tronto, the Chienti and the Esino, three Italian rivers with different pollution levels that empty into the north-central Adriatic Sea, and to detect and measure within these communities the relative abundance of microbial pollutants, including traditional faecal indicators and alternative faecal and sewage-associated pollutants. We then applied the FORENSIC algorithm to distinguish human from non-human sources of microbial pollution and FAPROTAX to map prokaryotic clades to established metabolic or other ecologically relevant functions. Finally, we searched the dataset for other common pathogenic taxa. Seawater and sediment contained numerous potentially pathogenic bacteria, mainly faecal and sewage-associated. The samples collected in front of the Tronto estuary showed the highest level of contamination, likely sewage-associated. The pathogenic signature showed a weak but positive correlation with some nutrients and strong correlations with some polycyclic aromatic hydrocarbons. This study confirms that rivers transport pathogenic bacteria to the coastal sea and highlights the value of expanding the use of HTS data, source tracking and functional identification tools to detect microbial pollutants and identify their sources with a view to gaining a better understanding of the pathways of sewage-associated discharges to the sea.
Collapse
Affiliation(s)
- Marco Basili
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Alessandra Campanelli
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Emanuela Frapiccini
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Grazia Marina Quero
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy.
| |
Collapse
|
13
|
Pereda C, Actis DG, Mendoza Zélis P, Alvarez VA, Sanchez LM. Tillandsia Aeranthos
flower‐like magnetic nanostructures confined into polyvinyl alcohol beads. J Appl Polym Sci 2021. [DOI: 10.1002/app.50261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Camila Pereda
- Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) CONICET‐Universidad Nacional de Mar del Plata (UNMdP) Mar del Plata Argentina
| | - Daniel G. Actis
- Instituto de Física de La Plata (IFLP) CONICET‐Departamento de Física, Universidad Nacional de La Plata (UNLP) La Plata Argentina
| | - Pedro Mendoza Zélis
- Instituto de Física de La Plata (IFLP) CONICET‐Departamento de Física, Universidad Nacional de La Plata (UNLP) La Plata Argentina
| | - Vera A. Alvarez
- Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) CONICET‐Universidad Nacional de Mar del Plata (UNMdP) Mar del Plata Argentina
| | - Laura M. Sanchez
- Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) CONICET‐Universidad Nacional de Mar del Plata (UNMdP) Mar del Plata Argentina
| |
Collapse
|
14
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
15
|
Community Composition and Function of Bacteria in Activated Sludge of Municipal Wastewater Treatment Plants. WATER 2021. [DOI: 10.3390/w13060852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) use functional microorganisms in activated sludge (AS) to reduce the environmental threat posed by wastewater. In this study, Illumina NovaSeq sequencing of 16S rRNA genes was performed to explore the microbial communities of AS at different stages of the two WWTP projects in Shenzhen, China. Results showed that Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, and Nitrospirae were the dominant phyla in all the samples, with Proteobacteria being the most abundant and reaching a maximum proportion of 59.63%. There was no significant difference in biodiversity between the two water plants, but Stage 1 and Stage 2 were significantly different. The Mantel test indicated that nitrate, total nitrogen (TN), chemical oxygen demand (COD), and nutrients were essential factors affecting the bacterial community structure. FAPROTAX analysis emphasized that the leading functional gene families include nitrification, aerobic nitrite oxidation, human pathogens, and phototrophy. This study reveals changes in the community structure of AS in different treatment units of Banxuegang WWTP, which can help engineers to optimize the wastewater treatment process.
Collapse
|
16
|
Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020688] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FAPROTAX is a promising tool for predicting ecological relevant functions of bacterial and archaeal taxa derived from 16S rRNA amplicon sequencing. The database was initially developed to predict the function of marine species using standard microbiological references. This study, however, has attempted to access the application of FAPROTAX in soil environments. We hypothesized that FAPROTAX was compatible with terrestrial ecosystems. The potential use of FAPROTAX to assign ecological functions of soil bacteria was investigated using meta-analysis and our newly designed experiments. Soil samples from two major terrestrial ecosystems, including agricultural land and forest, were collected. Bacterial taxonomy was analyzed using Illumina sequencing of the 16S rRNA gene and ecological functions of the soil bacteria were assigned by FAPROTAX. The presence of all functionally assigned OTUs (Operation Taxonomic Units) in soil were manually checked using peer-reviewed articles as well as standard microbiology books. Overall, we showed that sample source was not a predominant factor that limited the application of FAPROTAX, but poor taxonomic identification was. The proportion of assigned taxa between aquatic and non-aquatic ecosystems was not significantly different (p > 0.05). There were strong and significant correlations (σ = 0.90–0.95, p < 0.01) between the number of OTUs assigned to genus or order level and the number of functionally assigned OTUs. After manual verification, we found that more than 97% of the FAPROTAX assigned OTUs have previously been detected and potentially performed functions in agricultural and forest soils. We further provided information regarding taxa capable of N-fixation, P and K solubilization, which are three main important elements in soil systems and can be integrated with FAPROTAX to increase the proportion of functionally assigned OTUs. Consequently, we concluded that FAPROTAX can be used for a fast-functional screening or grouping of 16S derived bacterial data from terrestrial ecosystems and its performance could be enhanced through improving the taxonomic and functional reference databases.
Collapse
|
17
|
Zhou L, Liu L, Chen WY, Sun JJ, Hou SW, Kuang TX, Wang WX, Huang XD. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114683. [PMID: 32388300 DOI: 10.1016/j.envpol.2020.114683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO3-N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei-Yuan Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ji-Jia Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shi-Wei Hou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tian-Xu Kuang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xian-De Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
18
|
Huang J, Yang J, Jiang H, Wu G, Xie Z, Dong H. Surviving onshore soil microbial communities differ among the Qing-Tibetan lakes with different salinity. FEMS Microbiol Ecol 2020; 95:5582604. [PMID: 31589308 DOI: 10.1093/femsec/fiz156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/03/2019] [Indexed: 11/12/2022] Open
Abstract
Little is known about the onshore microbial contribution to the microbial communities in nearby lakes and its response to salinity. In this study, transplanting experiments were established by caging onshore soils with dialysis bags followed by in situ 50-day incubation in nearby lakes with different salinity on the Qinghai-Tibetan Plateau. At the end of the experiment, geochemical and microbial analyses were performed on the original soils, caged soils and lake waters and sediments at the incubation sites. The results showed that the salinity increased significantly (P < 0.05) in the caged soils and such salinity increases showed significant (P < 0.05) positive correlation with the salinity of the studied lakes. The microbial community composition and predicted functions in the caged soils were significantly (P < 0.05) changed in comparison with their corresponding original soils, and such variation could be mainly explained by the succession of members of the Proteobacteria, Bacteroidetes and Actinobacteria from the original soils to their corresponding caged soils. The onshore microbial contribution appeared to be limited (up to 11.2% for sediment and negligible for water, respectively) to nearby lake microbial communities. Nevertheless, the survival of onshore soil microbial communities was mainly limited by the salinity of the receiving lakes.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 5056, USA
| |
Collapse
|
19
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|