1
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Brito D, Albrecht FC, de Arenaza DP, Bart N, Better N, Carvajal-Juarez I, Conceição I, Damy T, Dorbala S, Fidalgo JC, Garcia-Pavia P, Ge J, Gillmore JD, Grzybowski J, Obici L, Piñero D, Rapezzi C, Ueda M, Pinto FJ. World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM). Glob Heart 2023; 18:59. [PMID: 37901600 PMCID: PMC10607607 DOI: 10.5334/gh.1262] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and fatal condition that requires early diagnosis, management, and specific treatment. The availability of new disease-modifying therapies has made successful treatment a reality. Transthyretin amyloid cardiomyopathy can be either age-related (wild-type form) or caused by mutations in the TTR gene (genetic, hereditary forms). It is a systemic disease, and while the genetic forms may exhibit a variety of symptoms, a predominant cardiac phenotype is often present. This document aims to provide an overview of ATTR-CM amyloidosis focusing on cardiac involvement, which is the most critical factor for prognosis. It will discuss the available tools for early diagnosis and patient management, given that specific treatments are more effective in the early stages of the disease, and will highlight the importance of a multidisciplinary approach and of specialized amyloidosis centres. To accomplish these goals, the World Heart Federation assembled a panel of 18 expert clinicians specialized in TTR amyloidosis from 13 countries, along with a representative from the Amyloidosis Alliance, a patient advocacy group. This document is based on a review of published literature, expert opinions, registries data, patients' perspectives, treatment options, and ongoing developments, as well as the progress made possible via the existence of centres of excellence. From the patients' perspective, increasing disease awareness is crucial to achieving an early and accurate diagnosis. Patients also seek to receive care at specialized amyloidosis centres and be fully informed about their treatment and prognosis.
Collapse
Affiliation(s)
- Dulce Brito
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fabiano Castro Albrecht
- Dante Pazzanese Institute of Cardiology – Cardiac Amyloidosis Center Dante Pazzanese Institute, São Paulo, Brazil
| | | | - Nicole Bart
- St Vincent’s Hospital, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Nathan Better
- Cabrini Health, Malvern, Royal Melbourne Hospital, Parkville, Monash University and University of Melbourne, Victoria, Australia
| | | | - Isabel Conceição
- Department of Neurosciences and Mental Health, CHULN – Hospital de Santa Maria, Portugal
- Centro de Estudos Egas Moniz Faculdade de Medicina da Universidade de Lisboa Portugal, Portugal
| | - Thibaud Damy
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London, Royal Free Campus, United Kingdom
| | - Jacek Grzybowski
- Department of Cardiomyopathy, National Institute of Cardiology, Warsaw, Poland
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Claudio Rapezzi
- Cardiovascular Institute, University of Ferrara, Ferrara, Italy
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Fausto J. Pinto
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Dohoney RA, Joseph JA, Baysah C, Thomas AG, Siwakoti A, Ball TD, Kumar S. "Common-Precursor" Protein Mimetic Approach to Rescue Aβ Aggregation-Mediated Alzheimer's Phenotypes. ACS Chem Biol 2023. [PMID: 37367833 DOI: 10.1021/acschembio.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Abberent protein-protein interactions (aPPIs) are associated with an array of pathological conditions, which make them important therapeutic targets. The aPPIs are mediated via specific chemical interactions that spread over a large and hydrophobic surface. Therefore, ligands that can complement the surface topography and chemical fingerprints could manipulate aPPIs. Oligopyridylamides (OPs) are synthetic protein mimetics that have been shown to manipulate aPPIs. However, the previous OP library used to disrupt these aPPIs was moderate in number (∼30 OPs) with very limited chemical diversity. The onus is on the laborious and time-consuming synthetic pathways with multiple chromatography steps. We have developed a novel chromatography-free technique to synthesize a highly diverse chemical library of OPs using a "common-precursor" approach. We significantly expanded the chemical diversity of OPs using a chromatography-free high-yielding method. To validate our novel approach, we have synthesized an OP with identical chemical diversity to a pre-existing OP-based potent inhibitor of Aβ aggregation, a process central to Alzheimer's disease (AD). The newly synthesized OP ligand (RD242) was very potent in inhibiting Aβ aggregation and rescuing AD phenotypes in an in vivo model. Moreover, RD242 was very effective in rescuing AD phenotypes in a post-disease onset AD model. We envision that our "common-precursor" synthetic approach will have tremendous potential as it is expandable for other oligoamide scaffolds to enhance affinity for disease-relevant targets.
Collapse
Affiliation(s)
- Ryan A Dohoney
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Johnson A Joseph
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Charles Baysah
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Alexandra G Thomas
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- The Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Apshara Siwakoti
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- The Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Tyler D Ball
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Sunil Kumar
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
4
|
Gupta S, Dasmahapatra AK. Lycopene destabilizes preformed Aβ fibrils: Mechanistic insights from all-atom molecular dynamics simulation. Comput Biol Chem 2023; 105:107903. [PMID: 37320982 DOI: 10.1016/j.compbiolchem.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic strategy employing destabilization of the preformed Aβ fibril by various natural compounds, as studied by experimental and computational methods, has been reported significant in curing Alzheimer's disease (AD). However, lycopene (a carotenoid), from terpenes family, needs investigation for its destabilization potential of Aβ fibril. The highest antioxidant potential and ability to cross blood brain barrier makes lycopene a preferred choice as drug lead for treating AD. The current study focuses on investigating the destabilization potential and underpinning mechanism of lycopene on different polymorphic forms of Aβ fibril via Molecular Dynamics (MD) simulation. The key findings highlight binding of lycopene to the outer surface of the chain F of the fibril (2NAO). Herein G9, K16 and V18 residues were found to be involved in van der Waals with the methyl groups of the lycopene. Additionally, Y10 and F20 residues were observed to interact via π-π interactions with CC bonds of the lycopene. The surface mediated binding of lycopene to the fibril is attributed to the large size and structural rigidity of lycopene along with the bulky size of 2NAO and narrow space of fibrillar cavity. The destabilization of the fibril is evident by breakage of inherent H-bonds and hydrophobic interactions in the presence of one lycopene molecule. The lesser β-sheet content explains disorganization of the fibril and bars the higher order aggregation curbing neurotoxicity of the fibril. The higher concentration of the lycopene is not found to be linearly correlated with the extent of destabilization of the fibril. Lycopene is also observed to destabilize the other polymorphic form of Aβ fibril (2BEG), by accessing the fibrillar cavity and lowering the β-sheet content. The destabilization observed by lycopene on two major polymorphs of Aβ fibril explains its potency towards developing an effective therapeutic approach in treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Ghadami SA, Ahadi-Amandi K, Khodarahmi R, Ghanbari S, Adibi H. Synthesis of benzylidene-indandione derivatives as quantification of amyloid fibrils. Biophys Chem 2023; 296:106982. [PMID: 36868163 DOI: 10.1016/j.bpc.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The formation of amyloid fibrils due to its association with fatal diseases, including Alzheimer's, has been investigated by many researchers. These common diseases, mostly become verified when it is too late to be treated. Currently, no cure is available for neurodegenerative diseases, and the process of diagnosing amyloid fibrils in the early stages, while there are fewer amyloid fibrils, has become an issue of interest. To do so, determining new probes with the highest binding affinity to the lowest number of amyloid fibrils is necessary. In this study, we proposed to employ new synthesized benzylidene-indandione derivatives as amyloid fibrils fluorescent detection probes. Native soluble proteins of insulin, bovine serum albumin (BSA), BSA amorphous aggregation, and insulin amyloid fibrils were used to evaluate our compounds' specificity to the amyloid structure. While ten synthesized compounds were examined individually, four of them including 3d, 3g, 3i, and 3j showed a high binding affinity with selectivity and specificity to amyloid fibrils, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by Swiss ADME server shows a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption for the compounds 3g, 3i, and 3j. More evaluation is needed to determine all properties of compounds in vitro and in vivo.
Collapse
Affiliation(s)
| | - Kimia Ahadi-Amandi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Ghanbari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Tavakoli M, Ghadami SA, Adibi H, Gulcan HO. Synthesis of benzylidene-benzofuranone derivatives as probes for detection of amyloid fibrils in cells. J Biomol Struct Dyn 2023; 41:14989-15002. [PMID: 36866639 DOI: 10.1080/07391102.2023.2184635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Aggregated protein is the common cause of a wide variety of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease, etc. It is proven that protein aggregation like amyloid β (Aβ) is one of the critical factors causing AD and, its diagnosis in the early stages of the disease is important for the treatment or prevention of AD. To have a better understanding of protein aggregation and its pathologies, there is a huge need to design and develop new and more trustworthy probe molecules for in vitro amyloid quantification and in vivo amyloid imaging. In this study, 17 new biomarker compounds, have been synthesized from benzofuranone derivatives, to detect and identify amyloid in vitro (dye-binding assay) as well as in the cell by staining method. According to the results, some of these synthetic derivatives can be considered suitable identifiers and quantifiers to detect amyloid fibrils in vitro. Compared to thioflavin T, 4 probes out of 17 probes have shown good results in selectivity and detectability of Aβ depositions, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by the Swiss ADME server show a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption. Among all of them, compound 10 was able to show better binding properties than others, and in vivo study showed that this compound was capable of detecting intracellular amyloid.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, TRNC, Famagusta, Turkey
| | | | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
7
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
8
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
9
|
Norouzkhani N, Karimi AG, Badami N, Jalalifar E, Mahmoudvand B, Ansari A, Pakrou Sariyarighan N, Alijanzadeh D, Aghakhani S, Shayestehmehr R, Arzaghi M, Sheikh Z, Salami Y, Marabi MH, Abdi A, Deravi N. From kitchen to clinic: Pharmacotherapeutic potential of common spices in Indian cooking in age-related neurological disorders. Front Pharmacol 2022; 13:960037. [PMID: 36438833 PMCID: PMC9685814 DOI: 10.3389/fphar.2022.960037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is described as an advanced time-related collection of changes that may negatively affect with the risk of several diseases or death. Aging is a main factor of several age-related neurological disorders, including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and dementia), stroke, neuroinflammation, neurotoxicity, brain tumors, oxidative stress, and reactive oxygen species (ROS). Currently available medications for age-related neurological disorders may lead to several side effects, such as headache, diarrhea, nausea, gastrointestinal (GI) diseases, dyskinesia, and hallucinosis. These days, studies on plant efficacy in traditional medicine are being conducted because herbal medicine is affordable, safe, and culturally acceptable and easily accessible. The Indian traditional medicine system called Ayurveda uses several herbs and medicinal plants to treat various disorders including neurological disorders. This review aims to summarize the data on the neuroprotective potential of the following common Indian spices widely used in Ayurveda: cumin (Cuminum cyminum (L.), Apiaceae), black cumin (Nigella sativa (L.), Ranunculaceae), black pepper (Piper nigrum (L.), Piperaceae), curry leaf tree (Murraya koenigii (L.), Spreng Rutaceae), fenugreek (Trigonella foenum-graecum (L.), Fabaceae), fennel (Foeniculum vulgare Mill, Apiaceae), cardamom (Elettaria cardamomum (L.) Maton, Zingiberaceae), cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), and coriander (Coriandrum sativum (L.), Apiaceae) in age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Ghannadi Karimi
- Preclinical, Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Badami
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Erfan Jalalifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Dorsa Alijanzadeh
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Aghakhani
- Student Research Committee, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Reza Shayestehmehr
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Zahra Sheikh
- Babol University of Medical Sciences, Babol, Iran
| | - Yasaman Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi, ,
| |
Collapse
|
10
|
Li Y, Lin S, Gu Z, Chen L, He B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorg Med Chem Lett 2022; 76:129015. [DOI: 10.1016/j.bmcl.2022.129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
|
11
|
Yoo JM, Lin Y, Heo Y, Lee YH. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front Mol Biosci 2022; 9:959425. [PMID: 36032665 PMCID: PMC9412080 DOI: 10.3389/fmolb.2022.959425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
The major hallmark of Parkinson’s disease (PD) is represented by the formation of pathological protein plaques largely consisting of α-synuclein (αSN) amyloid fibrils. Nevertheless, the implications of αSN oligomers in neuronal impairments and disease progression are more importantly highlighted than mature fibrils, as they provoke more detrimental damages in neuronal cells and thereby exacerbate α-synucleinopathy. Interestingly, although generation of oligomeric species under disease conditions is likely correlated to cytotoxicity and different cellular damages, αSN oligomers manifest varying toxicity profiles dependent on the specific environments as well as the shapes and conformations the oligomers adopt. As such, this minireview discusses polymorphism in αSN oligomers and the association of the underlying heterogeneity in regard to toxicity under pathological conditions.
Collapse
Affiliation(s)
- Je Min Yoo
- BioGraphene Inc, Los Angeles, CA, United States
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Young-Ho Lee,
| |
Collapse
|
12
|
Andersen N, Veuthey T, Blanco MG, Silbestri GF, Rayes D, De Rosa MJ. 1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Front Pharmacol 2022; 13:908696. [PMID: 35685626 PMCID: PMC9171001 DOI: 10.3389/fphar.2022.908696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates β-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer’s Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.
Collapse
Affiliation(s)
- Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Gustavo Fabian Silbestri
- Departamento de Química, INQUISUR, Universidad Nacional Del Sur, UNS-CONICET, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| |
Collapse
|
13
|
Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. CRYSTALS 2022. [DOI: 10.3390/cryst12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants are rich in secondary metabolites, which are often useful as a relevant source of nutraceuticals. Quercetin (QUE) is a flavonol aglycone able to bind Transthyretin (TTR), a plasma protein that under pathological conditions can lose its native structure leading to fibrils formation and amyloid diseases onset. Here, the dual nature of five quercetin 3-O-glycosylated flavonol derivatives, isolated from different plant species, such as possible binders of TTR and antioxidants, was investigated. The crystal structure of 3-O-β-D-galactopyranoside in complex with TTR was solved, suggesting that not only quercetin but also its metabolites can contribute to stabilizing the TTR tetramer.
Collapse
|
14
|
Santoro A, Grimaldi M, Buonocore M, Stillitano I, Gloria A, Santin M, Bobba F, Sublimi Saponetti M, Ciaglia E, D'Ursi AM. New Aβ(1-42) ligands from anti-amyloid antibodies: Design, synthesis, and structural interaction. Eur J Med Chem 2022; 237:114400. [PMID: 35489223 DOI: 10.1016/j.ejmech.2022.114400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aβ peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aβ(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aβ-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aβ(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aβ(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aβ(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aβ antibody mimicking peptides.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20, Mostra d'Oltremare, 80125, Naples, Italy
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Fabrizio Bobba
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Matilde Sublimi Saponetti
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
15
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
16
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
17
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
18
|
Nahass GR, Sun Y, Xu Y, Batchelor M, Reilly M, Benilova I, Kedia N, Spehar K, Sobott F, Sessions RB, Caughey B, Radford SE, Jat PS, Collinge J, Bieschke J. Brazilin Removes Toxic Alpha-Synuclein and Seeding Competent Assemblies from Parkinson Brain by Altering Conformational Equilibrium. J Mol Biol 2021; 433:166878. [PMID: 33610557 PMCID: PMC7610480 DOI: 10.1016/j.jmb.2021.166878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Alpha-synuclein (α-syn) fibrils, a major constituent of the neurotoxic Lewy Bodies in Parkinson's disease, form via nucleation dependent polymerization and can replicate by a seeding mechanism. Brazilin, a small molecule derived from red cedarwood trees in Brazil, has been shown to inhibit the fibrillogenesis of amyloid-beta (Aβ) and α-syn as well as remodel mature fibrils and reduce cytotoxicity. Here we test the effects of Brazilin on both seeded and unseeded α-syn fibril formation and show that the natural polyphenol inhibits fibrillogenesis of α-syn by a unique mechanism that alters conformational equilibria in two separate points of the assembly mechanism: Brazilin preserves the natively unfolded state of α-syn by specifically binding to the compact conformation of the α-syn monomer. Brazilin also eliminates seeding competence of α-syn assemblies from Parkinson's disease patient brain tissue, and reduces toxicity of pre-formed assemblies in primary neurons by inducing the formation of large fibril clusters. Molecular docking of Brazilin shows the molecule to interact both with unfolded α-syn monomers and with the cross-β sheet structure of α-syn fibrils. Our findings suggest that Brazilin has substantial potential as a neuroprotective and therapeutic agent for Parkinson's disease.
Collapse
Affiliation(s)
- George R Nahass
- Colorado College, Colorado Springs, CO, USA; Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK; Washington University in St. Louis, St Louis, MO, USA; Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Yuanzi Sun
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Batchelor
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Madeleine Reilly
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Iryna Benilova
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Niraja Kedia
- Washington University in St. Louis, St Louis, MO, USA
| | - Kevin Spehar
- Washington University in St. Louis, St Louis, MO, USA
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Byron Caughey
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Parmjit S Jat
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - John Collinge
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Jan Bieschke
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK; Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
19
|
Ghadami SA, Shevidi S, Hosseinzadeh L, Adibi H. Synthesis and in vitro quantification of amyloid fibrils by barbituric and thiobarbituric acid-based chromene derivatives. Biophys Chem 2021; 269:106522. [PMID: 33352334 DOI: 10.1016/j.bpc.2020.106522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disease is caused by the abnormal build-up of proteins in and around cells called amyloid. The amyloid fibril formation and its mechanism have been investigated with various techniques, including dye-binding assay. Thioflavin T (ThT) has been one of the most widely used dyes for quantifying amyloid deposits, but ThT has a weak fluorescence signal especially at low concentration of amyloid fibrils, low lipophilicity and positive charge that makes it unable to cross the blood-brain barrier (BBB) to detect amyloid fibrils in vivo. Hence, there is a strong motivation for designing and developing the new compounds for in vitro amyloid quantification and in vivo amyloid imaging. The need for new probes to detect amyloid fibrils, especially within the cell, is highlighted by the fact that an accurate understanding of the molecular details of amyloid fibril formation is required to design and develop strategies for controlling the amyloid formation, and this needs more reliable probes for amyloid identification. In this work, we synthesized and applied barbituric and thiobarbituric acid-based chromene derivatives, as new fluorescent dyes to quantitatively detect the amyloid fibrils of bovine serum albumin (BSA) and human insulin in comparison with native soluble proteins or amorphous aggregation. Our results showed that among the 14 synthesized compounds, five compounds 4a, 4h, 4j, 4k, and 4l could selectively and specifically bind to amyloid fibrils while other compounds demonstrated a low-affinity binding. Furthermore, according to the cell viability experiment, compounds 4a, 4j and 4l at low concentration of compounds are not toxic, especially compound 4j which could be used as a suitable candidate for in vivo study. Further studies are needed to determine all the properties of compounds, especially in vivo experiments.
Collapse
Affiliation(s)
| | - Setayesh Shevidi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers. Nat Commun 2021; 12:688. [PMID: 33514697 PMCID: PMC7846799 DOI: 10.1038/s41467-020-20782-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Significant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases. Our understanding of the molecular mechanisms underlying pathological protein aggregation remains incomplete. Here, single molecule infrared nanospectroscopy (AFM-IR) offers insight into the structure of Aβ42 oligomeric and fibrillar species and their interaction with an aggregation inhibitor, paving the way for single molecule drug discovery studies.
Collapse
|
21
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Chen S, Yin H, Zhang L, Liu R, Qi W, He Z, Su R. Oligomeric procyanidins inhibit insulin fibrillation by forming unstructured and off-pathway aggregates. RSC Adv 2021; 11:37290-37298. [PMID: 35496438 PMCID: PMC9043779 DOI: 10.1039/d1ra05397c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Effects of natural polyphenols on insulin fibrillation were compared. OPCs show potent inhibitory effects at all stages of insulin fibrillation and redirect the insulin aggregation pathway via the formation of unstructured, off-pathway aggregates.
Collapse
Affiliation(s)
- Shaohuang Chen
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huiting Yin
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Wang L, Liu S, Xu J, Watanabe N, Mayo KH, Li J, Li X. Emodin inhibits aggregation of amyloid-β peptide 1-42 and improves cognitive deficits in Alzheimer's disease transgenic mice. J Neurochem 2020; 157:1992-2007. [PMID: 32799401 DOI: 10.1111/jnc.15156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022]
Abstract
Aggregation of amyloid-β peptide 1-42 (Aβ42) initiates the onset of Alzheimer's disease (AD), and all the drugs designed to attenuate AD have failed in clinical trials. Emodin reduces levels of β-amyloid, tau aggregation, oxidative stress, and inflammatory response, demonstrating AD therapeutic potential, whereas its effect on the accumulation of the amyloid-β protein is not well understood. In this work, we investigated emodin activity on Aβ aggregation using a range of biochemical, biophysical, and cell-based approaches. We provide evidence to suggest that emodin blocks Aβ42 fibrillogenesis and Aβ-induced cytotoxicity, displaying a greater effect than that of curcumin. Through adopting three short peptides (Aβ1-16, Aβ17-33, and Aβ28-42), it was proven that emodin interacts with the Leu17-Gly33 sequence. Furthermore, our findings indicated that Val18 and Phe19 in Aβ42 are the target residues with which emodin interacts according amino acid mutation experiments. When fed to 8-month-old B6C3-Tg mice for 2 months, high-dose emodin ameliorates cognitive impairment by 60%-70%. Pathological results revealed that levels of Aβ deposition in the brains of AD mice treated with a high dose of emodin decreased by 50%-70%. Therefore, our study indicates that emodin may represent a promising drug for AD treatment.
Collapse
Affiliation(s)
- Lichun Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.,College of Life Sciences, Jilin University, Changchun, China
| | - Jiaqi Xu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kevin H Mayo
- Biochemistry, Molecular Biology, and Biophysics, college of Biological Science, University of Minnesota, Minneapolis, MN, USA
| | - Jiang Li
- Affiliated Stomatology Hospital of Guangzhong Medical University, Guangzhou, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
24
|
Behl T, Kaur I, Fratila O, Brata R, Bungau S. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207443. [PMID: 33050199 PMCID: PMC7589257 DOI: 10.3390/ijms21207443] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly occurring neurodegenerative disorders, Alzheimer's disease (AD), encompasses the loss of cognitive and memory potential, impaired learning, dementia and behavioral defects, and has been prevalent since the 1900s. The accelerating occurrence of AD is expected to reach 65.7 million by 2030. The disease results in neural atrophy and disrupted inter-neuronal connections. Amongst multiple AD pathogenesis hypotheses, the amyloid beta (Aβ) cascade is the most relevant and accepted form of the hypothesis, which suggests that Aβ monomers are formed as a result of the cleavage of amyloid precursor protein (APP), followed by the conversion of these monomers to toxic oligomers, which in turn develop β-sheets, fibrils and plaques. The review targets the events in the amyloid hypothesis and elaborates suitable therapeutic agents that function by hindering the steps of plaque formation and lowering Aβ levels in the brain. The authors discuss treatment possibilities, including the inhibition of β- and γ-secretase-mediated enzymatic cleavage of APP, the immune response generating active immunotherapy and passive immunotherapeutic approaches targeting monoclonal antibodies towards Aβ aggregates, the removal of amyloid aggregates by the activation of enzymatic pathways or the regulation of Aβ circulation, glucagon-like peptide-1 (GLP-1)-mediated curbed accumulation and the neurotoxic potential of Aβ aggregates, bapineuzumab-mediated vascular permeability alterations, statin-mediated Aβ peptide degradation, the potential role of ibuprofen and the significance of natural drugs and dyes in hindering the amyloid cascade events. Thus, the authors aim to highlight the treatment perspective, targeting the amyloid hypothesis, while simultaneously emphasizing the need to conduct further investigations, in order to provide an opportunity to neurologists to develop novel and reliable treatment therapies for the retardation of AD progression.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
25
|
Sonawane SK, Chidambaram H, Boral D, Gorantla NV, Balmik AA, Dangi A, Ramasamy S, Marelli UK, Chinnathambi S. EGCG impedes human Tau aggregation and interacts with Tau. Sci Rep 2020; 10:12579. [PMID: 32724104 PMCID: PMC7387440 DOI: 10.1038/s41598-020-69429-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tau aggregation and accumulation is a key event in the pathogenesis of Alzheimer’s disease. Inhibition of Tau aggregation is therefore a potential therapeutic strategy to ameliorate the disease. Phytochemicals are being highlighted as potential aggregation inhibitors. Epigallocatechin-3-gallate (EGCG) is an active phytochemical of green tea that has shown its potency against various diseases including aggregation inhibition of repeat Tau. The potency of EGCG in altering the PHF assembly of full-length human Tau has not been fully explored. By various biophysical and biochemical analyses like ThS fluorescence assay, MALDI-TOF analysis and Isothermal Titration Calorimetry, we demonstrate dual effect of EGCG on aggregation inhibition and disassembly of full-length Tau and their binding affinity. The IC50 for Tau aggregation by EGCG was found to be 64.2 μM.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Debjyoti Boral
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Sureshkumar Ramasamy
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
26
|
Uddin MS, Hossain MF, Mamun AA, Shah MA, Hasana S, Bulbul IJ, Sarwar MS, Mansouri RA, Ashraf GM, Rauf A, Abdel-Daim MM, Bin-Jumah MN. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138313. [PMID: 32464743 DOI: 10.1016/j.scitotenv.2020.138313] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Neurodegeneration is the progressive loss of neuronal structures and functions that lead to copious disorders like Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), amyotrophic lateral sclerosis (ALS), and other less recurring diseases. Aging is the prime culprit for most neurodegenerative events. Moreover, the shared pathogenic factors of many neurodegenerative processes are inflammatory responses and oxidative stress (OS). Unfortunately, it is very complicated to treat neurodegeneration and there is no effective remedy. The rapid progression of the neurodegenerative diseases that exacerbate the burden and the concurrent absence of effective treatment strategies force the researchers to investigate more therapeutic approaches that ultimately target the causative factors of the neurodegeneration. Phytochemicals have great potential to exert their neuroprotective effects by targeting various mechanisms, such as OS, neuroinflammation, abnormal protein aggregation, neurotrophic factor deficiency, disruption in mitochondrial function, and apoptosis. Therefore, this review represents the molecular mechanisms of neuroprotection by multifunctional phytochemicals to combat age-linked neurodegenerative disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Farhad Hossain
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh; Department of Physical Therapy, Graduate School of Inje University, Gimhae, South Korea
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| |
Collapse
|
27
|
Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL. Green Tea Polyphenol Microparticles Based on the Oxidative Coupling of EGCG Inhibit Amyloid Aggregation/Cytotoxicity and Serve as a Platform for Drug Delivery. ACS Biomater Sci Eng 2020; 6:4414-4423. [PMID: 33455167 DOI: 10.1021/acsbiomaterials.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of all human amyloid diseases. The compound epigallocatechin-3-gallate (EGCG), the main polyphenol present in green tea, has been described to have beneficial effects in several pathologies, including amyloidogenic diseases. This polyphenol blocks amyloidogenesis and disaggregates a broad range of amyloidogenic peptides comprising amyloid fibrils in vitro. The mechanism by which EGCG acts in the context of amyloid aggregation is not clear. Most of the biological effects of EGCG are attributable to its antioxidant activity. However, EGCG-oxidized products appear to be sufficient for the majority of EGCG amyloid remodeling observed against some polypeptides. If controlled, EGCG oxidation can afford homogenous microparticles (MPs) and can serve as drug delivery agents. Herein, we produced EGCG MPs by oxidative coupling and analyzed their activity during the aggregation of the protein α-synuclein (α-syn), the main protein related to Parkinson's disease. The MPs modestly remodeled mature amyloid fibrils and efficiently inhibited the amyloidogenic aggregation of α-syn. The MPs showed low cytotoxicity against both dopaminergic cells and microglial cells. The MPs reduced the cytotoxic effects of α-syn oligomers. Interestingly, the MPs were loaded with another antiamyloidogenic compound, increasing their activity against amyloid aggregation. We propose the use of EGCG MPs as a bifunctional strategy, blocking amyloid aggregation directly and carrying a molecule that can act synergistically to alleviate the symptoms caused by the amyloidogenic pathway.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Messias
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Antonio Pereira-Neves
- Fiocruz Pernambuco, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco 50740-465, Brazil
| | - Estefania P Azevedo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Júlia Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
28
|
Wiglenda T, Groenke N, Hoffmann W, Manz C, Diez L, Buntru A, Brusendorf L, Neuendorf N, Schnoegl S, Haenig C, Schmieder P, Pagel K, Wanker EE. Sclerotiorin Stabilizes the Assembly of Nonfibrillar Abeta42 Oligomers with Low Toxicity, Seeding Activity, and Beta-sheet Content. J Mol Biol 2020; 432:2080-2098. [PMID: 32061932 DOI: 10.1016/j.jmb.2020.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
The self-assembly of the 42-residue amyloid-β peptide, Aβ42, into fibrillar aggregates is associated with neuronal dysfunction and toxicity in Alzheimer's disease (AD) patient brains, suggesting that small molecules acting on this process might interfere with pathogenesis. Here, we present experimental evidence that the small molecule sclerotiorin (SCL), a natural product belonging to the group of azaphilones, potently delays both seeded and nonseeded Aβ42 polymerization in cell-free assays. Mechanistic biochemical studies revealed that the inhibitory effect of SCL on fibrillogenesis is caused by its ability to kinetically stabilize small Aβ42 oligomers. These structures exhibit low β-sheet content and do not possess seeding activity, indicating that SCL acts very early in the amyloid formation cascade before the assembly of seeding-competent, β-sheet-rich fibrillar aggregates. Investigations with NMR WaterLOGSY experiments confirmed the association of Aβ42 assemblies with SCL in solution. Furthermore, using ion mobility-mass spectrometry, we observed that SCL directly interacts with a small fraction of Aβ42 monomers in the gas phase. In comparison to typical amyloid fibrils, small SCL-stabilized Aβ42 assemblies are inefficiently taken up into mammalian cells and have low toxicity in cell-based assays. Overall, these mechanistic studies support a pathological role of stable, β-sheet-rich Aβ42 fibrils in AD, while structures with low β-sheet content may be less relevant.
Collapse
Affiliation(s)
- Thomas Wiglenda
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicole Groenke
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Waldemar Hoffmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Christian Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Lisa Diez
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lydia Brusendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nancy Neuendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Haenig
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
29
|
Zhuang X, Li X, Zhao B, Liu Z, Song F, Lu J. Native Mass Spectrometry Based Method for Studying the Interactions between Superoxide Dismutase 1 and Stilbenoids. ACS Chem Neurosci 2020; 11:184-190. [PMID: 31820923 DOI: 10.1021/acschemneuro.9b00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To inhibit the abnormal aggregation of Cu, Zn-superoxide dismutase (SOD1) is regarded as a potential therapeutic strategy of SOD1-linked amyotrophic lateral sclerosis (ALS). Herein the interactions between SOD1 and four stilbene-based polyphenols, namely, resveratrol, oxyresveratrol, polydatin, and 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (THSG), were investigated using electrospray ionization mass spectrometry (ESI-MS) combined with ion mobility (IM) spectrometry. The addition of tandem MS to the study of SOD1-ligand complexes provides further insight into their gas-phase stability. Monitoring the unfolding of SOD1-ligand complexes using IM-MS allows observation of subtle changes in the protein stability upon ligand binding. From the MS/MS and IM-MS measurements, polydatin and THSG were highlighted as the strongest bound compounds in the gas phase, and both of them appear to provide a stabilizing effect on the SOD1 dimer conformation. In addition, the data of fluorescence assays clearly show the ability of the ligands to inhibit apoSOD1 from aggregation, and polydatin was found to have the strongest inhibitory effect. Overall, the method described here can be an effective approach to investigate the interactions between SOD1 and other drug-like molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuxiu Li
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianzhong Lu
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
30
|
Paul S, Paul S. Molecular dynamics simulation study on the inhibitory effects of choline-O-sulfate on hIAPP protofibrilation. J Comput Chem 2019; 40:1957-1968. [PMID: 31062393 DOI: 10.1002/jcc.25851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2Dm) is a neurodegenerative disease, which occurs due to the self-association of human islet amyloid polypeptide (hIAPP), also known as human amylin. It was reported experimentally that choline-O-sulfate (COS), a small organic molecule having a tertiary amino group and sulfate group, can prevent the aggregation of human amylin without providing the mechanism of the action of COS in the inhibition process. In this work, we investigate the influence of COS on the full-length hIAPP peptide by performing 500 ns classical molecular dynamics simulations. From pure water simulation (without COS), we have identified the residues 11-20 and 23-36 that mainly participate in the fibril formation, but in the presence of 1.07 M COS these residues become totally free of β-sheet conformation. Our results also show that the sulfate oxygen of COS directly interacts with the peptide backbone, which leads to the local disruption of peptide-peptide interaction. Moreover, the presence of favorable peptide-COS vdW interaction energy and high coordination number of COS molecules in the first solvation shell of the peptide indicates the hydrophobic solvation of the peptide residues by COS molecules, which also play a crucial role in the prevention of β-sheet formation. Finally, from the potential of mean force (PMFs) calculations, we observe that the free energy between two peptides is more negative in the absence of COS and with increasing concentration of COS, it becomes unfavorable significantly indicating that the peptide dimer formation is most stable in pure water, which becomes less favorable in the presence of COS. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
31
|
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:E1883. [PMID: 30995776 PMCID: PMC6514961 DOI: 10.3390/ijms20081883] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, the increase in the incidence of neurodegenerative diseases due to the increasingly ageing population has resulted in a major social and economic burden. At present, a large body of literature supports the potential use of functional nutrients, which exhibit potential neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules, polyphenols stand out because of their multiple and often overlapping reported modes of action. However, ambiguity still exists as to the significance of their influence on human health. This review discusses the characteristics and functions of polyphenols that shape their potential therapeutic actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients will also be highlighted.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
- Department of Psychiatry & Neuroscience, Université Laval and CHU Research Center, Ste-Foy, QC G1V 4G2, Canada.
| |
Collapse
|
32
|
Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, including Alzheimer's and Parkinson's disease, neuroprotection by diet and natural bioactive compounds has been proposed to prevent the onset and progress of neurodegeneration by modification of pathogenic factors. Plant food-derived phytochemicals protect neurons via targeting oxidative stress, mitochondrial dysfunction, neurotrophic factor deficit, apoptosis and abnormal protein accumulation. This review presents the molecular mechanism of neuroprotection by phytochemicals: direct regulation of mitochondrial apoptotic machinery, modification of cellular signal pathways, induction of antiapoptotic Bcl-2 protein family and prosurvival neurotrophic factors, such as brain- and glial cell line-derived neurotrophic factor, and prevention of protein aggregation. Multitargeted neuroprotective agents are under development based on the structure of blood–brain barrier-permeable phytochemicals to ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masayo Shamoto-Nagai
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Wakako Maruyama
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
33
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
34
|
Derf A, Verekar SA, Jain SK, Deshmukh SK, Bharate SB, Chaudhuri B. Radicicol rescues yeast cell death triggered by expression of human α-synuclein and its A53T mutant, but not by human βA4 peptide and proapoptotic protein bax. Bioorg Chem 2019; 85:152-158. [PMID: 30612081 DOI: 10.1016/j.bioorg.2018.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022]
Abstract
Aggregation/misfolding of α-synuclein and βA4 proteins cause neuronal cell death (NCD) associated with Parkinson's and Alzheimer's disease. It has been suggested that a heat shock protein-90 (Hsp90) inhibitor can prevent NCD by activating the heat shock transcription factor-1 which, in turn, upregulates molecular chaperones such as Hsp70 that targets aggregated/misfolded proteins for refolding/degradation. We have isolated radicicol, an Hsp90 inhibitor, from a fungus occurring in the crevices of marble rocks of Central India. Radicicol, which was found to be a strong antioxidant, was tested for its ability to rescue yeast cells from death induced by expression of wild-type α-synuclein, its more toxic A53T mutant, and βA4. It effectively overcomes wild-type/mutant α-synuclein mediated yeast cell death, concomitantly diminishes ROS levels, reverses mitochondrial dysfunction and prevents nuclear DNA-fragmentation, a hallmark of apoptosis. Surprisingly however, radicicol is unable to rescue yeast cells from death triggered by expression of secreted βA4. Moreover, although radicicol acts as an antioxidant it fails to prevent yeast cell death inflicted by the proapoptotic protein, Bax. Our results indicate that radicicol specifically targets aggregated/misfolded α-synuclein's toxicity and opens up the possibility of using multiple yeast assays to screen natural product libraries for compounds that would unambiguously target α-synuclein aggregation/misfolding.
Collapse
Affiliation(s)
- Asma Derf
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Shilpa A Verekar
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Shreyans K Jain
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sunil K Deshmukh
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
35
|
Li S, Lin D, Hu X, Yang X. Directly probing the dissociation effects of graphene oxide nanosheets on hIAPP fibrils. NANOTECHNOLOGY 2018; 29:495102. [PMID: 30211692 DOI: 10.1088/1361-6528/aae143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aggregation of human islet amyloid polypeptides (hIAPP) to mature fibrils is considered as the main cause of type II diabetes. Therefore destroying the pre-formed hIAPP fibrils is expected to be a promising strategy for therapeutic treatments. In this work, the dissociation effects of graphene oxide (GO) nanosheets on hIAPP mature fibrils are investigated. The results clearly demonstrate that hIAPP fibrils can be quickly adsorbed on the GO surface and efficiently broken into short fragments. Meanwhile, the β-sheet structures of hIAPP fibrils are greatly destroyed. Particularly, in situ atomic force microscopy was applied to monitor the real-time interaction between hIAPP fibrils and GO nanosheets. It provides distinct evidence that the disruption of hIAPP fibrils by GO nanosheets mainly occurs at the GO edges. Size-dependent experiments further justify the interfere of edge contribution, which suggest small-sized GO nanosheets exhibit better dissociation ability than large-sized ones. Therefore, this study not only provides valuable information that GO nanosheets (especially small-sized ones) can act as efficient nanoblades to break hIAPP fibrils, but also suggests a powerful and widely available methodology for investigating real-time interaction between nanomaterials and biomolecules.
Collapse
Affiliation(s)
- Shujie Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Teijido O, Cacabelos R. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2018; 19:E3199. [PMID: 30332838 PMCID: PMC6213964 DOI: 10.3390/ijms19103199] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular and neurodegenerative disorders affect one billion people around the world and result from a combination of genomic, epigenomic, metabolic, and environmental factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers and molecular mechanisms of the pathology, and conventional compounds based on symptomatic rather than mechanistic features, determine the lack of success of current treatments, including current FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of early presymptomatic pathological events that would allow the implementation of novel strategies in order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic aberrations along with their potential use as targets for pharmacological and dietary interventions sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial disorders involving neurodegeneration. This manuscript includes a description of the most relevant epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide, as well as the main potential epigenetic-based compounds under investigation for treatment of those disorders and their limitations.
Collapse
Affiliation(s)
- Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
37
|
Derf A, Mudududdla R, Akintade D, Williams IS, Abdullaha M, Chaudhuri B, Bharate SB. Nonantioxidant Tetramethoxystilbene Abrogates α-Synuclein-Induced Yeast Cell Death but Not That Triggered by the Bax or βA4 Peptide. ACS OMEGA 2018; 3:9513-9532. [PMID: 31459084 PMCID: PMC6645319 DOI: 10.1021/acsomega.8b01154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
The overexpression of α-synuclein (α-syn) and its aggregation is the hallmark of Parkinson's disease. The α-syn aggregation results in the formation of Lewy bodies that causes neuronal cell death. Therefore, the small molecules that can protect neuronal cells from α-syn toxicity or inhibit the aggregation of α-syn could emerge as anti-Parkinson agents. Herein, a library of methoxy-stilbenes was screened for their ability to restore the cell growth from α-syn toxicity, using a yeast strain that stably expresses two copies of a chromosomally integrated human α-syn gene. Tetramethoxy-stilbene 4s, a nonantioxidant, was the most capable of restoring cell growth. It also rescues the more toxic cells that bear three copies of wild-type or A53T-mutant α-syn, from cell growth block. Its EC50 values for growth restoration of the 2-copy wild-type and the 3-copy mutant α-syn strains are 0.95 and 0.35 μM, respectively. Stilbene 4s mitigates mitochondrial membrane potential loss, negates ROS production, and prevents nuclear DNA-fragmentation, all hallmarks of apoptosis. However, 4s does not rescue cells from the death-inducing effects of Bax and βA4, which suggest that 4s specifically inhibits α-syn-mediated toxicity in the yeast. Our results signify that simultaneous use of multiple yeast-cell-based screens can facilitate revelation of compounds that may have the potential for further investigation as anti-Parkinson's agents.
Collapse
Affiliation(s)
- Asma Derf
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Ramesh Mudududdla
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Damilare Akintade
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
| | - Ibidapo S. Williams
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
| | - Mohd Abdullaha
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
38
|
Organoruthenium(II) Complexes Ameliorates Oxidative Stress and Impedes the Age Associated Deterioration in Caenorhabditis elegans through JNK-1/DAF-16 Signalling. Sci Rep 2018; 8:7688. [PMID: 29769649 PMCID: PMC5955923 DOI: 10.1038/s41598-018-25984-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
New ruthenium(II) complexes were synthesised and characterized by various spectro analytical techniques. The structure of the complexes 3 and 4 has been confirmed by X-ray crystallography. The complexes were subjected to study their anti-oxidant profile and were exhibited significantly greater in vitro DPPH radical scavenging activity than vitamin C. We found that complexes 1–4 confered tolerance to oxidative stress and extend the mean lifespan of mev-1 mutant worms and wild-type Caenorhabditis elegans. Further, mechanistic study and reporter gene expression analysis revealed that Ru(ƞ6-p-cymene) complexes maintained the intracellular redox status and offers stress resistance through activating JNK-1/DAF-16 signaling axis and possibly by other antioxidant response pathway. Notably, complex 3 and 4 ameliorates the polyQ (a Huntington’s disease associated protein) mediated proteotoxicity and related behavioural deficits in Huntington’s disease models of C. elegans. From these observations, we hope that new Ru(ƞ6-p-cymene) complexes could be further considered as a potential drug to retard aging and age-related neurodegenerative diseases.
Collapse
|
39
|
Singh PK, Kawasaki M, Berk-Rauch HE, Nishida G, Yamasaki T, Foley MA, Norris EH, Strickland S, Aso K, Ahn HJ. Aminopyrimidine Class Aggregation Inhibitor Effectively Blocks Aβ-Fibrinogen Interaction and Aβ-Induced Contact System Activation. Biochemistry 2018; 57:1399-1409. [PMID: 29394041 DOI: 10.1021/acs.biochem.7b01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that fibrinogen, a key protein in the coagulation cascade, plays an important role in circulatory dysfunction in Alzheimer's disease (AD). Previous work has shown that the interaction between fibrinogen and β-amyloid (Aβ), a hallmark pathological protein in AD, induces plasmin-resistant abnormal blood clots, delays fibrinolysis, increases inflammation, and aggravates cognitive function in mouse models of AD. Since Aβ oligomers have a much stronger affinity for fibrinogen than Aβ monomers, we tested whether amyloid aggregation inhibitors could block the Aβ-fibrinogen interaction and found that some Aβ aggregation inhibitors showed moderate inhibitory efficacy against this interaction. We then modified a hit compound so that it not only showed a strong inhibitory efficacy toward the Aβ-fibrinogen interaction but also retained its potency toward the Aβ42 aggregation inhibition process. Furthermore, our best hit compound, TDI-2760, modulated Aβ42-induced contact system activation, a pathological condition observed in some AD patients, in addition to inhibiting the Aβ-fibrinogen interaction and Aβ aggregation. Thus, TDI-2760 has the potential to lessen vascular abnormalities as well as Aβ aggregation-driven pathology in AD.
Collapse
Affiliation(s)
- Pradeep K Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University , New York, New York 10065, United States
| | - Masanori Kawasaki
- Tri-Institutional Therapeutics Discovery Institute , New York, New York 10021, United States
| | - Hanna E Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University , New York, New York 10065, United States
| | - Goushi Nishida
- Tri-Institutional Therapeutics Discovery Institute , New York, New York 10021, United States
| | - Takeshi Yamasaki
- Tri-Institutional Therapeutics Discovery Institute , New York, New York 10021, United States
| | - Michael A Foley
- Tri-Institutional Therapeutics Discovery Institute , New York, New York 10021, United States
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University , New York, New York 10065, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University , New York, New York 10065, United States
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute , New York, New York 10021, United States
| | - Hyung Jin Ahn
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University , New York, New York 10065, United States
| |
Collapse
|
40
|
Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice. Sci Rep 2018; 8:1116. [PMID: 29348618 PMCID: PMC5773570 DOI: 10.1038/s41598-017-18807-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023] Open
Abstract
The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.
Collapse
|
41
|
Rajasekhar K, Govindaraju T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. RSC Adv 2018; 8:23780-23804. [PMID: 35540246 PMCID: PMC9081849 DOI: 10.1039/c8ra03620a] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/04/2018] [Indexed: 01/04/2023] Open
Abstract
The diverse pathological mechanisms and their implications for the development of effective diagnostic and therapeutic interventions in Alzheimer's disease are presented with current progress, challenges and future prospects.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bengaluru 560064
- India
| |
Collapse
|
42
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
43
|
Habchi J, Chia S, Limbocker R, Mannini B, Ahn M, Perni M, Hansson O, Arosio P, Kumita JR, Challa PK, Cohen SIA, Linse S, Dobson CM, Knowles TPJ, Vendruscolo M. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:E200-E208. [PMID: 28011763 PMCID: PMC5240708 DOI: 10.1073/pnas.1615613114] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.
Collapse
Affiliation(s)
- Johnny Habchi
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sean Chia
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Ryan Limbocker
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Minkoo Ahn
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Perni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Oskar Hansson
- Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmo, Sweden
| | - Paolo Arosio
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Pavan Kumar Challa
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Samuel I A Cohen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sara Linse
- Department of Biochemistry & Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| |
Collapse
|
44
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
45
|
Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression. Biomed Pharmacother 2016; 86:694-704. [PMID: 28039849 DOI: 10.1016/j.biopha.2016.12.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/10/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetes combined with cardiomyopathy is considered as an essential complication, showing diastolic persistently and causing cardiac injury, which is linked to fibrosis progression and inflammation response. Fibrosis and inflammation response are two markers for cardiomyopathy. Liquiritigenin is a flavanone, isolated from Radix glycyrrhiza, which exhibits various biological properties, including anti-cancer and anti-inflammatory activities. Here, in our study, the protective effects and anti-inflammatory activity of liquiritigenin were explored in mice and cardiac muscle cells treated by fructose to reveal the possible mechanism by which liquiritigenin attenuates cardiac injury. The mice were separated into five groups. The diabetic model of mouse was established with 30% high fructose feeding. Liquiritigenin dramatically reduced the lipid accumulation induced by high fructose diet. Compared to mice only treated with high fructose, mice in the presence of liquiritigenin after fructose feeding developed less cardiac fibrosis with lower levels of alpha smooth muscle-actin (α-SMA), Collagen type I, Collagen type II, TGF-β1 and Procol1a1. Additionally, liquiritigenin markedly down-regulated inflammatory cytokines secretion and phosphorylated NF-κB via inhibiting IKKα/IκBα signaling pathway. Our results indicate that liquiritigenin has a protective role in high fructose feeding-triggered cardiac injury through fibrosis and inflammation response suppression by inactivating NF-κB signaling pathway. Thus, liquiritigenin may be a potential candidate for diabetes-associated cardiac injury.
Collapse
|
46
|
An TT, Feng S, Zeng CM. Oxidized epigallocatechin gallate inhibited lysozyme fibrillation more strongly than the native form. Redox Biol 2016; 11:315-321. [PMID: 28038426 PMCID: PMC5199191 DOI: 10.1016/j.redox.2016.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG), the most abundant flavanoid in green tea, is currently being evaluated in the clinic due to its benefits in the treatment of amyloid disorders. Its anti-amyloidogenic effect has been attributed to direct interaction of the intact molecule with misfolded polypeptides. In addition, antioxidant activity is also involved in the anti-amyloidogenic role. The detailed molecular mechanism is still unclear and requires further investigation. In the present study, the kinetics of EGCG oxidation and the anti-amyloidogenic effect of the resultant oxidation substances have been examined. The results indicate that EGCG degrades in a medium at pH 8.0 with a half-life less than 2 h. By utilizing lysozyme as an in vitro model, the oxidized EGCG demonstrates a more potent anti-amyloidogenic capacity than the intact molecule, as shown by ThT and ANS fluorescence, TEM determination, and hemolytic assay. The oxidized EGCG also has a stronger disruptive effect on preformed fibrils than the native form. Ascorbic acid eliminates the disruptive role of native EGCG on the fibrils, suggesting that oxidation is a prerequisite in fibril disruption. The results of this work demonstrate that oxidized EGCG plays a more important role than the intact molecule in anti-amyloidogenic activity. These insights into the action of EGCG may provide a novel route to understand the anti-amyloidogenic activity of natural polyphenols. EGCG degrades through an oxidation pathway with half-lives less than 2 h. Oxidized EGCG displays stronger anti-amyloidogenic role than the native form. Ascorbic acid eliminates the disruptive effect of native EGCG on mature fibrils. The oxidation of EGCG cannot be neglected in its anti-amyloidogenic actions.
Collapse
Affiliation(s)
- Ting-Ting An
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Cheng-Ming Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
47
|
Zhuang X, Zhao B, Liu S, Song F, Cui F, Liu Z, Li Y. Noncovalent Interactions between Superoxide Dismutase and Flavonoids Studied by Native Mass Spectrometry Combined with Molecular Simulations. Anal Chem 2016; 88:11720-11726. [PMID: 27760293 DOI: 10.1021/acs.analchem.6b03359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in the etiology of amyotrophic lateral sclerosis (ALS). The use of small molecules may stabilize the spatial structure of SOD1 dimer, thus, preventing its dissociation and aggregation. In this study, "native" mass spectrometry (MS) was used to study the noncovalent interactions between SOD1 and flavonoid compounds. MS experiments were performed on a quadruple time-of-flight (Q-ToF) mass spectrometer with an electrospray ionization (ESI) source and T-wave ion mobility. ESI-MS was used to detect the SOD1-flavonoid complexes and compare their relative binding strengths. The complement of ion mobility separation allowed comparison in the binding affinities between flavonoid isomers and provided information on the conformational changes. Molecular docking together with molecular dynamics simulations and MM/PBSA methods were applied to gain insights into the binding modes and free energies of SOD1-flavonoid complexes at the molecule level. Among all the flavonoids investigated, flavonoid glycosides preferentially bind to SOD1 than their aglycone counterparts. Naringin, one of the compounds that has the strongest binding affinity to SOD1, was subjected to further characterization. Experiment results show that the binding of naringin can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results suggest that naringin could reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This developed analytical strategy could also be applied to study the interactions between SOD1 and other drug-like molecules, which may have the effect to reduce the aggregation.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Bing Zhao
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
48
|
Zhang Y, Xu YY, Sun WJ, Zhang MH, Zheng YF, Shen HM, Yang J, Zhu XQ. FBS or BSA Inhibits EGCG Induced Cell Death through Covalent Binding and the Reduction of Intracellular ROS Production. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5013409. [PMID: 27830147 PMCID: PMC5088332 DOI: 10.1155/2016/5013409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Abstract
Previously we have shown that (-)-epigallocatechin gallate (EGCG) can induce nonapoptotic cell death in human hepatoma HepG2 cells only under serum-free condition. However, the underlying mechanism for serum in determining the cell fate remains to be answered. The effects of fetal bovine serum (FBS) and its major component bovine serum albumin (BSA) on EGCG-induced cell death were investigated in this study. It was found that BSA, just like FBS, can protect cells from EGCG-induced cell death in a dose-dependent manner. Detailed analysis revealed that both FBS and BSA inhibited generation of ROS to protect against toxicity of EGCG. Furthermore, EGCG was shown to bind to certain cellular proteins including caspase-3, PARP, and α-tubulin, but not LC3 nor β-actin, which formed EGCG-protein complexes that were inseparable by SDS-gel. On the other hand, addition of FBS or BSA to culture medium can block the binding of EGCG to these proteins. In silico docking analysis results suggested that BSA had a stronger affinity to EGCG than the other proteins. Taken together, these data indicated that the protective effect of FBS and BSA against EGCG-induced cell death could be due to (1) the decreased generation of ROS and (2) the competitive binding of BSA to EGCG.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yu-Ying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Wen-Jie Sun
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Mo-Han Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yi-Fan Zheng
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Jun Yang
- Department of Toxicology, School of Public Health, Hangzhou Normal University, 16 Xue Lin Street, Hangzhou, Zhejiang 310036, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, National Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xin-Qiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
49
|
Anthocyanin-rich extract of Acai ( Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
50
|
Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Sci Rep 2016; 6:33076. [PMID: 27620620 PMCID: PMC5020610 DOI: 10.1038/srep33076] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.
Collapse
|