1
|
Wu J, Xu Y, Yin T, Zhang N, Fan D, Ye S. Unveiling structural damage of the corpus callosum in amyotrophic lateral sclerosis through diffusion tensor imaging and spread direction perspectives. Ann Med 2025; 57:2490822. [PMID: 40232308 PMCID: PMC12001847 DOI: 10.1080/07853890.2025.2490822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/18/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE Damage to the corpus callosum (CC) in amyotrophic lateral sclerosis (ALS) patients has been confirmed via electrophysiological, neuroimaging, and autopsy studies. Additionally, the CC is hypothesized to serve as a pathway for the spread of pathological information. This study aimed to investigate whether the CC plays a mediating role in the symptomatic spread of ALS. METHODS In this observational study, diffusion tensor imaging (DTI) data were acquired from 45 individuals with the upper motor neuron-dominant (UMN-D) phenotype of ALS. The UMN-D ALS patients were categorized into two groups based on the direction of symptom spread, including 25 patients with horizontal spread (group H) and 20 patients with vertical spread (group V). Diffusivity indices were derived through whole-brain analysis and probabilistic fiber tracking. RESULTS According to the voxel-based analysis and tract-based spatial statistics, differences in axial diffusivity (AD) in the CC were observed between disease subgroups, with patients in group H showing higher AD values than those in group V. Fiber tracking analysis revealed persistent differences in the AD indices of CC-primary motor cortex (PMC) fibers between the two disease subgroups. CONCLUSION In UMN-D ALS patients, the direction of symptom spread may be related to the degree of CC involvement. The AD metric may be a more specific indicator of CC damage.
Collapse
Affiliation(s)
- Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Tielun Yin
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
González-Sánchez M, Ramírez-Expósito MJ, Martínez-Martos JM. Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies. Life (Basel) 2025; 15:647. [PMID: 40283201 PMCID: PMC12029092 DOI: 10.3390/life15040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2-4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care-integrating physical therapy, respiratory support, nutritional management, and cognitive assessments-is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies.
Collapse
Affiliation(s)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E23071 Jaén, Spain; (M.G.-S.); (M.J.R.-E.)
| |
Collapse
|
3
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Dierksen F, Geibel JS, Albrecht J, Hofer S, Dechent P, Hesse AC, Frahm J, Bähr M, Koch JC, Liman J, Maier IL. T1-relaxation times along the corticospinal tract as a diagnostic marker in patients with amyotrophic lateral sclerosis. FRONTIERS IN NEUROIMAGING 2025; 4:1549727. [PMID: 40017821 PMCID: PMC11865248 DOI: 10.3389/fnimg.2025.1549727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Background and purpose In the differential diagnostic workup of amyotrophic lateral sclerosis (ALS), magnetic resonance imaging (MRI) is primarily used to rule out significant differential diagnoses. So far, whole-brain T1-mapping has not been assessed as a diagnostic tool in this patient population. Methods We investigated the diagnostic potential of a novel T1-mapping method based on real-time MRI with 0.5 mm in-plane resolution and 4s acquisition time per slice. The study included patients aged 18 to 90 years who met the revised El Escorial criteria for at least possible ALS. T1-relaxation times were measured along the corticospinal tract in predefined regions of interest. Results Twenty-nine ALS-patients and 43 control group patients (CG) were included in the study. Median ALS Functional Rating Scale revised (ALSFRS-R) was 37 (IQR, 35-44) points and the mean duration from symptom onset to MRI was 21 ± 17 (SD) months. ALS patients showed significantly higher T1-relaxation times in all ROIs compared to CG with mean differences in the hand knob of 50 ms (p < 0.001), corona radiata 24 ms (p = 0.034), internal capsule 27 ms (p = 0.002) and midbrain peduncles 48 ms (p < 0.001). There was a consistent negative correlation between the ALSFRS-R and T1-relaxation times in all ROIs. Conclusions T1-relaxation times along the corticospinal tract are significantly elevated in ALS patients compared to CG and associated with lower ALSFRS-R. These results imply the analysis of T1-relaxation times as a promising diagnostic tool that can distinguish ALS patients from the control group. Ongoing longitudinal studies may provide deeper insights into disease progression and the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Fiona Dierksen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Johanna S. Geibel
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Janika Albrecht
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabine Hofer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Amelie C. Hesse
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan C. Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Liman
- Department of Neurology, Klinikum Nürnberg, Nürnberg, Germany
| | - Ilko L. Maier
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Grapperon AM, El Mendili MM, Maarouf A, Ranjeva JP, Guye M, Verschueren A, Attarian S, Zaaraoui W. In vivo mapping of sodium homeostasis disturbances in individual ALS patients: A brain 23Na MRI study. PLoS One 2025; 20:e0316916. [PMID: 39841674 PMCID: PMC11753670 DOI: 10.1371/journal.pone.0316916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by significant heterogeneity among patients. 23Na MRI maps abnormal sodium homeostasis that reflects metabolic alterations and energetic failure contributing to the neurodegenerative process. In this study, we investigated disease severity at the individual level in ALS patients using brain 23Na MRI. METHODS 1H and 23Na brain MRI were collected prospectively from 28 ALS patients. Individual map of abnormal total sodium concentration (TSC) was computed using voxel-based statistical mapping for each patient compared to a local database of 62 healthy controls. Clinical data included the revised ALS functional rating scale (ALSFRS-R), ALSFRS-R slope, ALSFRS-R at 6-month and survival time. RESULTS Individual maps quantifying voxels with TSC increase evidenced a high heterogeneity between patients consistent with clinical presentation. The main areas involved were the corticospinal tracts. Half of patients showed abnormal TSC increase within more than 1% of whole brain voxels. Patients with TSC increase had worse clinical severity: higher ALSFRS-R slope (p = 0.02), lower ALSFRS-R at 6-month (p = 0.04), and shorter survival (p = 0.04). ALS patients with limited TSC increase had slower progression of disability or predominant lower motor neuron phenotype or shorter disease duration. DISCUSSION This study mapping sodium homeostasis disturbances at the individual level in ALS patients through 23Na MRI evidenced heterogeneity of TSC increase among patients associated with clinical presentation and disease severity. These findings suggest that TSC increase detected at the individual level by 23Na MRI may be a useful marker of the clinical heterogeneity of ALS patients, a factor that is likely to greatly influence the results of therapeutic trials.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
| | - Mohamed Mounir El Mendili
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Adil Maarouf
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Jean-Philippe Ranjeva
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Annie Verschueren
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
| | - Shahram Attarian
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
- INSERM, Marseille Medical Genetic Center, Aix Marseille Univ, Marseille, France
| | - Wafaa Zaaraoui
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
6
|
Yang J, Tang C. Causal relationship between imaging-derived phenotypes and neurodegenerative diseases: a Mendelian randomization study. Mamm Genome 2024; 35:711-723. [PMID: 39180568 DOI: 10.1007/s00335-024-10065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Neurodegenerative diseases are incurable conditions that lead to gradual and progressive deterioration of brain function in patients. With the aging population, the prevalence of these diseases is expected to increase, posing a significant economic burden on society. Imaging techniques play a crucial role in the diagnosis and monitoring of neurodegenerative diseases. This study utilized a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between different imaging-derived phenotypes (IDP) in the brain and neurodegenerative diseases. Multiple MR methods were employed to minimize bias and obtain reliable estimates of the potential causal relationship between the variable exposures of interest and the outcomes. The study found potential causal relationships between different IDPs and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and frontotemporal dementia (FTD). Specifically, the study identified potential causal relationships between 2 different types of IDPs and AD, 8 different types of IDPs and PD, 11 different types of imaging-derived phenotypes and ALS, 1 type of IDP and MS, and 1 type of IDP and FTD. This study provides new insights for the prevention, diagnosis, and treatment of neurodegenerative diseases, offering important clues for understanding the pathogenesis of these diseases and developing relevant intervention strategies.
Collapse
Affiliation(s)
- Jiaxin Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- School of Clinical Medicine, Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
7
|
Stikvoort García DJL, Sleutjes BTHM, Mugge W, Plouvier JJ, Goedee HS, Schouten AC, van der Helm FCT, van den Berg LH. Instrumented assessment of lower and upper motor neuron signs in amyotrophic lateral sclerosis using robotic manipulation: an explorative study. J Neuroeng Rehabil 2024; 21:193. [PMID: 39472924 PMCID: PMC11520903 DOI: 10.1186/s12984-024-01485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease characterized by upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Their varying degree of involvement results in a clinical heterogenous picture, making clinical assessments of UMN signs in patients with ALS often challenging. We therefore explored whether instrumented assessment using robotic manipulation could potentially be a valuable tool to study signs of UMN involvement. METHODS We examined the dynamics of the wrist joint of 15 patients with ALS and 15 healthy controls using a Wristalyzer single-axis robotic manipulator and electromyography (EMG) recordings in the flexor and extensor muscles in the forearm. Multi-sinusoidal torque perturbations were applied, during which participants were asked to either relax, comply or resist. A neuromuscular model was used to study muscle viscoelasticity, e.g. stiffness (k) and viscosity (b), and reflexive properties, such as velocity, position and force feedback gains (kv, kp and kf, respectively) that dominated the responses. We further obtained clinical signs of LMN (muscle strength) and UMN (e.g. reflexes, spasticity) dysfunction, and evaluated their relation with the estimated neuromuscular model parameters. RESULTS Only force feedback gains (kf) were elevated in patients (p = 0.033) compared to controls. Higher kf, as well as the resulting reflexive torque (Tref), were both associated with more severe UMN dysfunction in the examined arm (p = 0.040 and p < 0.001). Patients with UMN symptoms in the examined arm had increased kf and Tref compared to controls (both p = 0.037). Neither of these measures was related to muscle strength, but muscle stiffness (k) was lower in weaker patients (p = 0.012). All these findings were obtained from the relaxed test. No differences were observed during the instructions comply and resist. CONCLUSIONS This findings are proof-of-concept that instrumented assessment using robotic manipulation is a feasible technique in ALS, which may provide quantitative, operator-independent measures relating to UMN symptoms. Elevated force feedback gains, driving larger reflexive muscle torques, appear to be particularly indicative of clinically established levels of UMN dysfunction in the examined arm.
Collapse
Affiliation(s)
- D J L Stikvoort García
- Department of Neurology, F02.230, Brain Center Utrecht, University Medical Center Utrecht, P.O. Box 855000, Utrecht, 3508 GA, The Netherlands
| | - B T H M Sleutjes
- Department of Neurology, F02.230, Brain Center Utrecht, University Medical Center Utrecht, P.O. Box 855000, Utrecht, 3508 GA, The Netherlands.
| | - W Mugge
- Laboratory for Neuromuscular Control, Department of Biomechanical Engineering, Mechanical Engineering, Delft University of Technology, Delft, 2628CD, The Netherlands
| | - J J Plouvier
- Laboratory for Neuromuscular Control, Department of Biomechanical Engineering, Mechanical Engineering, Delft University of Technology, Delft, 2628CD, The Netherlands
| | - H S Goedee
- Department of Neurology, F02.230, Brain Center Utrecht, University Medical Center Utrecht, P.O. Box 855000, Utrecht, 3508 GA, The Netherlands
| | - A C Schouten
- Laboratory for Neuromuscular Control, Department of Biomechanical Engineering, Mechanical Engineering, Delft University of Technology, Delft, 2628CD, The Netherlands
| | - F C T van der Helm
- Laboratory for Neuromuscular Control, Department of Biomechanical Engineering, Mechanical Engineering, Delft University of Technology, Delft, 2628CD, The Netherlands
| | - L H van den Berg
- Department of Neurology, F02.230, Brain Center Utrecht, University Medical Center Utrecht, P.O. Box 855000, Utrecht, 3508 GA, The Netherlands
| |
Collapse
|
8
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Wendebourg MJ, Weigel M, Weidensteiner C, Sander L, Kesenheimer E, Naumann N, Haas T, Madoerin P, Braun N, Neuwirth C, Weber M, Jahn K, Kappos L, Granziera C, Schweikert K, Sinnreich M, Bieri O, Schlaeger R. Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16268. [PMID: 38465478 PMCID: PMC11235652 DOI: 10.1111/ene.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AND PURPOSE In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.
Collapse
Affiliation(s)
- Maria Janina Wendebourg
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Matthias Weigel
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Claudia Weidensteiner
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Laura Sander
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Eva Kesenheimer
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Nicole Naumann
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Philipp Madoerin
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Kathleen Jahn
- Clinics of Respiratory MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Ludwig Kappos
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Cristina Granziera
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Kathi Schweikert
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Michael Sinnreich
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Biomedicine (DBE)University of BaselBaselSwitzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Regina Schlaeger
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| |
Collapse
|
10
|
Taufik SA, Ramli N, Tan AH, Lim SY, Ghani MTA, Shahrizaila N. Longitudinal Changes in the Retinal Nerve Fiber Layer Thickness in Amyotrophic Lateral Sclerosis and Parkinson's Disease. J Clin Neurol 2024; 20:285-292. [PMID: 38627230 PMCID: PMC11076187 DOI: 10.3988/jcn.2023.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND PURPOSE There is increasing evidence that the anterior visual pathways are involved in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). This study investigated longitudinal changes in retinal nerve fiber layer (RNFL) thickness in patients with ALS and PD with the aim of better understanding their roles as biomarkers of disease progression. METHODS This study recruited 21 ALS patients, 19 age-matched PD patients, and 21 agematched healthy controls. Patient demographics and clinical scores relating to the respective diseases were documented. The RNFL thickness was measured using optical coherence tomography at baseline and after 6 months. RESULTS At baseline, the RNFL in the superior quadrant was significantly thinner in the patients with ALS than in healthy controls (109.90±22.41 µm vs. 127.81±17.05 µm [mean±standard deviation], p=0.008). The RNFL thickness did not differ significantly between the ALS and PD patients or between the PD patients and healthy controls. At 6 months, there was further significant RNFL thinning in patients with ALS, for both the overall thickness (baseline: median=94.5 µm, range=83.0-106.0 µm; follow-up: median=93.5 µm, range=82.5-104.5 µm, p=0.043) and the thickness in the inferior quadrant (median=126 µm, range=109.5-142.5 µm; and median=117.5 µm, range=98.5-136.5 µm; respectively, p=0.032). However, these changes were not correlated with the ALS functional scores. In contrast, the patients with PD did not demonstrate a significant change in RNFL thickness between the two time points. CONCLUSIONS The RNFL thickness is a promising biomarker of disease progression in patients with ALS but not in those with PD, which has a slower disease progression.
Collapse
Affiliation(s)
- Sharifah Azira Taufik
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Norlina Ramli
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Mohd Taufiq Abdul Ghani
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Shi J, Wang Z, Yi M, Xie S, Zhang X, Tao D, Liu Y, Yang Y. Evidence based on Mendelian randomization and colocalization analysis strengthens causal relationships between structural changes in specific brain regions and risk of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1333782. [PMID: 38505770 PMCID: PMC10948422 DOI: 10.3389/fnins.2024.1333782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord with a poor prognosis. Previous studies have observed cognitive decline and changes in brain morphometry in ALS patients. However, it remains unclear whether the brain structural alterations contribute to the risk of ALS. In this study, we conducted a bidirectional two-sample Mendelian randomization (MR) and colocalization analysis to investigate this causal relationship. Methods Summary data of genome-wide association study were obtained for ALS and the brain structures, including surface area (SA), thickness and volume of subcortical structures. Inverse-variance weighted (IVW) method was used as the main estimate approach. Sensitivity analysis was conducted detect heterogeneity and pleiotropy. Colocalization analysis was performed to calculate the posterior probability of causal variation and identify the common genes. Results In the forward MR analysis, we found positive associations between the SA in four cortical regions (lingual, parahippocampal, pericalcarine, and middle temporal) and the risk of ALS. Additionally, decreased thickness in nine cortical regions (caudal anterior cingulate, frontal pole, fusiform, inferior temporal, lateral occipital, lateral orbitofrontal, pars orbitalis, pars triangularis, and pericalcarine) was significantly associated with a higher risk of ALS. In the reverse MR analysis, genetically predicted ALS was associated with reduced thickness in the bankssts and increased thickness in the caudal middle frontal, inferior parietal, medial orbitofrontal, and superior temporal regions. Colocalization analysis revealed the presence of shared causal variants between the two traits. Conclusion Our results suggest that altered brain morphometry in individuals with high ALS risk may be genetically mediated. The causal associations of widespread multifocal extra-motor atrophy in frontal and temporal lobes with ALS risk support the notion of a continuum between ALS and frontotemporal dementia. These findings enhance our understanding of the cortical structural patterns in ALS and shed light on potentially viable therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Huang N, Qin W, Lin J, Dong Q, Chen H. Corticospinal fibers with different origins impair in amyotrophic lateral sclerosis: A neurite orientation dispersion and density imaging study. CNS Neurosci Ther 2023; 29:3406-3415. [PMID: 37208946 PMCID: PMC10580332 DOI: 10.1111/cns.14270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS To investigate microstructural impairments of corticospinal tracts (CSTs) with different origins in amyotrophic lateral sclerosis (ALS) using neurite orientation dispersion and density imaging (NODDI). METHODS Diffusion-weighted imaging data acquired from 39 patients with ALS and 50 controls were used to estimate NODDI and diffusion tensor imaging (DTI) models. Fine maps of CST subfibers originating from the primary motor area (M1), premotor cortex, primary sensory area, and supplementary motor area (SMA) were segmented. NODDI metrics (neurite density index [NDI] and orientation dispersion index [ODI]) and DTI metrics (fractional anisotropy [FA] and mean/axial/radial diffusivity [MD/AD/RD]) were computed. RESULTS The patients with ALS showed microstructural impairments (reflected by NDI, ODI, and FA reductions and MD, AD, and RD increases) in CST subfibers, especially in M1 fibers, which correlated with disease severity. Compared with other diffusion metrics, NDI yielded a higher effect size and detected the greatest extent of CST subfibers damage. Logistic regression analyses based on NDI in M1 subfiber yielded the best diagnostic performance compared with other subfibers and the whole CST. CONCLUSIONS Microstructural impairment of CST subfibers (especially those originating from M1) is the key feature of ALS. The combination of NODDI and CST subfibers analysis may improve diagnosing performance for ALS.
Collapse
Affiliation(s)
- Nao‐Xin Huang
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Jia‐Hui Lin
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Qiu‐Yi Dong
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Hua‐Jun Chen
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
14
|
Abstract
Although the past two decades have produced exciting discoveries in the genetics and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an effective therapy remains slow. This review summarizes the critical discoveries and outlines the advances in disease characterization, diagnosis, imaging, and biomarkers, along with the current status of approaches to ALS care and treatment. Additional knowledge of the factors driving disease progression and heterogeneity will hopefully soon transform the care for patients with ALS into an individualized, multi-prong approach able to prevent disease progression sufficiently to allow for a dignified life with limited disability.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Jefferson Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Mavragani A, Fujita K, Oki R, Osaki Y, Miyamoto R, Morino H, Nagano S, Atsuta N, Kanazawa Y, Matsumoto Y, Arisawa A, Kawai H, Sato Y, Sakaguchi S, Yagi K, Hamatani T, Kagimura T, Yanagawa H, Mochizuki H, Doyu M, Sobue G, Harada M, Izumi Y. An Exploratory Trial of EPI-589 in Amyotrophic Lateral Sclerosis (EPIC-ALS): Protocol for a Multicenter, Open-Labeled, 24-Week, Single-Group Study. JMIR Res Protoc 2023; 12:e42032. [PMID: 36716091 PMCID: PMC9926342 DOI: 10.2196/42032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, with its currently approved drugs, including riluzole and edaravone, showing limited therapeutic effects. Therefore, safe and effective drugs are urgently necessary. EPI-589 is an orally available, small-molecule, novel redox-active agent characterized by highly potent protective effects against oxidative stress with high blood-brain barrier permeability. Given the apparent oxidative stress and mitochondrial dysfunction involvement in the pathogenesis of ALS, EPI-589 may hold promise as a therapeutic agent. OBJECTIVE This protocol aims to describe the design and rationale for the EPI-589 Early Phase 2 Investigator-Initiated Clinical Trial for ALS (EPIC-ALS). METHODS EPIC-ALS is an explorative, open-labeled, single-arm trial that evaluates the safety and tolerability of EPI-589 in patients with ALS. This trial consists of 12-week run-in, 24-week treatment, and 4-week follow-up periods. Patients will receive 500 mg of EPI-589 3 times daily over the 24-week treatment period. Clinical assessments include the mean monthly change of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised total score. The biomarkers are selected to analyze the effect on oxidative stress and neuronal damage. The plasma biomarkers are 8-hydroxy-2'-deoxyguanosine (8-OHdG), 3-nitrotyrosine (3-NT), neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), homocysteine, and creatinine. The cerebrospinal fluid biomarkers are 8-OHdG, 3-NT, NfL, pNfH, and ornithine. The magnetic resonance biomarkers are fractional anisotropy in the corticospinal tract and N-acetylaspartate in the primary motor area. RESULTS This trial began data collection in September 2021 and is expected to be completed in October 2023. CONCLUSIONS This study can provide useful data to understand the characteristics of EPI-589. TRIAL REGISTRATION Japan Primary Registries Network jRCT2061210031; tinyurl.com/2p84emu6. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/42032.
Collapse
Affiliation(s)
| | - Koji Fujita
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryosuke Oki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yusuke Osaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Seiichi Nagano
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuki Kanazawa
- Department of Biomedical Information Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuki Matsumoto
- Department of Radiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Atsuko Arisawa
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yasutaka Sato
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Satoshi Sakaguchi
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | | | - Tatsuo Kagimura
- The Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiroaki Yanagawa
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Gen Sobue
- Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
17
|
Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development. Int J Mol Sci 2023; 24:ijms24031911. [PMID: 36768231 PMCID: PMC9915541 DOI: 10.3390/ijms24031911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis (ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise. This review aims to summarize how different ML models based on DTI parameters can be used for supervised diagnostic classifications and to provide individualized patient stratification with unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures, DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models. To further improve the power of ML in ALS and enable the application of deep learning models, standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the development of novel neuroimaging biomarkers that could be used in the clinical workup.
Collapse
|
18
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
19
|
Zhang J. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front Neurol 2022; 13:968193. [PMID: 36570463 PMCID: PMC9768197 DOI: 10.3389/fneur.2022.968193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apart from common respiratory symptoms, neurological symptoms are prevalent among patients with COVID-19. Research has shown that infection with SARS-CoV-2 accelerated alpha-synuclein aggregation, induced Lewy-body-like pathology, caused dopaminergic neuron senescence, and worsened symptoms in patients with Parkinson's disease (PD). In addition, SARS-CoV-2 infection can induce neuroinflammation and facilitate subsequent neurodegeneration in long COVID, and increase individual vulnerability to PD or parkinsonism. These findings suggest that a post-COVID-19 parkinsonism might follow the COVID-19 pandemic. In order to prevent a possible post-COVID-19 parkinsonism, this paper reviewed neurological symptoms and related findings of COVID-19 and related infectious diseases (influenza and prion disease) and neurodegenerative disorders (Alzheimer's disease, PD and amyotrophic lateral sclerosis), and discussed potential mechanisms underlying the neurological symptoms and the relationship between the infectious diseases and the neurodegenerative disorders, as well as the therapeutic and preventive implications in the neurodegenerative disorders. Infections with a relay of microbes (SARS-CoV-2, influenza A viruses, gut bacteria, etc.) and prion-like alpha-synuclein proteins over time may synergize to induce PD. Therefore, a systematic approach that targets these pathogens and the pathogen-induced neuroinflammation and neurodegeneration may provide cures for neurodegenerative disorders. Further, antiviral/antimicrobial drugs, vaccines, immunotherapies and new therapies (e.g., stem cell therapy) need to work together to treat, manage or prevent these disorders. As medical science and technology advances, it is anticipated that better vaccines for SARS-CoV-2 variants, new antiviral/antimicrobial drugs, effective immunotherapies (alpha-synuclein antibodies, vaccines for PD or parkinsonism, etc.), as well as new therapies will be developed and made available in the near future, which will help prevent a possible post-COVID-19 parkinsonism in the 21st century.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
20
|
Laszlo ZI, Hindley N, Sanchez Avila A, Kline RA, Eaton SL, Lamont DJ, Smith C, Spires-Jones TL, Wishart TM, Henstridge CM. Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathol Commun 2022; 10:156. [DOI: 10.1186/s40478-022-01455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractIncreasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition.
Collapse
|
21
|
Behler A, Lulé D, Ludolph AC, Kassubek J, Müller HP. Longitudinal monitoring of amyotrophic lateral sclerosis by diffusion tensor imaging: Power calculations for group studies. Front Neurosci 2022; 16:929151. [PMID: 36117627 PMCID: PMC9479493 DOI: 10.3389/fnins.2022.929151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Diffusion tensor imaging (DTI) can be used to map disease progression in amyotrophic lateral sclerosis (ALS) and therefore is a promising candidate for a biomarker in ALS. To this end, longitudinal study protocols need to be optimized and validated regarding group sizes and time intervals between visits. The objective of this study was to assess the influences of sample size, the schedule of follow-up measurements, and measurement uncertainties on the statistical power to optimize longitudinal DTI study protocols in ALS. Patients and methods To estimate the measurement uncertainty of a tract-of–interest-based DTI approach, longitudinal test-retest measurements were applied first to a normal data set. Then, DTI data sets of 80 patients with ALS and 50 healthy participants were analyzed in the simulation of longitudinal trajectories, that is, longitudinal fractional anisotropy (FA) values for follow-up sessions were simulated for synthetic patient and control groups with different rates of FA decrease in the corticospinal tract. Monte Carlo simulations of synthetic longitudinal study groups were used to estimate the statistical power and thus the potentially needed sample sizes for a various number of scans at one visit, different time intervals between baseline and follow-up measurements, and measurement uncertainties. Results From the simulation for different longitudinal FA decrease rates, it was found that two scans per session increased the statistical power in the investigated settings unless sample sizes were sufficiently large and time intervals were appropriately long. The positive effect of a second scan per session on the statistical power was particularly pronounced for FA values with high measurement uncertainty, for which the third scan per session increased the statistical power even further. Conclusion With more than one scan per session, the statistical power of longitudinal DTI studies can be increased in patients with ALS. Consequently, sufficient statistical power can be achieved even with limited sample sizes. An improved longitudinal DTI study protocol contributes to the detection of small changes in diffusion metrics and thereby supports DTI as an applicable and reliable non-invasive biomarker in ALS.
Collapse
Affiliation(s)
- Anna Behler
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | | |
Collapse
|
22
|
Colvin LE, Foster ZW, Stein TD, Thakore-James M, Salajegheh MK, Carr K, Spencer KR, Rauf NA, Adams L, Averill JG, Walker SE, Robey I, Alvarez VE, Huber BR, McKee AC, Kowall NW, Brady CB. Utility of the ALSFRS-R for predicting ALS and comorbid disease neuropathology: The Veterans Affairs Biorepository Brain Bank. Muscle Nerve 2022; 66:167-174. [PMID: 35585776 PMCID: PMC9308705 DOI: 10.1002/mus.27635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION/AIMS The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) is commonly used to track ALS disease progression; however, there are gaps in the literature regarding the extent to which the ALSFRS-R relates to underlying central nervous system (CNS) pathology. The current study explored the association between ALSFRS-R (total and subdomain) scores and postmortem neuropathology (both ALS-specific and comorbid disease). METHODS Within our sample of 93 military veterans with autopsy-confirmed ALS, we utilized hierarchical cluster analysis (HCA) to identify discrete profiles of motor dysfunction based on ALSFRS-R subdomain scores. We examined whether emergent clusters were associated with neuropathology. Separate analyses of variance and covariance with post-hoc comparisons were performed to examine relevant cluster differences. RESULTS Analyses revealed significant correlations between ALSFRS-R total and subdomain scores with some, but not all, neuropathological variables. The HCA illustrated three groups: Cluster 1-predominantly diffuse functional impairment; Cluster 2-spared respiratory/bulbar and impaired motor function; and Cluster 3-spared bulbar and impaired respiratory, and fine and gross motor function. Individuals in Cluster 1 (and to a lesser degree, Cluster 3) exhibited greater accumulation of ALS-specific neuropathology and less comorbid neuropathology than those in Cluster 2. DISCUSSION These results suggest that discrete patterns of motor dysfunction based on ALSFRS-R subdomain scores are related to postmortem neuropathology. Findings support use of ALSFRS-R subdomain scores to capture the heterogeneity of clinical presentation and disease progression in ALS, and may assist researchers in identifying endophenotypes for separate assessment in clinical trials.
Collapse
Affiliation(s)
| | | | - Thor D. Stein
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Manisha Thakore-James
- VA Boston Healthcare System, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - M. Kian Salajegheh
- VA Boston Healthcare System, Boston, MA
- Harvard Medical School, Boston, MA
- Brigham and Women’s Hospital
| | | | | | | | | | | | | | - Ian Robey
- Southern Arizona VA Healthcare System, Tucson, Arizona
| | - Victor E. Alvarez
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Bertrand R. Huber
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Ann C. McKee
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Neil W. Kowall
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA
| | - Christopher B. Brady
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Pandya S, Maia PD, Freeze B, Menke RAL, Talbot K, Turner MR, Raj A. Modeling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis. Neuroimage 2022; 251:118968. [PMID: 35143975 PMCID: PMC10729776 DOI: 10.1016/j.neuroimage.2022.118968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of upper and lower motor neurons, with pathological involvement of cerebral motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia (FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects differential network vulnerability, including molecular factors such as regional gene expression, or preferential spread of pathology via anatomical connections. A system of histopathological staging of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has been supported to some extent by analysis of distribution of in vivo structural MRI changes. In this paper, computational modeling using a Network Diffusion Model (NDM) was used to investigate whether a process of focal pathological 'seeding' followed by structural network-based spread recapitulated postmortem histopathological staging and, secondly, whether this had any correlation to the pattern of expression of a panel of genes implicated in ALS across the healthy brain. Regionally parcellated T1-weighted MRI data from ALS patients (baseline n=79) was studied in relation to a healthy control structural connectome and a database of associated regional cerebral gene expression. The NDM provided strong support for a structural network-based basis for regional pathological spread in ALS, but no simple relationship to the spatial distribution of ALS-related genes in the healthy brain. Interestingly, OPTN gene was identified as a significant but a weaker non-NDM contributor within the network-gene interaction model (LASSO). Intriguingly, the critical seed regions for spread within the model were not within the primary motor cortex but basal ganglia, thalamus and insula, where NDM recapitulated aspects of the postmortem histopathological staging system. Within the ALS-FTD clinicopathological spectrum, non-primary motor structures may be among the earliest sites of cerebral pathology.
Collapse
Affiliation(s)
- Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States.
| | - Pedro D Maia
- Department of Mathematics, University of Texas at Arlington, TX, United States
| | - Benjamin Freeze
- Scripps Health/MD Anderson Cancer Center, Department of Radiology, CA, United States
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94121, United States.
| |
Collapse
|
24
|
Shi JY, Cai LM, Lin JH, Zou ZY, Zhang XH, Chen HJ. Dynamic Alterations in Functional Connectivity Density in Amyotrophic Lateral Sclerosis: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:827500. [PMID: 35370623 PMCID: PMC8967369 DOI: 10.3389/fnagi.2022.827500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Current knowledge on the temporal dynamics of the brain functional organization in amyotrophic lateral sclerosis (ALS) is limited. This is the first study on alterations in the patterns of dynamic functional connection density (dFCD) involving ALS. Methods We obtained resting-state functional magnetic resonance imaging (fMRI) data from 50 individuals diagnosed with ALS and 55 healthy controls (HCs). We calculated the functional connectivity (FC) between a given voxel and all other voxels within the entire brain and yield the functional connection density (FCD) value per voxel. dFCD was assessed by sliding window correlation method. In addition, the standard deviation (SD) of dFCD across the windows was computed voxel-wisely to measure dFCD variability. The difference in dFCD variability between the two groups was compared using a two-sample t-test following a voxel-wise manner. The receiver operating characteristic (ROC) curve was used to assess the between-group recognition performance of the dFCD variability index. Results The dFCD variability was significantly reduced in the bilateral precentral and postcentral gyrus compared with the HC group, whereas a marked increase was observed in the left middle frontal gyrus of ALS patients. dFCD variability exhibited moderate potential (areas under ROC curve = 0.753-0.837, all P < 0.001) in distinguishing two groups. Conclusion ALS patients exhibit aberrant dynamic property in brain functional architecture. The dFCD evaluation improves our understanding of the pathological mechanisms underlying ALS and may assist in its diagnosis.
Collapse
Affiliation(s)
- Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
25
|
Cortical Hyperexcitability in the Driver’s Seat in ALS. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration of cortical and spinal motor neurons. With no effective treatment available to date, patients face progressive paralysis and eventually succumb to the disease due to respiratory failure within only a few years. Recent research has revealed the multifaceted nature of the mechanisms and cell types involved in motor neuron degeneration, thereby opening up new therapeutic avenues. Intriguingly, two key features present in both ALS patients and rodent models of the disease are cortical hyperexcitability and hyperconnectivity, the mechanisms of which are still not fully understood. We here recapitulate current findings arguing for cell autonomous and non-cell autonomous mechanisms causing cortical excitation and inhibition imbalance, which is involved in the degeneration of motor neurons in ALS. Moreover, we will highlight recent evidence that strongly indicates a cardinal role for the motor cortex as a main driver and source of the disease, thus arguing for a corticofugal trajectory of the pathology.
Collapse
|
26
|
Thome J, Steinbach R, Grosskreutz J, Durstewitz D, Koppe G. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum Brain Mapp 2022; 43:681-699. [PMID: 34655259 PMCID: PMC8720197 DOI: 10.1002/hbm.25679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging studies corroborate the importance of neuroimaging biomarkers and machine learning to improve diagnostic classification of amyotrophic lateral sclerosis (ALS). While most studies focus on structural data, recent studies assessing functional connectivity between brain regions by linear methods highlight the role of brain function. These studies have yet to be combined with brain structure and nonlinear functional features. We investigate the role of linear and nonlinear functional brain features, and the benefit of combining brain structure and function for ALS classification. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and functional resting state magnetic resonance imaging. Based on key hubs of resting state networks, we defined three feature sets comprising brain volume, resting state functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via recurrent neural networks. Unimodal and multimodal random forest classifiers were built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-validation. Unimodal classifiers achieved a classification accuracy of 56.35-61.66%. Multimodal classifiers outperformed unimodal classifiers achieving accuracies of 62.85-66.82%. Evaluating the ranking of individual features' importance scores across all classifiers revealed that rsFC features were most dominant in classification. While univariate analyses revealed reduced rsFC in ALS patients, functional features more generally indicated deficits in information integration across resting state brain networks in ALS. The present work undermines that combining brain structure and function provides an additional benefit to diagnostic classification, as indicated by multimodal classifiers, while emphasizing the importance of capturing both linear and nonlinear functional brain properties to identify discriminative biomarkers of ALS.
Collapse
Affiliation(s)
- Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Precision Neurology, Department of NeurologyUniversity of LuebeckLuebeckGermany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| |
Collapse
|
27
|
Fernandes F, Barbalho I, Barros D, Valentim R, Teixeira C, Henriques J, Gil P, Dourado Júnior M. Biomedical signals and machine learning in amyotrophic lateral sclerosis: a systematic review. Biomed Eng Online 2021; 20:61. [PMID: 34130692 PMCID: PMC8207575 DOI: 10.1186/s12938-021-00896-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The use of machine learning (ML) techniques in healthcare encompasses an emerging concept that envisages vast contributions to the tackling of rare diseases. In this scenario, amyotrophic lateral sclerosis (ALS) involves complexities that are yet not demystified. In ALS, the biomedical signals present themselves as potential biomarkers that, when used in tandem with smart algorithms, can be useful to applications within the context of the disease. METHODS This Systematic Literature Review (SLR) consists of searching for and investigating primary studies that use ML techniques and biomedical signals related to ALS. Following the definition and execution of the SLR protocol, 18 articles met the inclusion, exclusion, and quality assessment criteria, and answered the SLR research questions. DISCUSSIONS Based on the results, we identified three classes of ML applications combined with biomedical signals in the context of ALS: diagnosis (72.22%), communication (22.22%), and survival prediction (5.56%). CONCLUSIONS Distinct algorithmic models and biomedical signals have been reported and present promising approaches, regardless of their classes. In summary, this SLR provides an overview of the primary studies analyzed as well as directions for the construction and evolution of technology-based research within the scope of ALS.
Collapse
Affiliation(s)
- Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, RN Brazil
| | - Ingridy Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, RN Brazil
| | - Daniele Barros
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, RN Brazil
| | - Ricardo Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, RN Brazil
| | - César Teixeira
- Department of Informatics Engineering, Univ Coimbra, CISUC-Center for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
| | - Jorge Henriques
- Department of Informatics Engineering, Univ Coimbra, CISUC-Center for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
| | - Paulo Gil
- Department of Informatics Engineering, Univ Coimbra, CISUC-Center for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
| | - Mário Dourado Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, RN Brazil
| |
Collapse
|
28
|
Abstract
OBJECTIVE Advanced neuroimaging techniques may offer the potential to monitor disease progression in amyotrophic lateral sclerosis (ALS), a neurodegenerative, multisystem disease that still lacks therapeutic outcome measures. We aim to investigate longitudinal functional and structural magnetic resonance imaging (MRI) changes in a cohort of patients with ALS monitored for one year after diagnosis. METHODS Resting state functional MRI, diffusion tensor imaging (DTI), and voxel-based morphometry analyses were performed in 22 patients with ALS examined by six-monthly MRI scans over one year. RESULTS During the follow-up period, patients with ALS showed reduced functional connectivity only in some extramotor areas, such as the middle temporal gyrus in the left frontoparietal network after six months and in the left middle frontal gyrus in the default mode network after one year without showing longitudinal changes of cognitive functions. Moreover, after six months, we reported in the ALS group a decreased fractional anisotropy (P = .003, Bonferroni corrected) in the right uncinate fasciculus. Conversely, we did not reveal significant longitudinal changes of functional connectivity in the sensorimotor network, as well as of gray matter (GM) atrophy or of DTI metrics in motor areas, although clinical measures of motor disability showed significant decline throughout the three time points. CONCLUSION Our findings highlighted that progressive impairment of extramotor frontotemporal networks may precede the appearance of executive and language dysfunctions and GM changes in ALS. Functional connectivity changes in cognitive resting state networks might represent candidate radiological markers of disease progression.
Collapse
|
29
|
Lin Z, Kim E, Ahmed M, Han G, Simmons C, Redhead Y, Bartlett J, Pena Altamira LE, Callaghan I, White MA, Singh N, Sawiak S, Spires-Jones T, Vernon AC, Coleman MP, Green J, Henstridge C, Davies JS, Cash D, Sreedharan J. MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Commun 2021; 3:fcab114. [PMID: 34136812 PMCID: PMC8204366 DOI: 10.1093/braincomms/fcab114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are overlapping diseases in which MRI reveals brain structural changes in advance of symptom onset. Recapitulating these changes in preclinical models would help to improve our understanding of the molecular causes underlying regionally selective brain atrophy in early disease. We therefore investigated the translational potential of the TDP-43Q331K knock-in mouse model of amyotrophic lateral sclerosis-frontotemporal dementia using MRI. We performed in vivo MRI of TDP-43Q331K knock-in mice. Regions of significant volume change were chosen for post-mortem brain tissue analyses. Ex vivo computed tomography was performed to investigate skull shape. Parvalbumin neuron density was quantified in post-mortem amyotrophic lateral sclerosis frontal cortex. Adult mutants demonstrated parenchymal volume reductions affecting the frontal lobe and entorhinal cortex in a manner reminiscent of amyotrophic lateral sclerosis-frontotemporal dementia. Subcortical, cerebellar and brain stem regions were also affected in line with observations in pre-symptomatic carriers of mutations in C9orf72, the commonest genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Volume loss was also observed in the dentate gyrus of the hippocampus, along with ventricular enlargement. Immunohistochemistry revealed reduced parvalbumin interneurons as a potential cellular correlate of MRI changes in mutant mice. By contrast, microglia was in a disease activated state even in the absence of brain volume loss. A reduction in immature neurons was found in the dentate gyrus, indicative of impaired adult neurogenesis, while a paucity of parvalbumin interneurons in P14 mutant mice suggests that TDP-43Q331K disrupts neurodevelopment. Computerized tomography imaging showed altered skull morphology in mutants, further suggesting a role for TDP-43Q331K in development. Finally, analysis of human post-mortem brains confirmed a paucity of parvalbumin interneurons in the prefrontal cortex in sporadic amyotrophic lateral sclerosis and amyotrophic lateral sclerosis linked to C9orf72 mutations. Regional brain MRI changes seen in human amyotrophic lateral sclerosis-frontotemporal dementia are recapitulated in TDP-43Q331K knock-in mice. By marrying in vivo imaging with targeted histology, we can unravel cellular and molecular processes underlying selective brain vulnerability in human disease. As well as helping to understand the earliest causes of disease, our MRI and histological markers will be valuable in assessing the efficacy of putative therapeutics in TDP-43Q331K knock-in mice.
Collapse
Affiliation(s)
- Ziqiang Lin
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Eugene Kim
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Gang Han
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Camilla Simmons
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Jack Bartlett
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Luis Emiliano Pena Altamira
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Isobel Callaghan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Matthew A White
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Nisha Singh
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, 4th floor Lambeth Wing, London SE1 7EH, UK
| | - Stephen Sawiak
- Department of Clinical Neurosciences, Cambridge University, Cambridge CB2 0QQ, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | | | - Jeremy Green
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Christopher Henstridge
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jeffrey S Davies
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Diana Cash
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Jemeen Sreedharan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| |
Collapse
|
30
|
Distaso E, Milella G, Mezzapesa DM, Introna A, D'Errico E, Fraddosio A, Zoccolella S, Dicuonzo F, Simone IL. Magnetic resonance metrics to evaluate the effect of therapy in amyotrophic lateral sclerosis: the experience with edaravone. J Neurol 2021; 268:3307-3315. [PMID: 33655342 PMCID: PMC8357666 DOI: 10.1007/s00415-021-10495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Edaravone was approved as a new treatment for amyotrophic lateral sclerosis (ALS), although there are different opinions on its effectiveness. Magnetic resonance (MRI) measures appear promising as diagnostic and prognostic indicators of disease. However, published studies on MRI using to monitor treatment efficacy in ALS are lacking. PURPOSE The objective of this study was to investigate changes in brain MRI measures in patients treated with edaravone. METHODS Thirteen ALS patients assuming edaravone (ALS-EDA) underwent MRI at baseline (T0) and after 6 months (T6) to measure cortical thickness (CT) and fractional anisotropy (FA) of white matter (WM) tracts. MRI data of ALS-EDA were compared at T0 with those of 12 control subjects (CS), and at T6 with those of 11 ALS patients assuming only riluzole (ALS-RIL), extracted from our ALS cohort using a propensity-score-matching. A longitudinal MRI analysis was performed in ALS-EDA between T6 and T0. RESULTS At T0, ALS-EDA showed a cortical widespread thinning in both hemispheres, particularly in the bilateral precentral gyrus, and a reduction of FA in bilateral corticospinal tracts, in comparison to CS. Thinning in bilateral precentral cortex and significant widespread reduction of FA in several WM tracts were observed in ALS-EDA at T6 compared to T0. At T6, no significant differences in MRI measures of ALS-EDA versus ALS-RIL were found. CONCLUSIONS Patients treated with edaravone showed progression of damage in the motor cortex and several WM tracts, at a six-month follow-up. Moreover, this study showed no evidence of a difference between edaravone and riluzole.
Collapse
Affiliation(s)
- Eugenio Distaso
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giammarco Milella
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Domenico Maria Mezzapesa
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Angela Fraddosio
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | | | - Franca Dicuonzo
- Neuroradiology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
31
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
32
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Ho WY, Agrawal I, Tyan SH, Sanford E, Chang WT, Lim K, Ong J, Tan BSY, Moe AAK, Yu R, Wong P, Tucker-Kellogg G, Koo E, Chuang KH, Ling SC. Dysfunction in nonsense-mediated decay, protein homeostasis, mitochondrial function, and brain connectivity in ALS-FUS mice with cognitive deficits. Acta Neuropathol Commun 2021; 9:9. [PMID: 33407930 PMCID: PMC7789430 DOI: 10.1186/s40478-020-01111-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of the same disease spectrum of adult-onset neurodegenerative diseases that affect the motor and cognitive functions, respectively. Multiple common genetic loci such as fused in sarcoma (FUS) have been identified to play a role in ALS and FTD etiology. Current studies indicate that FUS mutations incur gain-of-toxic functions to drive ALS pathogenesis. However, how the disease-linked mutations of FUS affect cognition remains elusive. Using a mouse model expressing an ALS-linked human FUS mutation (R514G-FUS) that mimics endogenous expression patterns, we found that FUS proteins showed an age-dependent accumulation of FUS proteins despite the downregulation of mouse FUS mRNA by the R514G-FUS protein during aging. Furthermore, these mice developed cognitive deficits accompanied by a reduction in spine density and long-term potentiation (LTP) within the hippocampus. At the physiological expression level, mutant FUS is distributed in the nucleus and cytosol without apparent FUS aggregates or nuclear envelope defects. Unbiased transcriptomic analysis revealed a deregulation of genes that cluster in pathways involved in nonsense-mediated decay, protein homeostasis, and mitochondrial functions. Furthermore, the use of in vivo functional imaging demonstrated widespread reduction in cortical volumes but enhanced functional connectivity between hippocampus, basal ganglia and neocortex in R514G-FUS mice. Hence, our findings suggest that disease-linked mutation in FUS may lead to changes in proteostasis and mitochondrial dysfunction that in turn affect brain structure and connectivity resulting in cognitive deficits.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Ira Agrawal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Sheue-Houy Tyan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Wei-Tang Chang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Present Address: University of North Carolina, Chapel Hill, NC USA
| | - Kenneth Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jolynn Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Bernice Siu Yan Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Regina Yu
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Peiyan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Greg Tucker-Kellogg
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Edward Koo
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Department of Neurosciences, University of California at San Diego, La Jolla, USA
| | - Kai-Hsiang Chuang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Andronesi OC, Nicholson K, Jafari-Khouzani K, Bogner W, Wang J, Chan J, Macklin EA, Levine-Weinberg M, Breen C, Schwarzschild MA, Cudkowicz M, Rosen BR, Paganoni S, Ratai EM. Imaging Neurochemistry and Brain Structure Tracks Clinical Decline and Mechanisms of ALS in Patients. Front Neurol 2020; 11:590573. [PMID: 33343494 PMCID: PMC7744722 DOI: 10.3389/fneur.2020.590573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Oxidative stress and protein aggregation are key mechanisms in amyotrophic lateral sclerosis (ALS) disease. Reduced glutathione (GSH) is the most important intracellular antioxidant that protects neurons from reactive oxygen species. We hypothesized that levels of GSH measured by MR spectroscopic imaging (MRSI) in the motor cortex and corticospinal tract are linked to clinical trajectory of ALS patients. Objectives: Investigate the value of GSH imaging to probe clinical decline of ALS patients in combination with other neurochemical and structural parameters. Methods: Twenty-four ALS patients were imaged at 3 T with an advanced MR protocol. Mapping GSH levels in the brain is challenging, and for this purpose, we used an optimized spectral-edited 3D MRSI sequence with real-time motion and field correction to image glutathione and other brain metabolites. In addition, our imaging protocol included (i) an adiabatic T1ρ sequence to image macromolecular fraction of brain parenchyma, (ii) diffusion tensor imaging (DTI) for white matter tractography, and (iii) high-resolution anatomical imaging. Results: We found GSH in motor cortex (r = −0.431, p = 0.04) and corticospinal tract (r = −0.497, p = 0.016) inversely correlated with time between diagnosis and imaging. N-Acetyl-aspartate (NAA) in motor cortex inversely correlated (r = −0.416, p = 0.049), while mean water diffusivity (r = 0.437, p = 0.033) and T1ρ (r = 0.482, p = 0.019) positively correlated with disease progression measured by imputed change in revised ALS Functional Rating Scale. There is more decrease in the motor cortex than in the white matter for GSH compared to NAA, glutamate, and glutamine. Conclusions: Our study suggests that a panel of biochemical and structural imaging biomarkers defines a brain endophenotype, which can be used to time biological events and clinical progression in ALS patients. Such a quantitative brain endophenotype may stratify ALS patients into more homogeneous groups for therapeutic interventions compared to clinical criteria.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Katharine Nicholson
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Kourosh Jafari-Khouzani
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jing Wang
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Chan
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States
| | - Eric A Macklin
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mark Levine-Weinberg
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Christopher Breen
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | | | - Merit Cudkowicz
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Bruce R Rosen
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Eva-Maria Ratai
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
35
|
Kalra S, Müller HP, Ishaque A, Zinman L, Korngut L, Genge A, Beaulieu C, Frayne R, Graham SJ, Kassubek J. A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS. Neurology 2020; 95:e943-e952. [PMID: 32646955 DOI: 10.1212/wnl.0000000000010235] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To evaluate progressive white matter (WM) degeneration in amyotrophic lateral sclerosis (ALS). METHODS Sixty-six patients with ALS and 43 healthy controls were enrolled in a prospective, longitudinal, multicenter study in the Canadian ALS Neuroimaging Consortium (CALSNIC). Participants underwent a harmonized neuroimaging protocol across 4 centers that included diffusion tensor imaging (DTI) for assessment of WM integrity. Three visits were accompanied by clinical assessments of disability (ALS Functional Rating Scale-Revised [ALSFRS-R]) and upper motor neuron (UMN) function. Voxel-wise whole-brain and quantitative tract-wise DTI assessments were done at baseline and longitudinally. Correction for site variance incorporated data from healthy controls and from healthy volunteers who underwent the DTI protocol at each center. RESULTS Patients with ALS had a mean progressive decline in fractional anisotropy (FA) of the corticospinal tract (CST) and frontal lobes. Tract-wise analysis revealed reduced FA in the CST, corticopontine/corticorubral tract, and corticostriatal tract. CST FA correlated with UMN function, and frontal lobe FA correlated with the ALSFRS-R score. A progressive decline in CST FA correlated with a decline in the ALSFRS-R score and worsening UMN signs. Patients with fast vs slow progression had a greater reduction in FA of the CST and upper frontal lobe. CONCLUSIONS Progressive WM degeneration in ALS is most prominent in the CST and frontal lobes and, to a lesser degree, in the corticopontine/corticorubral tracts and corticostriatal pathways. With the use of a harmonized imaging protocol and incorporation of analytic methods to address site-related variances, this study is an important milestone toward developing DTI biomarkers for cerebral degeneration in ALS. CLINICALTRIALSGOV IDENTIFIER NCT02405182.
Collapse
Affiliation(s)
- Sanjay Kalra
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada.
| | - Hans-Peter Müller
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Abdullah Ishaque
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Lorne Zinman
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Lawrence Korngut
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Angela Genge
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Christian Beaulieu
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Richard Frayne
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Simon J Graham
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Jan Kassubek
- From the Division of Neurology (S.K.), Department of Medicine, Neuroscience and Mental Health Institute (S.K., A.I.), and Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton, Canada; Department of Neurology (H.-P.M., J.K.), University of Ulm, Germany; Sunnybrook Health Sciences Centre (L.Z., S.J.G.), University of Toronto, Ontario; Departments of Clinical Neurosciences (L.K., R.F.) and Radiology (R.F.), Hotchkiss Brain Institute, University of Calgary, Alberta; Montreal Neurological Institute and Hospital (A.G.), McGill University, Quebec; and Seaman Family MR Research Centre (R.F.), Foothills Medical Centre, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102315. [PMID: 32593977 PMCID: PMC7327879 DOI: 10.1016/j.nicl.2020.102315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
Abstract
Serial diffusion tensor (DT) MRI showed progression of white matter pathology in ALS. Early involvement of motor fibers and later spread to extra-motor regions was found. DT MRI measures of damage to the motor networks showed consistent worsening. These correlated with clinical progression and long-term functional prognosis. No significant cortical thinning was detected either at baseline or over time.
Background and aims Considering the great heterogeneity of amyotrophic lateral sclerosis (ALS), the identification of accurate prognostic predictors is fundamental for both the clinical practice and the design of treatment trials. This study aimed to explore the progression of clinical and structural brain changes in patients with ALS, and to assess magnetic resonance imaging (MRI) measures of brain damage as predictors of subsequent functional decline. Methods 50 ALS patients underwent clinical evaluations and 3 T MRI scans at regular intervals for a maximum of 2 years (total MRI scans = 164). MRI measures of cortical thickness, as well as diffusion tensor (DT) metrics of microstructural damage along white matter (WM) tracts were obtained. Voxel-wise regression models and longitudinal mixed-effects models were used to test the relationship between clinical decline and baseline and longitudinal MRI features. Results The rate of decline of the ALS Functional Rating Scale revised (ALSFRS-r) was significantly associated with the rate of fractional anisotropy (FA) decrease in the body of the corpus callosum (CC). Corticospinal tract (CST) and CC-body alterations had a faster progression in patients with higher baseline ALSFRS-r scores and greater CC-body disruption at baseline. Lower FA of the cerebral peduncle was associated with faster subsequent clinical progression. Conclusions In this longitudinal study, we identified a significant association between measures of WM damage of the motor tracts and functional decline in ALS patients. Our data suggest that a multiparametric approach including DT MRI measures of brain damage would provide an optimal method for an accurate stratification of ALS patients into prognostic classes.
Collapse
|
37
|
Gabel MC, Broad RJ, Young AL, Abrahams S, Bastin ME, Menke RAL, Al‐Chalabi A, Goldstein LH, Tsermentseli S, Alexander DC, Turner MR, Leigh PN, Cercignani M. Evolution of white matter damage in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:722-732. [PMID: 32367696 PMCID: PMC7261765 DOI: 10.1002/acn3.51035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To characterize disease evolution in amyotrophic lateral sclerosis using an event-based model designed to extract temporal information from cross-sectional data. Conventional methods for understanding mechanisms of rapidly progressive neurodegenerative disorders are limited by the subjectivity inherent in the selection of a limited range of measurements, and the need to acquire longitudinal data. METHODS The event-based model characterizes a disease as a series of events, each comprising a significant change in subject state. The model was applied to data from 154 patients and 128 healthy controls selected from five independent diffusion MRI datasets acquired in four different imaging laboratories between 1999 and 2016. The biomarkers modeled were mean fractional anisotropy values of white matter tracts implicated in amyotrophic lateral sclerosis. The cerebral portion of the corticospinal tract was divided into three segments. RESULTS Application of the model to the pooled datasets revealed that the corticospinal tracts were involved before other white matter tracts. Distal corticospinal tract segments were involved earlier than more proximal (i.e., cephalad) segments. In addition, the model revealed early ordering of fractional anisotropy change in the corpus callosum and subsequently in long association fibers. INTERPRETATION These findings represent data-driven evidence for early involvement of the corticospinal tracts and body of the corpus callosum in keeping with conventional approaches to image analysis, while providing new evidence to inform directional degeneration of the corticospinal tracts. This data-driven model provides new insight into the dynamics of neuronal damage in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Matt C. Gabel
- Department of NeuroscienceClinical Imaging Sciences CentreBrighton and Sussex Medical SchoolUniversity of SussexBrightonEast SussexUnited Kingdom
| | - Rebecca J. Broad
- Department of NeuroscienceTrafford CentreBrighton and Sussex Medical SchoolUniversity of SussexBrightonEast SussexUnited Kingdom
| | - Alexandra L. Young
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonGower StreetLondonWC1E 6BTUnited Kingdom
| | - Sharon Abrahams
- Department of PsychologySchool of Philosophy, Psychology & Language SciencesEuan MacDonald Centre for Motor Neurone Disease ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Mark E. Bastin
- Department of PsychologySchool of Philosophy, Psychology & Language SciencesEuan MacDonald Centre for Motor Neurone Disease ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Ricarda A. L. Menke
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Ammar Al‐Chalabi
- Department of Basic and Clinical NeuroscienceKing's College LondonMaurice Wohl Clinical Neuroscience InstituteLondonUnited Kingdom
- Department of NeurologyKing’s College HospitalLondonUnited Kingdom
| | - Laura H. Goldstein
- Department of PsychologyInstitute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUnited Kingdom
| | | | - Daniel C. Alexander
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonGower StreetLondonWC1E 6BTUnited Kingdom
| | - Martin R. Turner
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - P. Nigel Leigh
- Department of NeuroscienceTrafford CentreBrighton and Sussex Medical SchoolUniversity of SussexBrightonEast SussexUnited Kingdom
| | - Mara Cercignani
- Department of NeuroscienceClinical Imaging Sciences CentreBrighton and Sussex Medical SchoolUniversity of SussexBrightonEast SussexUnited Kingdom
| |
Collapse
|
38
|
Sarica A, Valentino P, Nisticò R, Barone S, Pucci F, Quattrone A, Cerasa A, Quattrone A. Assessment of the Corticospinal Tract Profile in Pure Lower Motor Neuron Disease: A Diffusion Tensor Imaging Study. NEURODEGENER DIS 2019; 19:128-138. [PMID: 31715609 DOI: 10.1159/000503970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/06/2019] [Indexed: 11/19/2022] Open
Abstract
AIM The aim of this study was to evaluate the corticospinal tract (CST) diffusion profile in pure lower motor neuron disease (pLMND) patients who at baseline did not show any clinical or electrophysiological involvement of upper motor neurons (UMN), and in amyotrophic lateral sclerosis (ALS) patients. MATERIALS AND METHODS Fifteen ALS patients with delayed central motor conduction time (CMCT) and 14 pLMND patients with normal CMCT were enrolled together with 15 healthy controls. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were obtained. The tract profile of CST was reconstructed with the automated fiber quantification tool and its diffusion properties were quantified voxel-by-voxel and then compared pairwise between groups. Moreover, a random forest (RF) classifier was trained to evaluate the ability of CST diffusion metrics in distinguishing pairwise the groups from the controls. RESULTS ALS patients presented wide microstructural abnormalities in the entire CST as assessed by FA decrease and RD increase while pLMND patients showed focal FA decrease and a larger AD increase in the cerebral peduncle and posterior limb of the internal capsule in comparison with controls. RF revealed that diffusion tensor imaging (DTI) metrics accurately distinguished ALS patients and pLMND patients from controls (96.67 and 95.71% accuracy, respectively). CONCLUSIONS Our study demonstrates that the CST was impaired in both ALS and pLMND patients, thus suggesting that DTI metrics are a reliable tool in detecting subtle changes of UMN in pLMND patients, also in the absence of clinical and CMCT abnormalities.
Collapse
Affiliation(s)
- Alessia Sarica
- Neuroscience Research Centre,University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Stefania Barone
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Franco Pucci
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Quattrone
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Centre,University Magna Graecia of Catanzaro, Catanzaro, Italy, .,Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy,
| |
Collapse
|
39
|
Grapperon AM, Ridley B, Verschueren A, Maarouf A, Confort-Gouny S, Fortanier E, Schad L, Guye M, Ranjeva JP, Attarian S, Zaaraoui W. Quantitative Brain Sodium MRI Depicts Corticospinal Impairment in Amyotrophic Lateral Sclerosis. Radiology 2019; 292:422-428. [PMID: 31184559 DOI: 10.1148/radiol.2019182276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects the upper and lower motor neurons. Recent sodium (23Na) MRI studies have shown that abnormal sodium concentration is related to neuronal suffering in neurodegenerative conditions. Purpose To use 23Na MRI to investigate abnormal sodium concentrations and map their distribution in the brains of study participants with ALS as compared with healthy control subjects. Materials and Methods Twenty-seven participants with ALS (mean age, 54 years ± 10 [standard deviation], eight women) and 30 healthy control subjects (mean age, 50 years ± 10; 16 women) were prospectively recruited between September 2015 and October 2017 and were examined by using conventional proton MRI and sodium MRI at 3 T. Voxel-based statistical mapping was used to compare quantitative whole-brain total sodium concentration (TSC) maps in participants with ALS with those in control subjects and to localize regions of abnormal elevated TSC. Potential overlap of abnormal elevated TSC with regions of atrophy as detected with 1H MRI also was investigated. Results Voxel-based statistical mapping analyses revealed higher sodium concentration in motor regions (bilateral precentral gyri, corticospinal tracts, and the corpus callosum) of participants with ALS (two-sample t test, P < .005; age and sex as covariates). In these regions, mean TSC was higher in participants with ALS (mean, 45.6 mmol/L wet tissue ± 3.2) than in control subjects (mean, 41.8 mmol/L wet tissue ± 2.7; P < .001; Cohen d = 1.28). Brain regions showing higher TSC represented a volume of 15.4 cm3 that did not overlap with gray matter atrophy occupying a volume of 16.9 cm3. Elevated TSC correlated moderately with corticospinal conduction failure assessed with transcranial magnetic stimulation in the right upper limb (Spearman ρ = -0.57; 95% confidence interval: -0.78, -0.16; P = .005; n = 23). Conclusion Quantitative 23Na MRI is sensitive to alterations of brain sodium homeostasis within disease-relevant regions in patients with amyotrophic lateral sclerosis (ALS). This supports further investigation of abnormal sodium concentration as a potential marker of neurodegenerative processes in patients with ALS that could be used as a secondary endpoint in clinical trials. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Ben Ridley
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Annie Verschueren
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Adil Maarouf
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Sylviane Confort-Gouny
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Etienne Fortanier
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Lothar Schad
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Maxime Guye
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Jean-Philippe Ranjeva
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Shahram Attarian
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Wafaa Zaaraoui
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| |
Collapse
|
40
|
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int J Mol Sci 2019; 20:ijms20112759. [PMID: 31195629 PMCID: PMC6600567 DOI: 10.3390/ijms20112759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - María Jesús Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
41
|
Deterministic-tractography-based approach for diagnosis and disease monitoring of amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2019; 181:73-75. [PMID: 31009854 DOI: 10.1016/j.clineuro.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Upper and lower motor neuron signs are required for the diagnosis of amyotrophic lateral sclerosis. The detection of upper motor neuron signs is key for the diagnosis, as quite a few patients with amyotrophic lateral sclerosis lack upper motor neuron signs during the course of disease. This study sought to investigate whether deterministic tractography of the corticospinal tract, reflecting upper motor neuron signs, could be a surrogate biomarker for amyotrophic lateral sclerosis. PATIENTS AND METHODS Fifteen patients with amyotrophic lateral sclerosis and ten controls underwent imaging on a 3.0 T MRI. The corticospinal tract was reconstructed using deterministic tractography, and the track number was calculated. We analyzed the differences between the groups and the relationship between the track number and disease severity, disease duration, progression rate or upper motor neuron signs. RESULTS A reduction in the track number of the corticospinal tract was found in amyotrophic lateral sclerosis compared with controls (Student's t test, P = 0.008). The sensitivity and specificity were 0.67 and 0.9, respectively. The track number correlated with disease severity alone (r = 0.71, P = 0.003), and significantly associated with upper motor neuron signs (P = 0.004). CONCLUSIONS These findings suggest that the deterministic-tractography-based approach is a potential biomarker for the diagnosis and disease monitoring of amyotrophic lateral sclerosis.
Collapse
|
42
|
Basaia S, Filippi M, Spinelli EG, Agosta F. White Matter Microstructure Breakdown in the Motor Neuron Disease Spectrum: Recent Advances Using Diffusion Magnetic Resonance Imaging. Front Neurol 2019; 10:193. [PMID: 30891004 PMCID: PMC6413536 DOI: 10.3389/fneur.2019.00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder characterized by the breakdown of the motor system. The clinical spectrum of MND encompasses different phenotypes classified according to the relative involvement of the upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations, with clear prognostic implications. However, the pathophysiological differences of these phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is applying advanced neuroimaging techniques in order to elucidate the pathophysiological processes and to identify quantitative outcomes to be used in clinical trials. Diffusion tensor imaging (DTI) is a non-invasive method to detect white matter alterations involving the upper motor neuron and extra-motor white matter tracts. According to this background, the aim of this review is to highlight the key role of MRI and especially DTI, summarizing cross-sectional and longitudinal results of different approaches applied in MND. Current literature suggests that DTI is a promising tool in order to define anatomical “signatures” of the different phenotypes of MND and to track in vivo the progressive spread of pathological proteins aggregates.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
43
|
Chew S, Atassi N. Positron Emission Tomography Molecular Imaging Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:135. [PMID: 30881332 PMCID: PMC6405430 DOI: 10.3389/fneur.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited treatment options. Despite decades of therapeutic development, only two modestly efficacious disease-modifying drugs-riluzole and edaravone-are available to ALS patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure drug pharmacodynamics are needed to accelerate therapeutic development for patients with ALS. Positron emission tomography (PET) imaging has promise as a biomarker for ALS because it permits visualization of central nervous system (CNS) pathology in individuals living with ALS. The availability of PET radioligands that target a variety of potential pathophysiological mechanisms-including cerebral metabolism, neuroinflammation, neuronal dysfunction, and oxidative stress-has enabled dynamic interrogation of molecular changes in ALS, in both natural history studies and human clinical trials. PET imaging has potential as a diagnostic biomarker that can establish upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms, as a prognostic biomarker that might help stratify patients for clinical trials, and as a pharmacodynamic biomarker that measures the biological effect of investigational drugs in the brain and spinal cord. In this Review, we discuss progress made with 30 years of PET imaging studies in ALS and consider future research needed to establish PET imaging biomarkers for ALS therapeutic development.
Collapse
Affiliation(s)
- Sheena Chew
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| | - Nazem Atassi
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Galdi P, Fratello M, Trojsi F, Russo A, Tedeschi G, Tagliaferri R, Esposito F. Stochastic Rank Aggregation for the Identification of Functional Neuromarkers. Neuroinformatics 2019; 17:479-496. [PMID: 30604083 DOI: 10.1007/s12021-018-9412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson's disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paola Galdi
- NeuRoNe Lab, Department of Management and Innovation Systems, University of Salerno, Fisciano, Salerno, Italy
| | - Michele Fratello
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Tagliaferri
- NeuRoNe Lab, Department of Management and Innovation Systems, University of Salerno, Fisciano, Salerno, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy.
| |
Collapse
|
45
|
Barritt AW, Gabel MC, Cercignani M, Leigh PN. Emerging Magnetic Resonance Imaging Techniques and Analysis Methods in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1065. [PMID: 30564192 PMCID: PMC6288229 DOI: 10.3389/fneur.2018.01065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Objective markers of disease sensitive to the clinical activity, symptomatic progression, and underlying substrates of neurodegeneration are highly coveted in amyotrophic lateral sclerosis in order to more eloquently stratify the highly heterogeneous phenotype and facilitate the discovery of effective disease modifying treatments for patients. Magnetic resonance imaging (MRI) is a promising, non-invasive biomarker candidate whose acquisition techniques and analysis methods are undergoing constant evolution in the pursuit of parameters which more closely represent biologically-applicable tissue changes. Neurite Orientation Dispersion and Density Imaging (NODDI; a form of diffusion imaging), and quantitative Magnetization Transfer Imaging (qMTi) are two such emerging modalities which have each broadened the understanding of other neurological disorders and have the potential to provide new insights into structural alterations initiated by the disease process in ALS. Furthermore, novel neuroimaging data analysis approaches such as Event-Based Modeling (EBM) may be able to circumvent the requirement for longitudinal scanning as a means to comprehend the dynamic stages of neurodegeneration in vivo. Combining these and other innovative imaging protocols with more sophisticated techniques to analyse ever-increasing datasets holds the exciting prospect of transforming understanding of the biological processes and temporal evolution of the ALS syndrome, and can only benefit from multicentre collaboration across the entire ALS research community.
Collapse
Affiliation(s)
- Andrew W Barritt
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Falmer, United Kingdom.,Hurstwood Park Neurological Centre Haywards Heath, West Sussex, United Kingdom
| | - Matt C Gabel
- Department of Neuroscience, Trafford Centre for Biomedical Research Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - P Nigel Leigh
- Hurstwood Park Neurological Centre Haywards Heath, West Sussex, United Kingdom.,Department of Neuroscience, Trafford Centre for Biomedical Research Brighton and Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
46
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
47
|
Garcia-Santibanez R, Burford M, Bucelli RC. Hereditary Motor Neuropathies and Amyotrophic Lateral Sclerosis: a Molecular and Clinical Update. Curr Neurol Neurosci Rep 2018; 18:93. [DOI: 10.1007/s11910-018-0901-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Li W, Zhang J, Zhou C, Hou W, Hu J, Feng H, Zheng X. Abnormal Functional Connectivity Density in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2018; 10:215. [PMID: 30065647 PMCID: PMC6056617 DOI: 10.3389/fnagi.2018.00215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose: Amyotrophic lateral sclerosis (ALS) is a motor neuro-degenerative disorder that also damages extra-motor neural pathways. A significant proportion of existing evidence describe alterations in the strengths of functional connectivity, whereas the changes in the density of these functional connections have not been explored. Therefore, our study seeks to identify ALS-induced alternations in the resting-state functional connectivity density (FCD). Methods: Two groups comprising of 38 ALS patients and 35 healthy participants (age and gender matched) were subjected to the resting-state functional magnetic resonance imaging (MRI) scanning. An ultra-fast graph theory method known as FCD mapping was utilized to calculate the voxel-wise short- and long-range FCD values of the brain for each participant. FCD values of patients and controls were compared based on voxels in order to discern cerebral regions that possessed significant FCD alterations. For areas demonstrating a group effect of atypical FCD in ALS, seed-based functional connectivity analysis was then investigated. Partial correlation analyses were carried out between aberrant FCDs and several clinical variables, controlling for age, gender, and total intracranial volume. Results: Patients with ALS were found to have decreased short-range FCD in the primary motor cortex and increased long-range FCD in the premotor cortex. Extra-motor areas that also displayed extensive FCD alterations encompassed the temporal cortex, insula, cingulate gyrus, occipital cortex, and inferior parietal lobule. Seed-based correlation analysis further demonstrated that these regions also possessed disrupted functional connectivity. However, no significant correlations were identified between aberrant FCDs and clinical variables. Conclusion: FCD changes in the regions identified represent communication deficits and impaired functional brain dynamics, which might underlie the motor, motor control, language, visuoperceptual and high-order cognitive deficits in ALS. These findings support the fact that ALS is a disorder affecting multiple systems. We gain a deeper insight of the neural mechanisms underlying ALS.
Collapse
Affiliation(s)
- Weina Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyang Zhou
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jun Hu
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| |
Collapse
|
49
|
Piaggio N, Pardini M, Roccatagliata L, Scialò C, Cabona C, Bonzano L, Inglese M, Mancardi GL, Caponnetto C. Cord cross-sectional area at foramen magnum as a correlate of disability in amyotrophic lateral sclerosis. Eur Radiol Exp 2018; 2:13. [PMID: 29984352 PMCID: PMC6015117 DOI: 10.1186/s41747-018-0045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
Spinal cord atrophy is one of the hallmarks of amyotrophic lateral sclerosis (ALS); however, it is not routinely assessed in routine clinical practice. In the present study, we evaluated whether spinal cord cross-sectional area measured at the foramen magnum level using a magnetic resonance imaging head scan represents a clinically meaningful measure to be added to the whole-brain volume assessment. Using an active surface approach, we measured the cord area at the foramen magnum and brain parenchymal fraction on T1-weighted three-dimensional spoiled gradient recalled head scans in two groups of subjects: 23 patients with ALS (males/females, 13/10; mean ± standard deviation [SD] age 61.7 ± 10.3 years; median ALS Functional Rating Scale-Revised score 39, range 27-46) and 18 age- and sex-matched healthy volunteers (mean ± SD age 55.7 ± 10.2 years). Spinal cord area at the foramen magnum was significantly less in patients than in control subjects and was significantly correlated with disability as measured with the ALS Functional Rating Scale-Revised (ρ = 0.593, p < 0.005). This correlation remained significant after taking into account inter-individual differences in brain parenchymal fraction (ρ = 0.684, p < 0.001). Our data show that spinal cord area at the foramen magnum correlates with disability in ALS independently of whole-brain atrophy, thus indicating its potential as a disease biomarker.
Collapse
Affiliation(s)
- Niccolò Piaggio
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Matteo Pardini
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Roccatagliata
- 2Department of Health Sciences (DISSAL), University of Genova, Via Pastore 1, 16132 Genoa, Italy.,3Department of Diagnostic and Interventional Neuroradiology, IRCCS AOU San Martino - IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Carlo Scialò
- 4Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST; International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Corrado Cabona
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Laura Bonzano
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Matilde Inglese
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy.,5Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA.,6Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA.,7Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giovanni L Mancardi
- 1Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Claudia Caponnetto
- IRCCS Azienda Ospedale Università San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
50
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|