1
|
Wilson JR, Willie KJ, Khatri N. Purification and serological detection of maize yellow mosaic virus. Arch Virol 2025; 170:80. [PMID: 40085313 DOI: 10.1007/s00705-025-06249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025]
Abstract
Maize yellow mosaic virus (MaYMV) is an emerging polerovirus that was first reported in maize in China in 2013 but has since been reported in Africa and the Americas. Due to its novelty, no antibodies or serological diagnostics for the virus existed prior to the current study. In this study, we developed the first purification method for maize yellow mosaic virus with the goal of generating an antibody and subsequently developing diagnostic tests. Yields of 0.634-1.275 milligrams of virus per kilogram of maize tissue were obtained, which is comparable to the yields obtained for other grass-infecting poleroviruses. Under an electron microscope, purified virus particles appear icosahedral in shape and roughly 30 nm in diameter. A polyclonal antibody was generated against the gradient-purified virus preparation and cross-adsorbed to uninfected maize tissue. The antibody is effective for detection of MaYMV via enzyme-linked immunosorbent assay (ELISA) and western blot. The ELISA could detect virus in quantities as low as 0.395 µg and in 1:32 dilutions of infected plant extract, and the antibody showed little to no cross-reactivity with five closely related viruses. After protein gel electrophoresis and antibody detection, protein bands corresponding in size to two viral structural proteins could be seen: the coat protein of roughly 21 kDa and the readthrough protein, around 72 kDa. Finally, virus particles purified using this protocol were found to be transmissible by the primary aphid vector, Rhopalosiphum maidis, and to cause systemic, symptomatic infection of maize plants, indicating that the vector transmissibility and infectivity of the virus particles were preserved during purification.
Collapse
Affiliation(s)
- Jennifer R Wilson
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA.
| | - Kristen J Willie
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| | - Nitika Khatri
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| |
Collapse
|
2
|
Adegbola RO, Ponvert ND, Brown JK. Genetic Variability Among U.S.-Sentinel Cotton Plot Cotton Leafroll Dwarf Virus and Globally Available Reference Isolates Based on ORF0 Diversity. PLANT DISEASE 2024; 108:1799-1811. [PMID: 38277653 DOI: 10.1094/pdis-02-23-0243-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The aphid-transmitted polerovirus, cotton leafroll dwarf virus (CLRDV), first characterized from symptomatic cotton plants in South America, has been identified in commercial cotton plantings in the United States. Here, the CLRDV intraspecific diversity was investigated by comparative sequence analysis of the most divergent CLRDV coding region, ORF0/P0. Bayesian analysis of ORF0 sequences for U.S. and reference populations resolved three well-supported sister clades comprising one U.S. and two South American lineages. Principal component analysis (PCA) identified seven statistically supported intraspecific populations. The Bayesian phylogeny and PCA dendrogram-inferred relationships were congruent. Population analysis of ORF0 sequences indicated most lineages have evolved under negative selection, albeit certain sites/isolates evolved under positive selection. Both U.S. and South American isolates exhibited extensive ORF0 diversity. At least two U.S. invasion foci were associated with their founder populations in Alabama-Georgia and eastern Texas. The Alabama-Georgia founder is implicated as the source of recent widespread expansion and establishment of secondary disease foci throughout the southeastern-central United States. Based on the geographically restricted distribution, spread of another extant Texas population appeared impeded by a population bottleneck. Extant CLRDV isolates represent several putative introductions potentially associated with catastrophic weather events dispersing viruliferous cotton aphids of unknown origin(s).
Collapse
Affiliation(s)
| | | | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
3
|
Ohlson EW, Khatri N, Wilson JR. Experimental Host and Vector Ranges of the Emerging Maize Yellow Mosaic Polerovirus. PLANT DISEASE 2024; 108:1246-1251. [PMID: 37923977 DOI: 10.1094/pdis-06-23-1124-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Maize yellow mosaic virus (MaYMV) is an emerging polerovirus that has been detected in maize, other cereal crops, and weedy grass species in Asia, Africa, and the Americas. Disease symptoms in maize include prominent leaf tip reddening and stunting. Infection by MaYMV has been reported to reduce plant growth and yields by 10 to 30% in some instances. In this study, an experimental host range for MaYMV among agronomically important cereal crops and common grasses was established. Additional aphid species were assessed as potential vectors for MaYMV, and their transmission efficiencies were determined. Here, we report oats, foxtail millet, barley, and rye as new experimental cereal crop hosts of MaYMV in addition to confirming the previously reported hosts of corn, sorghum, wheat, and broom millet. Four of the nine other grass species evaluated were also identified as suitable experimental hosts for MaYMV: ryegrass, switchgrass, green foxtail, and sand love grass. Interestingly, no visible symptoms were present in any of the infected hosts besides the susceptible maize control. Vector range studies identified the greenbug aphid Schizaphis graminum as a new vector of MaYMV, though transmission efficiency was lower than the previously reported Rhopalosiphum maidis vector and similar to the other known aphid vector R. padi. Given MaYMV's global ubiquity, ability to evade detection, and broad host range, further characterization of yield impacts and identification of viable control strategies are desirable.
Collapse
Affiliation(s)
- Erik W Ohlson
- Corn, Soybean, and Wheat Quality Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wooster, OH 44691
| | - Nitika Khatri
- Corn, Soybean, and Wheat Quality Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wooster, OH 44691
| | - Jennifer R Wilson
- Corn, Soybean, and Wheat Quality Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wooster, OH 44691
| |
Collapse
|
4
|
Li X, Hu W, Li Y, Li Y, Chen S, Wang J. Development of an RT-LAMP assay for the detection of maize yellow mosaic virus in maize. J Virol Methods 2021; 300:114384. [PMID: 34856307 DOI: 10.1016/j.jviromet.2021.114384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Maize is one of the most widely cultivated cereal crops worldwide. Maize yellow mosaic virus (MaYMV) (species Maize yellow mosaic virus, genus Polerovirus and family Luteoviridae) was first reported in maize from China. In this study, a one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting MaYMV. The optimal concentrations of betaine, Mg2+ and dNTPs for the assay were 0 M, 1.4 mM and 6 mM, respectively, and the optimal reaction time was 50 min. Using total plant RNA as the template, the detection limit of the RT-LAMP assay for MaYMV was 1 pg, while that of RT-PCR was 100 pg, indicating that the RT-LAMP assay developed was 100 times more sensitive than RT-PCR. Importantly, the RT-LAMP assay successfully detected MaYMV using rapidly extracted crude RNA from infected maize as a template. In conclusion, the RT-LAMP assay developed was a rapid, specific, sensitive and low-cost method for the detection of MaYMV in field samples of maize.
Collapse
Affiliation(s)
- Xiaoqin Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Biocontrol Engineering Research Center of Plant Diseases & Pests, Yunnan University, Kunming, 650091, China
| | - Wenli Hu
- School of Life Science, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Biocontrol Engineering Research Center of Plant Diseases & Pests, Yunnan University, Kunming, 650091, China
| | - Yu Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Biocontrol Engineering Research Center of Plant Diseases & Pests, Yunnan University, Kunming, 650091, China
| | - Yan Li
- Yunnan Plant Protection and Quarantine Station, Kunming, 650034, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Biocontrol Engineering Research Center of Plant Diseases & Pests, Yunnan University, Kunming, 650091, China
| | - Jianguang Wang
- School of Life Science, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Biocontrol Engineering Research Center of Plant Diseases & Pests, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Stewart LR, Willie K. Maize Yellow Mosaic Virus Interacts with Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus in Mixed Infections, But Does Not Cause Maize Lethal Necrosis. PLANT DISEASE 2021; 105:3008-3014. [PMID: 33736468 DOI: 10.1094/pdis-09-20-2088-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A maize-infecting polerovirus, variously named maize yellow dwarf virus RMV2 (MYDV RMV2), MYDV-like, and maize yellow mosaic virus (MaYMV), is frequently found in mixed infections in plants also infected with maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), known to synergistically cause maize lethal necrosis (MLN). MaYMV was discovered in deep sequencing studies precipitated by recent MLN emergence and is prevalent at global locations with MLN, but its role in or contribution to disease was not known. We examined how MaYMV impacted disease development in mixed infections with MCMV, SCMV, and both MCMV and SCMV compared with mock-inoculated plants. Results demonstrated that MaYMV symptoms included stunting as well as leaf reddening in single and mixed infections. MaYMV did not recapitulate MLN synergistic disease in double infections in which either MCMV or SCMV was missing (MaYMV + MCMV or MaYMV + SCMV), but did significantly enhance stunting in mixed infections and suppressed titers of both MCMV and SCMV in double infections. Interestingly, MaYMV strongly suppressed the SCMV-induced titer increase of MCMV in triple infections, but MLN symptoms still occurred with the reduced MCMV titer. These data indicate the potential disease impact of this newly discovered ubiquitous maize virus, alone and in the context of MLN.
Collapse
Affiliation(s)
- Lucy R Stewart
- Corn, Soybean and Wheat Quality Research Unit, U.S. Department of Agriculture Agricultural Research Service, Wooster, OH 44691
| | - Kristen Willie
- Corn, Soybean and Wheat Quality Research Unit, U.S. Department of Agriculture Agricultural Research Service, Wooster, OH 44691
| |
Collapse
|
6
|
Li X, Li Y, Hu W, Li Y, Li Y, Chen S, Wang J. Simultaneous multiplex RT-PCR detection of four viruses associated with maize lethal necrosis disease. J Virol Methods 2021; 298:114286. [PMID: 34520808 DOI: 10.1016/j.jviromet.2021.114286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Maize lethal necrosis disease (MLND) is a serious disease of worldwide importance. It is caused by the co-infection of maize with maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV), that acts synergistically to produce more severe symptoms and production losses. More recently, maize yellow mosaic virus (MaYMV) and maize-associated totivirus (MATV) were found to co-infect with MCMV and SCMV in maize plants. To facilitate the detection of these viruses in co-infected maize, a multiplex RT-PCR assay was developed in this study. The assay used five specific primer pairs and simultaneously amplified these four viruses as well as the elongation factor 1α (EF 1α) gene use as internal control in one tube. The concentration of the primers, annealing temperature, annealing time, extension time and amplification cycles were optimized for the multiplex RT-PCR. The detection limit of the assay was up to 100 pg of total cDNA template. This multiplex RT-PCR assay was shown to be a sensitive and effective tool for the screening of field samples for the presence of these viruses in co-infected maize.
Collapse
Affiliation(s)
- Xiaoqin Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yu Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Wenli Hu
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yingjuan Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yan Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| | - Jianguang Wang
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| |
Collapse
|
7
|
Daugrois JH, Filloux D, Julian C, Claude L, Ferdinand R, Fernandez E, Fontes H, Rott PC, Roumagnac P. Comparison of the Virome of Quarantined Sugarcane Varieties and the Virome of Grasses Growing near the Quarantine Station. Viruses 2021; 13:922. [PMID: 34065683 PMCID: PMC8157134 DOI: 10.3390/v13050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Visacane is a sugarcane quarantine station located in the South of France, far away from sugarcane growing areas. Visacane imports up to 100 sugarcane varieties per year, using safe control and confinement measures of plants and their wastes to prevent any risk of pathogen spread outside of the facilities. Viruses hosted by the imported material are either known or unknown to cause disease in cultivated sugarcane. Poaceae viruses occurring in plants surrounding the quarantine glasshouse are currently unknown. These viruses could be considered as a source of new sugarcane infections and potentially cause new sugarcane diseases in cases of confinement barrier failure. The aim of this study was to compare the plant virome inside and outside of the quarantine station to identify potential confinement failures and risks of cross infections. Leaves from quarantined sugarcane varieties and from wild Poaceae growing near the quarantine were collected and processed by a metagenomics approach based on virion-associated nucleic acids extraction and library preparation for Illumina sequencing. While viruses belonging to the same virus genus or family were identified in the sugarcane quarantine and its surroundings, no virus species was detected in both environments. Based on the data obtained in this study, no virus movement between quarantined sugarcane and nearby grassland has occurred so far, and the confinement procedures of Visacane appear to be properly implemented.
Collapse
Affiliation(s)
- Jean H. Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Romain Ferdinand
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Hugo Fontes
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France;
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, 337 chemin des Meinajariés, Site Agroparc BP 61207, 84911 Avignon, France
| | - Philippe C. Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| |
Collapse
|
8
|
Sun SR, Chen JS, He EQ, Huang MT, Fu HY, Lu JJ, Gao SJ. Genetic Variability and Molecular Evolution of Maize Yellow Mosaic Virus Populations from Different Geographic Origins. PLANT DISEASE 2021; 105:896-903. [PMID: 33044140 DOI: 10.1094/pdis-05-20-1013-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jian-Sheng Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Er-Qi He
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|