1
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
3
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
5
|
Alsamri H, Al Dhaheri Y, Iratni R. Targeting Triple-Negative Breast Cancer by the Phytopolyphenol Carnosol: ROS-Dependent Mechanisms. Antioxidants (Basel) 2023; 12:1349. [PMID: 37507889 PMCID: PMC10376170 DOI: 10.3390/antiox12071349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC), which lacks the expression of the three hormone receptors (i.e., estrogen receptor, progesterone receptor, and human epidermal growth factor receptor), is characterized by a high proliferative index, high invasiveness, poor prognosis, early relapse, and a tendency to be present in advanced stages. These characteristics rank TNBC among the most aggressive and lethal forms of breast cancer. The lack of the three receptors renders conventional hormonal therapy ineffective against TNBC. Moreover, there are no clinically approved therapies that specifically target TNBC, and the currently used chemotherapeutic agents, such as cisplatin, taxanes, and other platinum compounds, have a limited clinical effect and develop chemoresistance over time. Phytochemicals have shown efficacy against several types of cancer, including TNBC, by targeting several pathways involved in cancer development and progression. In this review, we focus on one phytochemical carnosol, a natural polyphenolic terpenoid with strong anti-TNBC effects and its ROS-dependent molecular mechanisms of action. We discuss how carnosol targets key pathways and proteins regulating the cell cycle, growth, epigenetic regulators, invasion, and metastasis of TNBC. This review identifies carnosol as a potential novel targeting protein degradation molecule.
Collapse
Affiliation(s)
- Halima Alsamri
- General Requirement Department, Fatima College of Health Sciences, Al Ain P.O. Box 24162, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Thongsom S, Racha S, Petsri K, Ei ZZ, Visuttijai K, Moriue S, Yokoya M, Chanvorachote P. Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway. BMC Complement Med Ther 2023; 23:183. [PMID: 37270520 DOI: 10.1186/s12906-023-04016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Compound with cancer stem cell (CSC)-suppressing activity is promising for the improvement of lung cancer clinical outcomes. Toward this goal, we discovered the CSC-targeting activity of resveratrol (RES) analog moscatilin (MOS). With slight structural modification from RES, MOS shows dominant cytotoxicity and CSC-suppressive effect. METHODS Three human lung cancer cell lines, namely H23, H292, and A549, were used to compare the effects of RES and MOS. Cell viability and apoptosis were determined by the MTT assay and Hoechst33342/PI double staining. Anti-proliferative activity was determined by colony formation assay and cell cycle analysis. Intracellular reactive oxygen species (ROS) were measured by fluorescence microscopy using DCFH2-DA staining. CSC-rich populations of A549 cells were generated, and CSC markers, and Akt signaling were determined by Western blot analysis and immunofluorescence. Molecular docking and molecular dynamics (MD) simulations were used to predict the possible binding of the compound to Akt protein. RESULTS In this study, we evaluated the effects of RES and MOS on lung cancer and its anti-CSC potential. Compared with RES, its analog MOS more effectively inhibited cell viability, colony formation, and induced apoptosis in all lung cancer cell lines (H23, H292, and A549). We further investigated the anti-CSC effects on A549 CSC-rich populations and cancer adherent cells (A549 and H23). MOS possesses the ability to suppress CSC-like phenotype of lung cancer cells more potent than RES. Both MOS and RES repressed lung CSCs by inhibiting the viability, proliferation, and lung CSC-related marker CD133. However, only MOS inhibits the CSC marker CD133 in both CSC-rich population and adherent cells. Mechanistically, MOS exerted its anti-CSC effects by inhibiting Akt and consequently restored the activation of glycogen synthase kinase 3β (GSK-3β) and decreased the pluripotent transcription factors (Sox2 and c-Myc). Thus, MOS inhibits CSC-like properties through the repression of the Akt/GSK-3β/c-Myc pathway. Moreover, the superior inhibitory effects of MOS compared to RES were associated with the improved activation of various mechanism, such as cell cycle arrest at G2/M phase, production of ROS-mediated apoptosis, and inhibition of Akt activation. Notably, the computational analysis confirmed the strong interaction between MOS and Akt protein. MD simulations revealed that the binding between MOS and Akt1 was more stable than RES, with MM/GBSA binding free energy of - 32.8245 kcal/mol at its allosteric site. In addition, MOS interacts with Trp80 and Tyr272, which was a key residue in allosteric inhibitor binding and can potentially alter Akt activity. CONCLUSIONS Knowledge about the effect of MOS as a CSC-targeting compound and its interaction with Akt is important for the development of drugs for the treatment of CSC-driven cancer including lung cancer.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Sohsuke Moriue
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Bhattacharyya S, Ghosh H, Covarrubias-Zambrano O, Jain K, Swamy KV, Kasi A, Hamza A, Anant S, VanSaun M, Weir SJ, Bossmann SH, Padhye SB, Dandawate P. Anticancer Activity of Novel Difluorinated Curcumin Analog and Its Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin against Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24076336. [PMID: 37047307 PMCID: PMC10093935 DOI: 10.3390/ijms24076336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin’s clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-β-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.
Collapse
Affiliation(s)
- Sangita Bhattacharyya
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | | | - Krishan Jain
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - K. Venkateswara Swamy
- MIT School of Bioengineering, Sciences & Research, MIT Art, Design and Technology University, Pune 412201, India
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
| | - Ameer Hamza
- Pathology and Laboratory Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Interdisciplinary Science & Technology Research Academy (ISTRA), Azam Campus, University of Pune, Pune 411001, India
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Correspondence: ; Tel.: +1-913-945-6336
| |
Collapse
|
8
|
Li J, Wang L, Sun Y, Wang Z, Qian Y, Duraisamy V, Antary TMA. Zerumbone-induced reactive oxygen species-mediated oxidative stress re-sensitizes breast cancer cells to paclitaxel. Biotechnol Appl Biochem 2023; 70:28-37. [PMID: 35240000 DOI: 10.1002/bab.2326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
Chemotherapy is an effective approach for cancer therapy when plant-derived sensitizers are combined with chemotherapeutics. Zerumbone, a natural phytochemical, has been documented to have various pharmacological roles. Here, we evaluated the chemosensitization potential of zerumbone in a breast cancer cell line in vitro. Zerumbone-induced cytotoxicity in MCF-7 cells was assessed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT)-based metabolic analysis. Reactive oxygen species (ROS)-mediated mitochondrial membrane alterations, DNA damage, and apoptotic morphological changes were measured by fluorescence microscopy methods. A biochemical assay was employed to analyze Thiobarbituric acid reactive substances (TBARS) and antioxidant levels. Apoptotic marker expression levels were investigated by immunoblotting. MTT assay revealed that zerumbone significantly enhanced paclitaxel (PTX)-induced cell death in breast cancer cells in a concentration-dependent manner. Furthermore, our study demonstrated that zerumbone (15 μM) significantly enhanced ROS when combined with PTX (1 μM) treatment. Additionally, we observed that zerumbone enhanced the impairment of mitochondrial membrane potential and oxidative DNA damage, thereby inducing apoptosis in combination with PTX. Western blot analysis indicated that zerumbone significantly upregulated BAX, caspase-7, and caspase-9 expression and decreased BCL-2 expression, thereby inducing proapoptotic protein-mediated cell death combined with PTX. The prooxidant properties of zerumbone potentially resensitize breast cancer cells to PTX by enhancing intracellular ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Jutao Li
- Breast and Thyroid Surgery Ward 1, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Lingying Wang
- Department of Thoracic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Yuxin Sun
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Zhe Wang
- Department of Pharmacy Medical Guarantee Center, PLA General Hospital in The Fourth Medical Center, Beijing, China
| | - Ye Qian
- Department of Oncology, Affiliated Hai 'an Hospital of Nantong University, Haian, Jiangsu, 226600, China
| | | | - Tawfiq M Al Antary
- Pesticide and Economic Entomology, Faculty of Agriculture, the University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
10
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic "natural drugs" taken from nature's bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Cytotoxic evaluation and chemical investigation of tomatoes from plants (Solanum lycopersicum L.) grown in uncontaminated and experimentally contaminated soils. Sci Rep 2022; 12:13024. [PMID: 35906264 PMCID: PMC9338037 DOI: 10.1038/s41598-022-13876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic activity and the chemical composition of the tomato extracts coming from, Pomodoro Giallo and San Marzano Cirio 3, and then to evaluate the potential changes when plants were grown in soils contaminated by cadmium, chromium and lead. Extracts were investigated by UHPLC-HRMS and UV–Vis. Cell viability (CellTiter-Glo Luminescent assay), enzyme aldehyde dehydrogenase activity (ALDEFLOUR Assay), cell cycle progression (Accuri C6 Flow Cytometer), apoptosis and necrosis (Annexin V-FITC assay) were evaluated on two gastric cancer (AGS and NCI-N87) and two colorectal cancer (HT-29 and HCT 116) cell lines. Different content of polyphenol and carotenoid constituents was observed. Extracts from uncontaminated soil induced cytotoxic activity towards all selected cancer cells, while extracts coming from contaminated soils showed the aberrant phenotype increased in colorectal cancer cells. Chloroform extracts exerted the highest cytotoxic activity. AGS and HT-29 were the most sensitive to cell cycle arrest and to apoptosis. No necrotic effect was observed in HCT 116. The contrasting effects on cancer cells were observed based on tomato variety, the extract polarity, heavy metal identity, and tested cell line. The investigation of potential adverse health effects due to Cd in the fruits should be explored.
Collapse
|
12
|
Shaikh S, Shaikh J, Naba YS, Doke K, Ahmed K, Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:298-320. [PMID: 35582033 PMCID: PMC9019276 DOI: 10.20517/cdr.2020.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Curcumin, a polyphenol, has a wide range of biological properties such as anticancer, antibacterial, antitubercular, cardioprotective and neuroprotective. Moreover, the anti-proliferative activities of Curcumin have been widely studied against several types of cancers due to its ability to target multiple pathways in cancer. Although Curcumin exhibited potent anticancer activity, its clinical use is limited due to its poor water solubility and faster metabolism. Hence, there is an immense interest among researchers to develop potent, water-soluble, and metabolically stable Curcumin analogs for cancer treatment. While drug resistance remains a major problem in cancer therapy that renders current chemotherapy ineffective, curcumin has shown promise to overcome the resistance and re-sensitize cancer to chemotherapeutic drugs in many studies. In the present review, we are summarizing the role of curcumin in controlling the proliferation of drug-resistant cancers and development of curcumin-based therapeutic applications from cell culture studies up to clinical trials.
Collapse
Affiliation(s)
- Siraj Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Javed Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Yusufi Sadia Naba
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India
| | - Kailas Doke
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Khursheed Ahmed
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Mujahid Yusufi
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| |
Collapse
|
13
|
Crutcher MM, Baybutt TR, Kopenhaver JS, Snook AE, Waldman SA. Emerging drug targets for colon cancer: A preclinical assessment. Expert Opin Ther Targets 2022; 26:207-216. [PMID: 35129035 PMCID: PMC9075542 DOI: 10.1080/14728222.2022.2039119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. There have been improvements in screening, and therefore overall survival, but patients continue to present at late stages when minimal treatment options are available to them. While some targeted therapies have been introduced, their application is limited by patient-specific tumor characteristics. Additional targets for CRC in patients who present at a late stage, or who experience tumor relapse, need to be identified to continue to improve patient outcomes. AREAS COVERED This review focuses on emerging pathways and drug targets for the treatment of colorectal cancer. The shift to the cancer stem cell model and potential targets involving Wnt, NF-κB, phosphodiesterases, RAS, and guanylyl cyclase C, are discussed. The current utility of checkpoint inhibitors and evolving immunological options are examined. EXPERT OPINION Surgery and current systemic cytotoxic therapies are inadequate to appropriately treat the full spectrum of CRC, especially in those patients who present with metastatic or treatment-refractory disease. In addition to the identification of new, more generalizable targets, additional focus is being placed on novel administrations. Immuno-oncologic options and stem cell-targeting therapies for mCRC will become available to patients and may increase survival.
Collapse
Affiliation(s)
- Madison M. Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R. Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Manoochehri H, Asadi S, Tanzadehpanah H, Sheykhhasan M, Ghorbani M. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. GENE REPORTS 2021; 25:101415. [DOI: 10.1016/j.genrep.2021.101415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Chae WO, Kim GD. Dioscin Decreases Breast Cancer Stem-like Cell Proliferation via Cell Cycle Arrest by Modulating p38 Mitogen-activated Protein Kinase and AKT/mTOR Signaling Pathways. J Cancer Prev 2021; 26:183-194. [PMID: 34703821 PMCID: PMC8511578 DOI: 10.15430/jcp.2021.26.3.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Dioscin (DS), a steroidal saponin, has been shown to have anti-cancer activity by exerting antioxidant effects and inducing apoptosis. However, the anti-cancer activity of DS in breast cancer-derived stem cells is still controversial. The purpose of this study was to evaluate the effects of DS on migration, invasion, and colony formation in MDA-MB-231 and MCF-7 cell lines and the mechanism by which it inhibits proliferation of breast cancer stem-like cells after inducing differentiation into breast cancer stem cells. DS treatment significantly reduced cellular migration, invasion, and colony formation in MDA-MB-231 and MCF-7 cells. During the differentiation process that induced manifestation of breast cancer stem-like cells, DS significantly inhibited mammosphere formation in a dose-dependent manner and increased the expression of p53 and p21 in breast cancer stem-like cells, reducing the expression of cdc2 and cyclin B1 in MDA-MB-231 cells and cyclin D, cyclin E, CDK4, and CDK2 in MCF-7 cells. Interestingly, DS treatment induced G2/M and G0/G1 cell cycle arrest in the MDA-MB-231 and MCF-7 cells, respectively. DS also increased the phosphorylation of p38 and decreased the expression levels of p-AKT and p-mTOR. These results suggest that DS regulates the p38 mitogen-activated protein kinase and AKT/mTOR signaling pathways to reduce the proliferation of breast cancer stem-like cells through cell cycle arrest. Therefore, these findings suggest that DS may serve as a potential treatment candidate targeting breast cancer stem cells.
Collapse
Affiliation(s)
- Won Ock Chae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea.,Department of Food and Nutrition, Kyungnam University, Changwon, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon, Korea
| |
Collapse
|
17
|
Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex. Cell Death Dis 2021; 12:562. [PMID: 34059639 PMCID: PMC8166826 DOI: 10.1038/s41419-021-03836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).
Collapse
|
18
|
Kopenhaver J, Crutcher M, Waldman SA, Snook AE. The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opin Biol Ther 2021; 21:1335-1345. [PMID: 33977849 DOI: 10.1080/14712598.2021.1929167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.
Collapse
Affiliation(s)
- Jessica Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Madison Crutcher
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States.,Department of Surgery, Thomas Jefferson University, Philadelphia, United States
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
19
|
Sanches JGP, Song B, Zhang Q, Cui X, Yabasin IB, Ntim M, Li X, He J, Zhang Y, Mao J, Lu Y, Li L. The Role of KDM2B and EZH2 in Regulating the Stemness in Colorectal Cancer Through the PI3K/AKT Pathway. Front Oncol 2021; 11:637298. [PMID: 33791221 PMCID: PMC8006351 DOI: 10.3389/fonc.2021.637298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The incidence of colorectal cancer (CRC) has been increasing worldwide in recent years. Targeting cancer stem cells (CSCs) in CRC remains a difficult challenge. KDM2B and EZH2 play important role in the maintenance of CSCs' self-renewal capacity and tumorigenic ability; however, the biological functions of those genes in CRC remain unclear. In this study, we aimed to define the contribution of the expression of KDM2B in the features of CRC and establish the relationship between KDM2B and EZH2 in colorectal CSCs. Methods: The expression of KDM2B and EZH2 in the specimens of CRC and CRC cell lines were analyzed by immunohistochemistry, Western blot, and immunofluorescence. The underlying mechanisms of altered expressions of KDM2B and EZH2 and their impact on the biologic features of CRC and stemness in CRC were investigated. Results: The KDM2B gene was highly expressed in CRC tissues, and its overexpression positively correlated with tumor stages and tumor/node/metastasis (TNM) classification. The downregulation of KDM2B retarded cell proliferation, induced DNA damage, reduced spheroid formation, and decreased CRC stem cell markers: CD44, CD133, and ALDH-1. Moreover, the downregulation of KDM2B decreased the expression of EZH2 and both regulated cell migration, invasion, and stemness in the CRC cell line. Additionally, the interaction between KDM2B and EZH2 significantly increased the components of the PI3K/AKT pathway including AKT and PI3K. The high expression of KDM2B positively correlated with EZH2 in CRC tissues. Conclusion: This study shows that the downregulation of KDM2B and EZH2 can regulate CRC cell stemness, and their interaction may serve as a novel prognostic marker and therapeutic target for patients with CRC.
Collapse
Affiliation(s)
| | - Bo Song
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Xinye Cui
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Iddrisu Baba Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Xinlong Li
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jiabei He
- Department of Ultrasound, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yao Zhang
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Malavia N, Kuche K, Ghadi R, Jain S. A bird's eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release 2020; 330:72-100. [PMID: 33321156 DOI: 10.1016/j.jconrel.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer. It is characterized by the absence of estrogen, progesterone and human epidermal growth factor receptors. The main issue with TNBC is that it exhibits poor prognosis, high risk of relapse, short progression-free survival and low overall survival in patients. This is because the conventional therapy used for managing TNBC has issues pertaining to poor bioavailability, lower cellular uptake, increased off-target effects and development of resistance. To overcome such pitfalls, several other approaches are explored. In this context, the present manuscript showcases three of the most widely used approaches which are (i) nanotechnology-based approach; (ii) gene therapy approach and (iii) Phytochemical-based approach. The ultimate focus is to present and explain the insightful reports based on these approaches. Further, the review also expounds on the identified molecular targets and novel targeting ligands which are explored for managing TNBC effectively. Thus, in a nutshell, the review tries to highlight these existing treatment approaches which might inspire for future development of novel therapies with a potential of overshadowing TNBC.
Collapse
Affiliation(s)
- Nilesh Malavia
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India.
| |
Collapse
|
21
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
22
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
23
|
Dandawate P, Subramaniam D, Panovich P, Standing D, Krishnamachary B, Kaushik G, Thomas SM, Dhar A, Weir SJ, Jensen RA, Anant S. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Sci Rep 2020; 10:1290. [PMID: 31992775 PMCID: PMC6987129 DOI: 10.1038/s41598-020-57940-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) have the ability to self-renew and induce drug resistance and recurrence in colorectal cancer (CRC). As current chemotherapy doesn’t eliminate CSCs completely, there is a need to identify novel agents to target them. We investigated the effects of cucurbitacin B (C-B) or I (C-I), a natural compound that exists in edible plants (bitter melons, cucumbers, pumpkins and zucchini), against CRC. C-B or C-I inhibited proliferation, clonogenicity, induced G2/M cell-cycle arrest and caspase-mediated-apoptosis of CRC cells. C-B or C-I suppressed colonosphere formation and inhibited expression of CD44, DCLK1 and LGR5. These compounds inhibited notch signaling by reducing the expression of Notch 1–4 receptors, their ligands (Jagged 1-2, DLL1,3,4), γ-secretase complex proteins (Presenilin 1, Nicastrin), and downstream target Hes-1. Molecular docking showed that C-B or C-I binds to the ankyrin domain of Notch receptor, which was confirmed using the cellular thermal shift assay. Finally, C-B or C-I inhibited tumor xenograft growth in nude mice and decreased the expression of CSC-markers and notch signaling proteins in tumor tissues. Together, our study suggests that C-B and C-I inhibit colon cancer growth by inhibiting Notch signaling pathway.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | - Peyton Panovich
- Shawnee Mission School District Center for Academic Achievement, Kansas City, KS, 66204, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Balaji Krishnamachary
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gaurav Kaushik
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
A mechanistic and empirical review of antcins, a new class of phytosterols of formosan fungi origin. J Food Drug Anal 2020; 28:38-59. [DOI: 10.1016/j.jfda.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
|
25
|
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, Samuel SM, Zulli A, Kwon TK, Büsselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019; 24:molecules24050899. [PMID: 30836718 PMCID: PMC6429493 DOI: 10.3390/molecules24050899] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis leading to cancer progression, invasiveness, metastasis formation, and therapy resistance. Anticancer effects of phytochemicals are also directed to target CSCs. Here we provide a comprehensive review of dietary phytochemicals targeting CSCs. Moreover, we evaluate and summarize studies dealing with effects of dietary phytochemicals on CSCs of various malignancies in preclinical and clinical research. Dietary phytochemicals have a significant impact on CSCs which may be applied in cancer prevention and treatment. However, anticancer effects of plant derived compounds have not yet been fully investigated in clinical research.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Milos Mlyncek
- Department of Obstetrics and Gynecology Faculty Hospital Nitra Constantine the Philosopher University, 949 01 Nitra, Slovakia.
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia.
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu 426 01, Korea.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| |
Collapse
|
26
|
Pan H, Kim E, Rankin GO, Rojanasakul Y, Tu Y, Chen YC. Theaflavin-3, 3'-digallate inhibits ovarian cancer stem cells via suppressing Wnt/β-Catenin signaling pathway. J Funct Foods 2018; 50:1-7. [PMID: 30984291 PMCID: PMC6456259 DOI: 10.1016/j.jff.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that ovarian cancer stem cells (CSCs) are responsible for ovarian cancer recurrence and drug resistance, resulting in the low long-term survival rate of patients with advanced ovarian cancer. We aimed to study the inhibitory effect of theaflavin-3, 3'-digallate (TF3), a black tea polyphenol on ovarian CSCs. Here, we showed that TF3 inhibited the proliferation of A2780/CP70 and OVCAR3 tumorshpere cells by suppressing their cell viability and colony formation capacity. TF3 inhibited the tumorsphere formation capacity of A2780/CP70 and OVCAR3 CSCs in serum-free and non-adherent conditions. TF3 inhibited A2780/CP70 and OVCAR3 CSCs isolated from tumorspheres by decreasing their cell viability and upregulating the protein expression of caspase-3 and -7 in the cells. We also revealed that TF3 inhibited ovarian CSCs through Wnt/β-catenin signaling pathway. Our results suggested that TF3 could inhibit ovarian CSCs and might be a potential agent for eradicating ovarian cancer.
Collapse
Affiliation(s)
- Haibo Pan
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV , USA
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV , USA
| |
Collapse
|
27
|
Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM, Murmu N. Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 2018; 121:52-62. [PMID: 30381268 DOI: 10.1016/j.mvr.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry, an endothelia-independent tumor microcirculation has been found in various cancers and is thought to be achieved by cancer stem like cells. Dacarbazine resistance is one of the most common features of melanoma and recent studies suggest that the mode of resistance is closely related to the formation of vasculogenic mimicry. In our work, we examined the anticancer effect of Lupeol, a novel phytochemical with Dacarbazine in vivo and in vitro. Results demonstrated adequate cytotoxicity followed by down regulation of CD 133 expression in Lupeol treated B16-F10 cell line. In solid tumor model the drug also inhibited vasculogenic mimicry along with angiogenesis by altering both the cancer stem cell as well as the endothelial progenitor cell population. Lupeol hindered the maturation of bone marrow derived endothelial progenitors and thus, retarded the formation of rudimentary tumor microvessels. Notably, Dacarbazine treatment demonstrated unresponsiveness to B16-F10 cells in both in vivo and in vitro model via upregulation of CD 133 expression and increased formation of vasculogenic mimicry tubes. Together, these data indicate that Lupeol alone can become a proficient agent in treating melanoma, inhibiting vasculogenic mimicry and might play a significant role in subduing Dacarbazine induced drug resistance.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nirjhar Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Samir Banerjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Biswanath Majumder
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore 560099, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
28
|
Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fiuji H, Sahebkar A, Avan A, Khazaei M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018; 233:6785-6798. [PMID: 29737515 DOI: 10.1002/jcp.26538] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/06/2018] [Indexed: 04/03/2025]
Abstract
Colorectal-cancer (CRC) is the third leading cause of death due to cancer, supporting the need for identification of novel anticancer drug to improve the efficacy of current-therapy. There is growing bodies of data showing the antitumor-activity of curcumin, although it is associated with low absorption. The aim of current study was explored the therapeutic-potential of novel phytosomal curcumin as well as its application in combination with 5-Flurouracil (5-FU) in a mouse-model of colitis-associated colon-cancer. The anti-proliferative-activity of phytosomal curcumin was assessed in 2- and 3-dimensional cell-culture-models as well as in a mouse-model of colitis-associated colon-cancer. The expression-levels of CyclinD1, beclin, E-cadherin, and p-GSK3a/b were investigated by qRT-PCR and/or Western-blotting. We evaluated the anti-inflammatory of this agent by pathological-evaluation and disease-activity-index (DAI). Moreover, oxidant/antioxidant activity was examined by malondialdehyde (MDA), total-thiols (T-SH), superoxide-dismutase (SOD), and catalase (CAT) activity parameters. Our data showed that phytosomal curcumin and its combination with 5-FU inhibited cell growth and invasive behavior of CRC cells through modulation of Wnt-pathway and E-cadherin. Combination of curcumin with 5-FU dramatically reduced the tumor-number and tumor-size in both distal and middle parts of colon in colitis-associated colon cancer followed by reduction in DAI. Also, curcumin suppressed the colonic inflammation and notably recovered the increased levels of MDA, decreased thiol level and reduced activity of CAT. We demonstrated the antitumor-activity of novel form of curcumin in CRC, supporting further investigations on the therapeutic-potential of this approach in colorectal-cancer.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Rezaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Hashemzehi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
| | - Fatemeh Ariakia
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Chan MM, Chen R, Fong D. Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations. Cancer Lett 2018; 433:53-64. [PMID: 29960048 PMCID: PMC7117025 DOI: 10.1016/j.canlet.2018.06.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is complex with the cancer stem cell (CSC) as a member within its community. This population possesses the capacity to self-renew and to cause cellular heterogeneity of the tumor. CSCs are resistant to conventional anti-proliferative drugs. In order to be curative, it is imperative that CSCs must be eliminated by cancer therapy. A variety of dietary phytochemicals and repositioned drugs can act synergistically with conventional anti-cancer agents. In this review, we advocate the development of a novel approach, namely combination therapy by incorporating both phytochemicals and repositioned drugs to target CSCs. We cover select dietary phytochemicals (curcumin, resveratrol, EGCG, genistein) and repurposed drugs (metformin, niclosamide, thioridazine, chloroquine). Five of the eight (curcumin, resveratrol, EGCG, genistein, metformin) are listed in "The Halifax Project", that explores "the concept of a low-toxicity 'broad-spectrum' therapeutic approach that could simultaneously target many key pathways and mechanisms" [1]. For these compounds, we discuss their mechanisms of action, in which models their anti-CSC activities were identified, as well as advantages, challenges and potentials of combination therapy.
Collapse
Affiliation(s)
- Marion M Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Rensa Chen
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA, 19140, USA; Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
30
|
Soltanian S, Riahirad H, Pabarja A, Jafari E, Khandani BK. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru 2018; 26:10.1007/s40199-018-0210-8. [PMID: 30209760 PMCID: PMC6154487 DOI: 10.1007/s40199-018-0210-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE There is a lot of evidence suggesting that a small subset of cancer cells resistant to conventional chemotherapy and radiotherapy and known as cancer stem cells (CSCs) is responsible for promoting metastasis and cancer relapse. Therefore, targeting and eliminating the CSCs could lead to higher survival rates and a better quality of life. In comparison with conventional chemical drugs that may not be effective against CSCs, phytochemicals are strong anti-CSCs agents. The current study examines the effect of 5-fluorouracil plus oxaliplatin (FOLFOX) as a common chemotherapy drug on colorectal cancer as well as the influence of Cinnamic acid (CINN) as a plant-derived phytochemical on colon cancer stem-like cells in HT-29 adenocarcinoma cell line. METHODS The anti-proliferative effect of FOLFOX and CINN was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Flow cytometry analysis was used for the identification of side population (SP), CD44, and CD133 positive cells. The expression of OCT4, NANOG, ABCB1, and ALDH1A was assessed by RT-PCR. RESULTS The FOLFOX and CINN decreased cell viability in certain drug concentrations: IC50 = 5,40 μM oxaliplatin +220 μM 5-fluorouracil, and 13,50 mM for CINN. The CSC-associated markers (OCT4, NANOG, ABCB1, and ALDH1A) and the proportion of cancer stem-like cells (SP cells, CD44, and CD133 positive cells) were downregulated following the treatment of HT-29 adenocarcinoma cell line with IC50 concentrations of FOLFOX and CINN. CONCLUSION Our data suggests that CINN, a naturally occurring component, could be more effective than FOLFOX treatment in reducing the cancer stem-like cells and expression of CSC markers from HT-29 colon cancer cells. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Helia Riahirad
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Athareh Pabarja
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Internal Medicine, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129:383-400. [DOI: 10.1016/j.fitote.2018.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
32
|
Liu C, Dong L, Sun Z, Wang L, Wang Q, Li H, Zhang J, Wang X. Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway. Phytother Res 2018; 32:2299-2311. [PMID: 30080291 DOI: 10.1002/ptr.6172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Chuanlan Liu
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Lihua Dong
- Human Anatomy Department, School of Preclinical and Forensic Medcine; Sichuan University; Chengdu 610041 China
| | - Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Haiyan Li
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Jie Zhang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School; Sichuan University; Chengdu 610041 China
| |
Collapse
|
33
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Israel BB, Tilghman SL, Parker-Lemieux K, Payton-Stewart F. Phytochemicals: Current strategies for treating breast cancer. Oncol Lett 2018; 15:7471-7478. [PMID: 29755596 DOI: 10.3892/ol.2018.8304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Females with early-stage metastatic, estrogen-dependent breast cancer are generally treated with surgery, radiation and chemotherapy, or with more targeted approaches such as aromatase inhibitors (anastrozole or letrozole) or anti-estrogens (tamoxifen). Despite widespread successful usage of these agents for the treatment of breast cancer, resistance, tumor relapse and metastasis remain the principal causes of mortality for patients with breast cancer. While numerous groups have made major contributions toward an improved understanding of resistance mechanisms, the currently insufficient grasp of the most critical pathways involved in resistance is evident in the inability to adequately treat and drastically improve patient outcomes in females with hormone-refractory breast cancer, including triple negative breast cancer. Therefore, further investigation of novel therapeutic approaches is paramount to reveal previously unconsidered agents that could be utilized to treat metastatic disease. Numerous naturally occurring phytochemicals have recently gained interest as potential therapeutic breast cancer agents appear to directly affect estrogen-dependent and estrogen-independent breast cancer cell proliferation, potentially via affecting breast cancer stem cell populations. While numerous natural compounds have exhibited promise, they are limited by their bioavailability. Therefore, to effectively treat future hormone-refractory breast tumors, it is critical to adequately refine and formulate these agents for effective therapeutic use and delivery. Herein, the literature on the current state of phytochemicals is reviewed, including their limitations and potential as targeted therapies for breast cancer.
Collapse
Affiliation(s)
- Bridg'ette B Israel
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Kitani Parker-Lemieux
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Florastina Payton-Stewart
- Division of Mathematical and Physical Sciences, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
35
|
He M, Wang D, Zou D, Wang C, Lopes-Bastos B, Jiang WG, Chester J, Zhou Q, Cai J. Re-purposing of curcumin as an anti-metastatic agent for the treatment of epithelial ovarian cancer: in vitro model using cancer stem cell enriched ovarian cancer spheroids. Oncotarget 2018; 7:86374-86387. [PMID: 27863439 PMCID: PMC5349920 DOI: 10.18632/oncotarget.13413] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Malignant epithelial ovarian cancer (EOC) spheroids high frequently are detected in the malignant ascites of the patients with the extensive peritoneal metastasis of ovarian cancer, which represent a significant obstacle to efficacious treatment. Clinical data also suggested that EOC spheroids play a putative role in the development of chemoresistance. Since standard surgery and conventional chemotherapy is the only available treatment, there is an urgent need to identify a more effective therapeutic strategy. Recent studies demonstrated that curcumin exerts an anticancer effect in a variety of human cancers including ovarian cancer. This study evaluates anti-peritoneal metastasis and chemoresistance of curcumin related to the EOC spheroids. In this study, we confirm that the high invasive EOC cells forming the spheroids express a high level of a cancer stem cell (CSC) marker, aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which was significantly down-regulated by curcumin treatment. Curcumin treatment markedly enhances the sensitivity of EOC spheroids to cisplatin in a dose-dependent manner. Our experiments provided evidence that curcumin could abolish the sphere-forming capacity of EOC cells in a dose-dependent manner. Moreover, curcumin substantially suppressed the growth of the pre-existed EOC spheroids, inhibited the adhesion of EOC spheroids to ECM as well as the invasion of EOC spheroids to the mesothelial monolayers. We propose to re-purpose curcumin as anti-metastatic and chemoresistant agent for EOC management in combination with conventional regimen. Further preclinical studies are necessary to validate the anti-cancer effect of curcumin in patients with EOC.
Collapse
Affiliation(s)
- Misi He
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Dong Wang
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Dongling Zou
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Chen Wang
- Department of Orthopaedic surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Bruno Lopes-Bastos
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - John Chester
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Cardiff CF14 4XN, UK
| | - Qi Zhou
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Jun Cai
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
36
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
37
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
38
|
Shah A, Amini-Nik S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int J Mol Sci 2017; 18:ijms18051068. [PMID: 28509885 PMCID: PMC5454978 DOI: 10.3390/ijms18051068] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
Historically, plant-based products have been the basis of medicine since before the advent of modern Western medicine. Wound dressings made of honey, curcumin and other phytochemical-rich compounds have been traditionally used. Recently, the mechanisms behind many of these traditional therapies have come to light. In this review, we show that in the context of wound healing, there is a global theme of anti-inflammatory and antioxidant phytochemicals in traditional medicine. Although promising, we discuss the limitations of using some of these phytochemicals in order to warrant more research, ideally in randomized clinical trial settings.
Collapse
Affiliation(s)
- Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
39
|
Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K, Anant S. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol 2017; 10:10. [PMID: 28061797 PMCID: PMC5219787 DOI: 10.1186/s13045-016-0373-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems from a lack of complete knowledge of the biology of osteosarcoma. Consequently, there has been an aggressive undertaking of scientific investigation of various signaling pathways that could be instrumental in understanding the pathogenesis of osteosarcoma. Here, we review these cancer signaling pathways, including Notch, Wnt, Hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, and JAK/STAT, and their specific role in osteosarcoma. In addition, we highlight numerous natural compounds that have been documented to target these pathways effectively, including curcumin, diallyl trisulfide, resveratrol, apigenin, cyclopamine, and sulforaphane. We elucidate through references that these natural compounds can induce cancer signaling pathway manipulation and possibly facilitate new treatment modalities for osteosarcoma.
Collapse
Affiliation(s)
- Pablo Angulo
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO, 64108, USA.,Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Gaurav Kaushik
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Dharmalingam Subramaniam
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Kathleen Neville
- Division of Hematology and Oncology, Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Katherine Chastain
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO, 64108, USA.,Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
40
|
Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00010-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 2016; 35:1-22. [PMID: 27996308 DOI: 10.1080/07357907.2016.1247166] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin has been shown to have a wide variety of therapeutic effects, ranging from anti-inflammatory, chemopreventive, anti-proliferative, and anti-metastatic. This review provides an overview of the recent research conducted to overcome the problems with the bioavailability of curcumin, and of the preclinical and clinical studies that have reported success in combinatorial strategies coupling curcumin with other treatments. Research on the signaling pathways that curcumin treatment targets shows that it potently acts on major intracellular components involved in key processes such as genomic modulations, cell invasion and cell death pathways. Curcumin is a promising molecule for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Vanessa Innao
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Sabina Russo
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Demetrio Gerace
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Andrea Alonci
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Caterina Musolino
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| |
Collapse
|
42
|
Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP, Gu W. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2016; 42:1317-26. [PMID: 26399781 DOI: 10.1111/1440-1681.12493] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Colon cancer is one of the most common cancers worldwide with high mortality. A major issue in colon cancer treatment is drug-resistance and metastasis that have been ascribed to the cancer stem cells. In this study, colon cancer stem cells were isolated through sphere culture and verified with the cancer stem cell markers CD133, CD44, and CD24. It was demonstrated that the PI3K/Akt/mTOR signalling pathway was highly activated in the colon cancer stem cells and that inhibition of the PI3K/Akt/mTOR pathway by the inhibitor BEZ235 suppressed the colon cancer stem cell proliferation with reduced stemness indicated by CD133 and Lgr5 expressions. Treatment with insulin as a known activator of the PI3K/Akt pathway increased CD133 expression and decreased the effects of BEZ235 on colon cancer proliferation and survival. The data presented here collectively suggest that the PI3K/Akt/mTOR pathway underpins the stemness of colon cancer stem cells and BEZ235 is potentially a good drug candidate for treatment of colon cancer drug resistance and metastasis.
Collapse
Affiliation(s)
- Jiezhong Chen
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezhi University, Xinjiang, China
| | - Michael Monteiro
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Jun-Ping Liu
- Aging Research Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
43
|
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F, Zhang J, Li Z. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6:36796. [PMID: 27824145 PMCID: PMC5099878 DOI: 10.1038/srep36796] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is the second leading cause of cancer-related mortality worldwide. The efficacy of standard chemotherapy for GC, such as cisplatin (CDDP), is dissatisfactory partly due to the toxic/side-effects. Sulforaphane (SFN), which exhibits effective anti-cancer functions, is a phytochemical converted from cruciferous plants. Our present study aimed to identify whether SFN could enhance the anti-cancer effects of low-dose CDDP and to determine the underlying mechanisms. Herein, co-exposure of SFN and CDDP significantly inhibited the viabilities of gastric cancer cells. For the molecular mechanisms, CDDP alone increased the cancer stem cell (CSC)-like properties in gastric cancer cells via activating the interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signaling. However, SFN could activate the microRNA-124 (miR-124), which directly targets the 3'-untranslated regions (UTR) of the IL-6R and STAT3. Moreover, knockdown of miR-124 eliminated the effects of SFN on CSC-like properties in GC cells, and in turn enhanced the anti-cancer effects of low-dose CDDP. These findings not only suggested a mechanism whereby SFN enhanced the anti-cancer functions of CDDP, but also helped to regard SFN as a potential chemotherapeutic factor in gastric cancer.
Collapse
Affiliation(s)
- Xingxing Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Dai
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Qinqiang Liu
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Shilong Ning
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaoxia Shen
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongmei Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Jiang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Zhong Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
44
|
Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol 2016; 40-41:192-208. [PMID: 27609747 DOI: 10.1016/j.semcancer.2016.09.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development.
Collapse
Affiliation(s)
- Prasad R Dandawate
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
45
|
Oh J, Hlatky L, Jeong YS, Kim D. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells. Toxins (Basel) 2016; 8:toxins8070199. [PMID: 27376325 PMCID: PMC4963832 DOI: 10.3390/toxins8070199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.
Collapse
Affiliation(s)
- Jisun Oh
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Yong-Seob Jeong
- Department of Food Science and Technology, Chonbuk National University, Jeonju 54896, Korea.
| | - Dohoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
46
|
Armada A, Martins C, Spengler G, Molnar J, Amaral L, Rodrigues AS, Viveiros M. Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter. Methods Mol Biol 2016; 1395:87-103. [PMID: 26910071 DOI: 10.1007/978-1-4939-3347-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2.
Collapse
Affiliation(s)
- Ana Armada
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Célia Martins
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Joseph Molnar
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Unidade de Medicina das Viagens, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
47
|
Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets 2015; 20:737-53. [PMID: 26652031 DOI: 10.1517/14728222.2016.1114102] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Many RNA species have been identified as important players in the development of chronic diseases including cancer. Certain classes of regulatory RNAs such as microRNAs (miRNAs) have been investigated in such detail that bona fide tumor suppressive and oncogenic miRNAs have been identified. Because of this, there has been a major effort to therapeutically target these small RNAs. One in particular, a liposomal formulation of miR-34a (MRX34), has entered Phase I trials. AREAS COVERED This review aims to summarize miRNA biology, its regulation within normal versus disease states and how it can be targeted therapeutically, with a particular emphasis on miR-34a. Understanding the complexity of a single miRNA will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. EXPERT OPINION The potential of miRNAs to be developed into anti-cancer therapeutics has become an increasingly important area of research. miR-34a is a tumor suppressive miRNA across many tumor types through its ability to inhibit cellular proliferation, invasion and tumor sphere formation. miR-34a also shows promise within certain in vivo solid tumor models. Finally, as miR-34a moves into clinical trials it will be important to determine if it can further sensitize tumors to certain chemotherapeutic agents.
Collapse
Affiliation(s)
- Brian D Adams
- a Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA.,b Department of Pathology , BIDMC Cancer Center/Harvard Medical School , Boston , MA , USA
| | - Christine Parsons
- a Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Frank J Slack
- b Department of Pathology , BIDMC Cancer Center/Harvard Medical School , Boston , MA , USA
| |
Collapse
|
48
|
Ramasamy TS, Ayob AZ, Myint HHL, Thiagarajah S, Amini F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int 2015; 15:96. [PMID: 26457069 PMCID: PMC4599442 DOI: 10.1186/s12935-015-0241-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the commonest cancers in the world and it is also a common cause of cancer-related death worldwide. Despite advanced treatment strategies, the disease is rarely cured completely due to recurrence. Evidence shows that this is due to a small population of cells, called cancer stem cells (CSCs), in the tumour mass that have the self-renewal and differentiation potential to give rise to a new tumour population. Many pre-clinical and clinical studies have used curcumin and its analogues as anti-cancer agents in various types of cancer, including colorectal cancer. Intriguingly, curcumin and its analogues have also recently been shown to be effective in lowering tumour recurrence by targeting the CSC population, hence inhibiting tumour growth. In this review, we highlight the efficacy of curcumin and its analogues in targeting colorectal CSC and also the underlying molecular mechanism involved. Curcumin, in the presence or absence of other anti-cancer agents, has been shown to reduce the size of tumour mass and growth in both in vivo and in vitro studies by affecting many intracellular events that are associated with cancer progression and CSC formation. An insight into the molecular mechanism has unraveled the mode of action via which curcumin could affect the key regulators in CSC, importantly; (1) the signaling pathways, including Wnt/β-catenin, Sonic Hedgehog, Notch and PI3K/Akt/mTOR, (2) microRNA and (3) the epithelial-mesenchymal transition at multiple levels. Therefore, curcumin could play a role as chemosensitiser whereby the colorectal CSCs are now sensitised towards the anti-cancer therapy, therefore, combination therapy using anti-cancer agent with curcumin could be much more effective than treatment using a single cancer agent. This potential treatment modality can be further developed by employing an effective delivery system using a nanotechnology based approach to treat colorectal cancer.
Collapse
Affiliation(s)
- Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ain Zubaidah Ayob
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hsu Hsu Lynn Myint
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Sharmanee Thiagarajah
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Farahnaz Amini
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Li SY, Zhu R, Zhao K. Progress in understanding role of epithelial to mesenchymal transition in acquisition of stem cell properties by colorectal tumor cells. Shijie Huaren Xiaohua Zazhi 2015; 23:4060-4068. [DOI: 10.11569/wcjd.v23.i25.4060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process in which cells lose epithelial features and gain mesenchymal properties. This process not only contributes to the normal development of tissues and organs, inflammation and wound-related fibrosis or mucosal repair but also participates in carcinoma progression, promotes tumor cell invasion and metastasis and induces stem cell properties. EMT also contributes to occurrence of tumor recurrence, metastasis and multi-drug resistance. This review illuminates the mechanism that EMT promotes colorectal carcinoma cells to obtain stemness in terms of microRNAs, signaling pathways and microenvironment, with an aim to provide novel and safe strategies for clinical target therapy.
Collapse
|
50
|
Scarpa ES, Ninfali P. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells. Int J Mol Sci 2015; 16:15727-42. [PMID: 26184171 PMCID: PMC4519921 DOI: 10.3390/ijms160715727] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022] Open
Abstract
The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.
Collapse
Affiliation(s)
| | - Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU) 61029, Italy.
| |
Collapse
|