1
|
Liu Y, Shang J, Chen Y, Feng X. Potential Applications of Chitosan in Seborrheic Dermatitis and Other Skin Diseases: A Comprehensive Review. Clin Cosmet Investig Dermatol 2025; 18:533-542. [PMID: 40071198 PMCID: PMC11894430 DOI: 10.2147/ccid.s504778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
This review article explores the potential applications of chitosan, a natural polysaccharide derived from crustacean shells, in the treatment of seborrheic dermatitis (SD) and other skin diseases. SD is a common chronic inflammatory skin condition characterized by erythema, scaling, itching, and an oily appearance, predominantly affecting areas rich in sebaceous glands. Current treatments, including antifungal agents, corticosteroids, and calcineurin inhibitors, offer symptomatic relief but have limitations in long-term use due to side effects and resistance issues. Chitosan exhibits excellent biocompatibility, biodegradability, and broad-spectrum antibacterial properties, making it a promising candidate for SD treatment. This review highlights chitosan's multifunctional properties such as antimicrobial, anti-inflammatory, sebum-regulating, and barrier-enhancing effects, which are closely related to the pathogenesis of SD. Additionally, the article summarizes the applications of chitosan in other skin conditions, including wound healing, infectious skin diseases, and atopic dermatitis, demonstrating its broad therapeutic potential. Through this comprehensive evaluation, the review aims to provide a theoretical foundation for clinical research on chitosan in SD and support the development of new, safer, and more effective treatment options for various skin conditions.
Collapse
Affiliation(s)
- Youting Liu
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Jianli Shang
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
| | - Yong Chen
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Xiaoyue Feng
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Hou X, Guan Y, Lu Y, Wang Y, Xu S, Zhu H, Zhao J, Xiao L, He S, Shi Y. Chitosan-based thermosensitive injectable hydrogel with hemostatic and antibacterial activity for preventing breast cancer postoperative recurrence and metastasis via chemo-photothermal therapy. Int J Biol Macromol 2025; 290:138930. [PMID: 39701248 DOI: 10.1016/j.ijbiomac.2024.138930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Primary resection surgery is a conventional approach in breast cancer treatment, which plays a pivotal role in the prevention of recurrence and metastasis. In this study, an injectable hydrogel comprising chitosan (CS), β-glycerophosphate (β-GP), and dopamine (DA) with near-infrared (NIR) photothermal attributes was developed. The composite hydrogels integrate doxorubicin (DOX), termed DCGD, and can be used for chemotherapy, synergistic photothermal therapy, anti-bacterial and hemostasis. Local administration of injectable DCGD hydrogels into breast cancer resection cavities could prevent the postoperative breast cancer recurrence and metastasis via chemo-photothermal therapy. Additionally, the remarkable hemostatic and anti-bacterial properties of DCGD facilitated postoperative wound healing. Notably, the DCGD hydrogel had a dual pH- and photothermal-responsive DOX release profile, ensuring sustained drug release to residual tumor tissues triggered by NIR laser irradiation and the acidic tumor microenvironment. Histological analyses including H&E, TUNEL, and Ki67 immunohistochemistry confirmed the potent anti-recurrent and anti-metastatic efficacy of DCGD hydrogels. Therefore, the DCDG hydrogels developed in our study had the favorable hemostatic, anti-bacterial, photothermal and drug-loading effects, which provided a new strategy for postoperative breast cancer recurrence and metastasis treatment.
Collapse
Affiliation(s)
- Xueyan Hou
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China; Pingyuan Laboratory, 453007 Xinxiang, PR China.
| | - Yalin Guan
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Yanan Lu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Yuxin Wang
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Suyue Xu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Huiqing Zhu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Jingya Zhao
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Liu Xiao
- Department of Oncology, Wuhan No.1 Hospital, 430022 Wuhan, PR China.
| | - Sisi He
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, 563000, Guizhou, PR China.
| | - Yongli Shi
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China.
| |
Collapse
|
3
|
Zhao B, Liu J, Yuan X, Cheng X. Chitosan-BODIPY fluorescent composite materials for photodynamical antibacterial and therapy. Int J Biol Macromol 2025; 286:138256. [PMID: 39638191 DOI: 10.1016/j.ijbiomac.2024.138256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Chitosan-based fluorescent copolymers containing borodipyrromethene (BODIPY) were synthesized and investigated. In this work, fluorescent compound (BOD-4) containing -C ≡ CH was synthesized firstly. Subsequently, chitosan (CS)-based polymer CS-I was obtained through the -NH2/-C ≡ C click reaction between BOD-4 and CS. Thirdly, CS-Py was prepared via Suzuki reaction between CS-I and pyridine. Finally, the synthesis of macromolecular photosensitizers, i.e. CS-Me and CS-Bn, was achieved by pyridinium salt formation. CS-Me and CS-Bn could produce reactive oxygen species (ROS) when exposed to white light, demonstrating superior light utilization efficiency. This strategy not only utilizes the photodynamic ability of photosensitizing molecules but also takes advantage of chitosan's biocompatibility and antibacterial efficacy. The photodynamic antimicrobial activities of the macromolecular photosensitizers have been tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). CS-Me and CS-Bn exhibited not only the inherent antibacterial properties but also photodynamic capabilities, which significantly enhance their antibacterial effectiveness. Under white light irradiation, bacteria can be effectively eradicated. When made into a film by loading CS-Me and CS-Bn onto transparent band-aid, excellent photodynamic antibacterial properties were obtained. CS-based photosensitizers maintain the biocompatibility and antibacterial properties of CS. In addition, they expand the scope of chitosan's application in photodynamic therapy (PDT) as well.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xiaoxia Yuan
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
4
|
Trimukhe AM, Melo JS, Chaturvedi D, Jain RD, Dandekar P, Deshmukh RR. RF pulsed plasma modified composite scaffold for enhanced anti-microbial activity and accelerated wound healing. Int J Pharm 2024; 667:124864. [PMID: 39461682 DOI: 10.1016/j.ijpharm.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Infected wounds present significant challenges pertaining to healing and often demand administration of strong antibiotics to patients. Also, drug resistant microbes may alter the physiology of wounds to create biofilms, frequently leading to high morbidity and mortality. In this investigation, a biodegradable, microporous composite agarose-chitosan scaffold was fabricated. Furthermore, its surface was modified with diphenyldiselenide deposition, using low pressure pulsed plasma technology. The optimized plasma parameters, viz. 5ON/15OFF (ms) of plasma pulse rate and 80 min of treatment time resulted in scaffolds having enhanced anti-bacterial activity against gram positive microbes like Staphylococcus (S.) aureus and S. epidermidis. The scaffolds were non-toxic to skin cells, as confirmed by the MTT assay. Cell proliferation through plasma treated and untreated scaffolds was assessed by culturing primary human dermal fibroblasts (HdaF) and human keratinocytes (HaCaT) and visualizing via confocal microscopy. Moreover, in-vivo rat model confirmed accelerated wound healing with plasma treated scaffold (100 % on day 14), as compared to the untreated scaffold (100 % on day 16) when compared with over-the-counter (OTC) ointment Betadine (100 % on day 12).
Collapse
Affiliation(s)
- A M Trimukhe
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - J S Melo
- Enzyme Microbial Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R D Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
5
|
Li Y, Zhao C, Zhuang Z, Moon UY, Park J, Choi EH, Min SH, Jiang G. Effect of chitooligosaccharide on the binding domain of the SARS-COV-2 receptor. Int J Biol Macromol 2024; 278:134957. [PMID: 39182881 DOI: 10.1016/j.ijbiomac.2024.134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The receptor-binding domain (RBD) is crucial for understanding how severe acute respiratory syndrome coronavirus (SARS-CoV-2) recognizes and infects host cells. Chitooligosaccharide (CS) exhibits diverse antiviral activities, with its derivatives showing remarkable efficacy in blocking SARS-CoV-2 infection. Thus, this study employed spectroscopy, virus-infected cell experiments, and molecular simulation to investigate the molecular interactions between CS and SARS-CoV-2 RBD, as well as their mechanisms. In spectroscopic experiments, all four CS variants with different molecular weights formed interactions with the RBD. These variants increased the resistance of HEK293ACE2 cells to SARS-CoV-2 invasion. Molecular docking revealed that the four CS variants could bind to the RBD through hydrogen bonding or salt-bridge interactions, forming stable complexes. Chitotetraose provided stronger protection to HEK293ACE2 cells compared to other CS variants and displayed higher molecular docking scores. Further investigation into the optimal docking conformation of chitotetraose was conducted through molecular dynamics simulation methods. This study lays a solid theoretical foundation and provides a scientific basis for the development of targeted RBD inhibitors, as well as drug screening and application against novel coronaviruses.
Collapse
Affiliation(s)
- Yue Li
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Chunyu Zhao
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Zihui Zhuang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Uk Yeol Moon
- New Drug Development Center, K-MEDIhub, 80 Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jeongwoo Park
- New Drug Development Center, K-MEDIhub, 80 Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Eui-Hwan Choi
- New Drug Development Center, K-MEDIhub, 80 Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University. 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Ge Jiang
- College of Life and Health, Dalian University, Dalian 116622, China.
| |
Collapse
|
6
|
Kurchenko V, Halavach T, Yantsevich A, Shramko M, Alieva L, Evdokimov I, Lodygin A, Tikhonov V, Nagdalian A, Ali Zainy FM, AL-Farga A, ALFaris NA, Shariati MA. Chitosan and its derivatives regulate lactic acid synthesis during milk fermentation. Front Nutr 2024; 11:1441355. [PMID: 39351492 PMCID: PMC11439701 DOI: 10.3389/fnut.2024.1441355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction The influence of chitosan's physicochemical characteristics on the functionality of lactic acid bacteria and the production of lactic acid remains very obscure and contradictory to date. While some studies have shown a stimulatory effect of oligochitosans on the growth of Lactobacillus spp, other studies declare a bactericidal effect of chitosan. The lack and contradiction of knowledge prompted us to study the effect of chitosan on the growth and productivity of L. bulgaricus in the presence of chitosan and its derivatives. Methods We used high molecular weight chitosan (350 kDa) and oligochitosans (25.4 and 45.3 kDa). The experiment was carried out with commercial strain of L. bulgaricus and the low fat skim cow milk powder reconstituted with sterile distilled water. After fermentation, dynamic viscosity, titratable acidity, pH, content of lactic acid, colony forming units, chitosan and oligochitosans radii were measured in the samples. Fermented dairy products were also examined using sodium dodecyl sulfate electrophoretic analysis, gas chromatography-mass spectrometry and light microscopy. Results and discussion The results of the study showed that when L. bulgaricus was cultured in the presence of 25.4 kDa oligochitosans at concentrations of 0.0025%, 0.005%, 0.0075% and 0.01%, the average rate of LA synthesis over 24 hours was 11.0 × 10-3 mol/L/h, 8.7 × 10-3 mol/L/h, 6.8 × 10-3 mol/L/h, 5.8 × 10-3 mol/L/h, respectively. The 45.3 kDa oligochitosans had a similar effect, while the average rate of lactic acid synthesis in the control sample was only 3.5 × 10-3 mol/L/h. Notably, 350 kDa chitosan did not affect the rate of lactic acid synthesis compared with the control sample. Interestingly, interaction of chitosan with L. bulgaricus led to a slowdown in the synthesis of propanol, an increase in the content of unsaturated and saturated fatty acids, and a change in the composition and content of other secondary metabolites. The quantity of L. bulgaricus in a sample with 0.01% chitosan exceeded their content in the control sample by more than 1,700 times. At the same chitosan concentration, the fermentation process was slowed down, increasing the shelf life of the fermented milk product from 5 to 17 days while maintaining a high content of L. bulgaricus (6.34 × 106 CFU/g).
Collapse
Affiliation(s)
- Vladimir Kurchenko
- Department of Biology, Belarusian State University, Minsk, Belarus
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | | | - Alexey Yantsevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Mariya Shramko
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Lyudmila Alieva
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Ivan Evdokimov
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Alexey Lodygin
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Vladimir Tikhonov
- Laboratory of Heterochain Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Faten M. Ali Zainy
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Nora Abdullah ALFaris
- Department of Physical Sports Sciences, College of Sports Sciences and Physical Activity, Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| |
Collapse
|
7
|
Davis D, Umesh M, Santhosh AS, Suresh S, Shanmugam S, Kikas T. Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production. Polymers (Basel) 2024; 16:2455. [PMID: 39274088 PMCID: PMC11397891 DOI: 10.3390/polym16172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024] Open
Abstract
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future.
Collapse
Affiliation(s)
- Delwin Davis
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sabarathinam Shanmugam
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Timo Kikas
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| |
Collapse
|
8
|
Lei T, Liu R, Zhuang L, Dai T, Meng Q, Zhang X, Bao Y, Huang C, Lin W, Huang Y, Zheng X. Gp85 protein encapsulated by alginate-chitosan composite microspheres induced strong immunogenicity against avian leukosis virus in chicken. Front Vet Sci 2024; 11:1374923. [PMID: 38840641 PMCID: PMC11150705 DOI: 10.3389/fvets.2024.1374923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Avian leukosis, a viral disease affecting birds such as chickens, presents significant challenges in poultry farming due to tumor formation, decreased egg production, and increased mortality. Despite the absence of a commercial vaccine, avian leukosis virus (ALV) infections have been extensively documented, resulting in substantial economic losses in the poultry industry. This study aimed to develop alginate-chitosan composite microspheres loaded with ALV-J Gp85 protein (referred to as aCHP-gp85) as a potential vaccine candidate. Methods Sodium alginate and chitosan were utilized as encapsulating materials, with the ALV-J Gp85 protein serving as the active ingredient. The study involved 45 specific pathogen-free (SPF) chickens to evaluate the immunological effectiveness of aCHP-gp85 compared to a traditional Freund adjuvant-gp85 vaccine (Freund-gp85). Two rounds of vaccination were administered, and antibody levels, mRNA expression of immune markers, splenic lymphocyte proliferation, and immune response were assessed. An animal challenge experiment was conducted to evaluate the vaccine's efficacy in reducing ALV-J virus presence and improving clinical conditions. Results The results demonstrated that aCHP-gp85 induced a significant and sustained increase in antibody levels compared to Freund-gp85, with the elevated response lasting for 84 days. Furthermore, aCHP-gp85 significantly upregulated mRNA expression levels of key immune markers, notably TNF-α and IFN-γ. The application of ALV-J Gp85 protein within the aCHP-gp85 group led to a significant increase in splenic lymphocyte proliferation and immune response. In the animal challenge experiment, aCHP-gp85 effectively reduced ALV-J virus presence and improved clinical conditions compared to other groups, with no significant pathological changes observed. Discussion The findings suggest that aCHP-gp85 elicits a strong and prolonged immune response compared to Freund-gp85, indicating its potential as an innovative ALV-J vaccine candidate. These results provide valuable insights for addressing avian leukosis in the poultry industry, both academically and practically.
Collapse
Affiliation(s)
- Tianyu Lei
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liyun Zhuang
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Dai
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfu Meng
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Xiaodong Zhang
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinli Bao
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Weiming Lin
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| |
Collapse
|
9
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
10
|
Hatamiazar M, Mohammadnejad J, Khaleghi S. Chitosan-Albumin Nanocomposite as a Promising Nanocarrier for Efficient Delivery of Fluconazole Against Vaginal Candidiasis. Appl Biochem Biotechnol 2024; 196:701-716. [PMID: 37178249 DOI: 10.1007/s12010-023-04492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Currently, the high incidence of fungal infections among females has resulted in outstanding problems. Candida species is related with multidrug resistance and destitute clinical consequences. Chitosan-albumin derivatives with more stability exhibit innate antifungal and antibacterial effects that boost the activity of the drug without inflammatory impact. The stability and sustained release of Fluconazole in mucosal tissues can be ensured by encapsulating in protein/polysaccharide nanocomposites. Thus, we developed chitosan-albumin nanocomposite (CS-A) loaded with Fluconazole (Flu) antifungals against vaginal candidiasis. Various ratios of CS/Flu (1:1, 1:2, 2:1) were prepared. Thereafter, the CS-A-Flu nanocomposites were qualified and quantified using FT-IR, DLS, TEM, and SEM analytical devices, and the size range from 60 to 100 nm in diameter was attained for the synthesized nanocarriers. Afterward, the antifungal activity, biofilm reduction potency, and cell viability assay were performed for biomedical evaluation of formulations. The minimum inhibitory concentration) and minimum fungicidal concentration on Candida albicans were attained at 125 ng/μL and 150 ng/μL after treatment with a 1:2 (CS/Flu) ratio of CS-A-Flu. The biofilm reduction assay indicated that biofilm formation was between 0.05 and 0.1% for CS-A-Flu at all ratios. The MTT assay also exhibited excellent biocompatibility for samples, about 7 to 14% toxicity on human HGF normal cells. These data have indicated that CS-A-Flu would be a promising candidate against Candida albicans.
Collapse
Affiliation(s)
- Morvarid Hatamiazar
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
11
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Dehari D, Kumar DN, Chaudhuri A, Kumar A, Kumar R, Kumar D, Singh S, Nath G, Agrawal AK. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds. Int J Biol Macromol 2023; 253:127247. [PMID: 37802451 DOI: 10.1016/j.ijbiomac.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria are most commonly present in burn wound infections. Multidrug resistance (MDR) and biofilm formation make it difficult to treat these infections. Bacteriophages (BPs) are proven as an effective therapy against MDR as well as biofilm-associated wound infections. In the present work, a naturally inspired bacteriophage cocktail loaded chitosan microparticles-laden topical gel has been developed for the effective treatment of these infections. Bacteriophages against MDR S. aureus (BPSAФ1) and P. aeruginosa (BPPAФ1) were isolated and loaded separately and in combination into the chitosan microparticles (BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs), which were later incorporated into the SEPINEO™ P 600 gel (BPSAФ1-CHMPs-gel, BPPAФ1-CHMPs-gel, and MBP-CHMPs-gel). BPs were characterized for their morphology, lytic activity, burst size, and hemocompatibility, and BPs belongs to Caudoviricetes class. Furthermore, BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs had an average particle size of 1.19 ± 0.11, 1.42 ± 0.21, and 2.84 ± 0.28 μm, respectively, and expressed promising in vitro antibiofilm eradication potency. The ultrasound and photoacoustic imaging in infected burn wounds demonstrated improved wound healing reduced inflammation and increased oxygen saturation following treatment with BPs formulations. The obtained results suggested that the incorporation of the BPs in the MP-gel protected the BPs, sustained the BPs release, and improved the antibacterial activity.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Akshay Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
13
|
Tiwari R, Gupta RP, Singh VK, Kumar A, Rajneesh, Madhukar P, Sundar S, Gautam V, Kumar R. Nanotechnology-Based Strategies in Parasitic Disease Management: From Prevention to Diagnosis and Treatment. ACS OMEGA 2023; 8:42014-42027. [PMID: 38024747 PMCID: PMC10655914 DOI: 10.1021/acsomega.3c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Parasitic infections are a major global health issue causing significant mortality and morbidity. Despite substantial advances in the diagnostics and treatment of these diseases, the currently available options fall far short of expectations. From diagnosis and treatment to prevention and control, nanotechnology-based techniques show promise as an alternative approach. Nanoparticles can be designed with specific properties to target parasites and deliver antiparasitic medications and vaccines. Nanoparticles such as liposomes, nanosuspensions, polymer-based nanoparticles, and solid lipid nanoparticles have been shown to overcome limitations such as limited bioavailability, poor cellular permeability, nonspecific distribution, and rapid drug elimination from the body. These nanoparticles also serve as nanobiosensors for the early detection and treatment of these diseases. This review aims to summarize the potential applications of nanoparticles in the prevention, diagnosis, and treatment of parasitic diseases such as leishmaniasis, malaria, and trypanosomiasis. It also discusses the advantages and disadvantages of these applications and their market values and highlights the need for further research in this field.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rohit P. Gupta
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
- Applied
Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Vishal K. Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Awnish Kumar
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rajneesh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Prasoon Madhukar
- Department
of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Shyam Sundar
- Department
of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
14
|
Zlotnikov ID, Kudryashova EV. Biomimetic System Based on Reconstituted Macrophage Membranes for Analyzing and Selection of Higher-Affinity Ligands Specific to Mannose Receptor to Develop the Macrophage-Focused Medicines. Biomedicines 2023; 11:2769. [PMID: 37893142 PMCID: PMC10603928 DOI: 10.3390/biomedicines11102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Progress in macrophage research is crucial for numerous applications in medicine, including cancer and infectious diseases. However, the existing methods to manipulate living macrophages are labor-intense and inconvenient. Here, we show that macrophage membranes can be reconstituted after storage for months at 4 °C, with their CD206 receptor selectivity and specificity being similar to those in the living cells. Then, we have developed a mannose ligand, specific to CD206, linked with PEG as an IR spectroscopy marker to detect binding with the macrophage receptor. PEG was selected due to its unique adsorption band of the C-O-C group at IR spectra, which does not overlap with other biomolecules' spectroscopic feature. Next, competitive binding assay versus the PEG-bound ligand has enabled the selection of other higher-affinity ligands specific to CD206. Furthermore, those higher-affinity ligands were used to differentiate activated macrophages in a patient's bronchoalveolar (BAL) or nasopharyngeal (NPL) lavage. CD206- control cells (HEK293T) showed only non-specific binding. Therefore, biochips based on reconstituted macrophage membranes as well as PEG-trimannoside as an IR spectroscopic marker can be used to develop new methods facilitating macrophage research and macrophage-focused drug discovery.
Collapse
Affiliation(s)
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Zlotnikov ID, Belogurova NG, Poddubnaya IV, Kudryashova EV. Mucosal Adhesive Chitosan Nanogel Formulations of Antibiotics and Adjuvants (Terpenoids, Flavonoids, etc.) and Their Potential for the Treatment of Infectious Diseases of the Gastrointestinal Tract. Pharmaceutics 2023; 15:2353. [PMID: 37765322 PMCID: PMC10535539 DOI: 10.3390/pharmaceutics15092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited. Chitosan and nanogels based on chitosan presumably are not absorbed from the gastrointestinal tract and are known to adhere to the mucus. Therefore, they can serve as a basis for the local delivery of antibacterial drugs, increasing their exposure at the predominant location of therapeutic targets, thus improving the risk/benefit ratio. We have used E. coli ATCC 25922 (as a screening model of pathogenic bacteria) and Lactobacilli (as a model of a normal microbiome) to study the antibacterial activity of antibacterial drugs entrapped in a chitosan nanogel. Classical antibiotics were studied in a monotherapeutic regimen as well as in combination with individual terpenoids and flavonoids as adjuvants. It has been shown that levofloxacin (LF) in combination with zephirol demonstrate synergistic effects against E. coli (cell viability decreased by about 50%) and, surprisingly, a much weaker effect against Lactobacilli. A number of other combinations of antibiotic + adjuvant were also shown to be effective. Using FTIR and UV spectroscopy, it has been confirmed that chitosan nanogels with the drug are well adsorbed on the mucosal model, providing prolonged release at the target location. Using an ABTS assay, the antioxidant properties of flavonoids and other drugs are shown, which are potentially necessary to minimize the harmful effects of toxins and radicals produced by pathogens. In vivo experiments (on sturgeon fish) showed the effective action of antibacterial formulations developed based on LF in chitosan nanogels for up to 11 days. Thus, chitosan nanogels loaded with a combination of drugs and adjuvants can be considered as a new strategy for the treatment of infectious diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Irina V. Poddubnaya
- Research Laboratory of Aquatic Environment Protection and Ichthyopathology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410005 Saratov, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
17
|
Weiss CM, Liu H, Ball EE, Hoover AR, Wong TS, Wong CF, Lam S, Hode T, Keel MK, Levenson RM, Chen WR, Coffey LL. N-dihydrogalactochitosan reduces mortality in a lethal mouse model of SARS-CoV-2. PLoS One 2023; 18:e0289139. [PMID: 37552656 PMCID: PMC10409267 DOI: 10.1371/journal.pone.0289139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19 continues to cause an unprecedented global health burden resulting in nearly 7 million deaths. While multiple vaccine countermeasures have been approved for emergency use, additional treatments are still needed due to sluggish vaccine rollout, vaccine hesitancy, and inefficient vaccine-mediated protection. Immunoadjuvant compounds delivered intranasally can guide non-specific innate immune responses during the critical early stages of viral replication, reducing morbidity and mortality. N-dihydrogalactochitosan (GC) is a novel mucoadhesive immunostimulatory polymer of β-0-4-linked N-acetylglucosamine that is solubilized by the conjugation of galactose glycans with current applications as a cancer immunotherapeutic. We tested GC as a potential countermeasure for COVID-19. GC was well-tolerated and did not produce histopathologic lesions in the mouse lung. GC administered intranasally before and after SARS-CoV-2 exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by up to 75% and reduced infectious virus levels in the upper airway. Fluorescent labeling of GC shows that it is confined to the lumen or superficial mucosa of the nasal cavity, without involvement of adjacent or deeper tissues. Our findings demonstrate a new application for soluble immunoadjuvants such as GC for preventing disease associated with SARS-CoV-2 and may be particularly attractive to persons who are needle-averse.
Collapse
Affiliation(s)
- Christopher M. Weiss
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Hongwei Liu
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Erin E. Ball
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Talia S. Wong
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Chun Fung Wong
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - Samuel Lam
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - Tomas Hode
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - M. Kevin Keel
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Richard M. Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, California, United States of America
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| |
Collapse
|
18
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
19
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
20
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
21
|
Hasan Shahriari M, Abdouss M, Hadjizadeh A. Synthesis of dual physical self‐healing starch‐based hydrogels for repairing tissue defects. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| | - Afra Hadjizadeh
- Faculty of Biomedical Engineering Amirkabir University of Technology Tehran Iran
| |
Collapse
|
22
|
Ribeiro ERFR, Correa LB, Ricci-Junior E, Souza PFN, dos Santos CC, de Menezes AS, Rosas EC, Bhattarai P, Attia MF, Zhu L, Alencar LMR, Santos-Oliveira R. Chitosan-graphene quantum dot based active film as smart wound dressing. J Drug Deliv Sci Technol 2023; 80:104093. [PMID: 38650740 PMCID: PMC11034917 DOI: 10.1016/j.jddst.2022.104093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene quantum dots (GQDs), are biocompatible materials, with mechanical strength and stability. Chitosan, has antibacterial and anti-inflammatory properties, and biocompatibility. Wound healing is a challenging process especially in chronic diseases and infection. In this study, films consisting of chitosan and graphene quantum dots were developed for application in infected wounds. The chitosan-graphene films were prepared in the acidic solution followed by slow solvent evaporation and drying. The chitosan-graphene films were characterized by the scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy and thermogravimetric analysis. The films' was evaluated by the wound healing assays, hemolytic potential, and nitrite production, cytokine production and swelling potential. The obtained films were flexible and well-structured, promoting cell migration, greater antibacterial activity, lower hemolytic activity, and maintaining wound moisture. Our data suggested that the use of graphene quantum dot-containing chitosan films would be an efficient and promising way in combating wounds.
Collapse
Affiliation(s)
- Elisabete Regina Fernandes Ramos Ribeiro
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
| | - Luana Barbosa Correa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
| | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, School of Pharmacy, Galenic Development Laboratory (LADEG), Rio de Janeiro, 21941-170, Brazil
| | - Pedro Filho Noronha Souza
- Biochemistry and Molecular Biology Department, Federal University of Ceará, CE, Brazil, Laboratory of Plant Defense Proteins, Ceará, 60451, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal, University of Ceará, 60451, Brazil
| | - Clenilton Costa dos Santos
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Alan Silva de Menezes
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Elaine Cruz Rosas
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - Prapanna Bhattarai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| | - Luciana Magalhães Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
- State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, Brazil
| |
Collapse
|
23
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2023; 300:120298. [PMID: 36372498 DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Nucleic acid-based agents have advantages in therapeutic efficacy and biological safety. However, due to its facile degradability, it lacks an effective route of administration in wound treatment. Designing smart hydrogels for the spatiotemporally controllable delivery of nucleic acids is of great significance for clinical applications. Here, a near-infrared (NIR)-responsive nanocomposite hydrogel was prepared using methyl methacrylate (GMA)-modified chitosan as the macromolecular cross-linker, N-isopropylacrylamide (NIPAAm) as the backbone, and molybdenum disulfide nanosheets (MoS2 NSs) as the nanocomponents. The polydeoxyribonucleotide (PDRN), a nucleic acid-based agent that promotes tissue regeneration, was loaded and delivered. The photothermal conversion capability of MoS2 NSs enables customized care of PDRNs and antibacterial enhancement. In a full-thickness skin defect model, high-quality wound healing effects were demonstrated under the action of nanocomposite hydrogels. The proposed nanocomposite hydrogel provides a new reference for local delivery of nucleic acid-based agents.
Collapse
Affiliation(s)
- Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Li W, Cai J, Zhou W, Zhao X, Wang M, Zhou X, Ren L. Poly(aspartic acid)-based self-healing hydrogel with precise antibacterial ability for rapid infected-wound repairing. Colloids Surf B Biointerfaces 2023; 221:112982. [PMID: 36347184 DOI: 10.1016/j.colsurfb.2022.112982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The development of wound dressings with antibacterial activities and simultaneous pro-healing functions are always urgent in treating bacterial wound infection. Herein, a novel multifunctional self-healing hydrogel was designed and prepared by crosslinking quaternary ammonium/boronic acid modified poly(aspartic acid) and poly (vinyl alcohol) polymers with targeted peptide MP196- conjugated polydopamine. The formation of this hydrogel not only improves the biocompatibility of quaternary poly(aspartic acid), but also enhances antibacterial efficacy by pH-triggering dissociation under the low pH bacterial microenvironment. Moreover, precise photothermal treatment can be achieved. In vitro study suggested high synergistic antibacterial efficiency(∼100 %) under near-infrared light, significantly higher than a single antibacterial strategy (66.0-82.6 %). In vivo study suggested infected wounds treated with the hydrogel showed an optimal healing rate(92.0 %) after 7 days. The survival rate of the bacteria in the epidermal tissues was reduced to 2.3 %. Besides, the suitable self-healing property of this hydrogel facilitated its application in the diversity of wound shapes. Thus, the novel poly(aspartic acid) hydrogel might be a promising candidate for precise therapy of bacteria-infected wounds.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Wenbo Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xueqin Zhao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
25
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
26
|
Breser ML, Tisera L, Orellano MS, Bohl LP, Isaac P, Bianco I, Porporatto C. Chitosan can improve antimicrobial treatment independently of bacterial lifestyle, biofilm biomass intensity and antibiotic resistance pattern in non-aureus staphylococci (NAS) isolated from bovine clinical mastitis. Front Microbiol 2023; 14:1167693. [PMID: 37152721 PMCID: PMC10162019 DOI: 10.3389/fmicb.2023.1167693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Bovine mastitis is the most frequent and costly disease that affects dairy cattle. Non-aureus staphylococci (NAS) are currently one of the main pathogens associated with difficult-to-treat intramammary infections. Biofilm is an important virulence factor that can protect bacteria against antimicrobial treatment and prevent their recognition by the host's immune system. Previously, we found that chronic mastitis isolates which were refractory to antibiotic therapy developed strong biofilm biomass. Now, we evaluated the influence of biofilm biomass intensity on the antibiotic resistance pattern in strong and weak biofilm-forming NAS isolates from clinical mastitis. We also assessed the effect of cloxacillin (Clx) and chitosan (Ch), either alone or in combination, on NAS isolates with different lifestyles and abilities to form biofilm. The antibiotic resistance pattern was not the same in strong and weak biofilm producers, and there was a significant association (p ≤ 0.01) between biofilm biomass intensity and antibiotic resistance. Bacterial viability assays showed that a similar antibiotic concentration was effective at killing both groups when they grew planktonically. In contrast, within biofilm the concentrations needed to eliminate strong producers were 16 to 128 times those needed for weak producers, and more than 1,000 times those required for planktonic cultures. Moreover, Ch alone or combined with Clx had significant antimicrobial activity, and represented an improvement over the activity of the antibiotic on its own, independently of the bacterial lifestyle, the biofilm biomass intensity or the antibiotic resistance pattern. In conclusion, the degree of protection conferred by biofilm against antibiotics appears to be associated with the intensity of its biomass, but treatment with Ch might be able to help counteract it. These findings suggest that bacterial biomass should be considered when designing new antimicrobial therapies aimed at reducing antibiotic concentrations while improving cure rates.
Collapse
Affiliation(s)
- Maria Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- *Correspondence: Maria Laura Breser,
| | - Lucia Tisera
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Maria Soledad Orellano
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- University of the Basque Country UPV/EHU. Responsive Polymer Therapeutics Group (POLYMAT), San Sebastián, Spain
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Ismael Bianco
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Industria, Comercio, Minería y Desarrollo Científico Tecnológico, Córdoba, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- Carina Porporatto,
| |
Collapse
|
27
|
Chronopoulou L, Falasca F, Di Fonzo F, Turriziani O, Palocci C. siRNA Transfection Mediated by Chitosan Microparticles for the Treatment of HIV-1 Infection of Human Cell Lines. MATERIALS 2022; 15:ma15155340. [PMID: 35955275 PMCID: PMC9369812 DOI: 10.3390/ma15155340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
Gene delivery is the basis for developing gene therapies that, in the future, may be able to cure virtually any disease, including viral infections. The use of short interfering RNAs (siRNAs) targeting viral replication is a novel strategy for treating HIV-1 infection. In this study, we prepared chitosan particles containing siRNA tat/rev via ionotropic gelation. Chitosan-based particles were efficiently internalized by cells, as evidenced by fluorescence microscopy. The antiviral effect of chitosan-based particles was studied on the C8166 cell line infected with HIV-1 and compared with the use of commercial liposomes (ESCORT). A significant reduction in HIV replication was also observed in cells treated with empty chitosan particles, suggesting that chitosan may interfere with the early steps of the HIV life cycle and have a synergic effect with siRNA to reduce viral replication significantly.
Collapse
Affiliation(s)
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (F.F.); (O.T.)
| | - Federica Di Fonzo
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (F.F.); (O.T.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University, 00185 Rome, Italy;
- CIABC-Centro di Ricerca per le Scienze Applicate alla Protezione dell’Ambiente e dei Beni Culturali, Sapienza University, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-0649913317
| |
Collapse
|
28
|
Pradeep A, Ashok N, Priya V, Pillai AV, Menon RR, Kumar VA, Jayakumar R. Colistimethate sodium-chitosan hydrogel for treating Gram-negative bacterial wound infections. Int J Biol Macromol 2022; 214:610-616. [PMID: 35752341 DOI: 10.1016/j.ijbiomac.2022.06.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
The drug resistance is higher among Gram-negative bacteria and demands the usage of strong antibiotics which can in turn result in systemic toxicity. In the treatment of the chronic wounds harboring pathogenic Gram-negative bacteria, the demand for an antimicrobial product that can be topically administered has been on the rise. In an effort to address the above issue, we have developed Colistimethate sodium (a high-end antibiotic) loaded chitosan hydrogel and characterized. The prepared hydrogel is very stable and observed to be bio- and hemo-compatible in nature. The antibacterial activity of the prepared hydrogel was studied against both ATCC (American Type Culture Collection) strains and clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. The CMS incorporated hydrogel is also capable of inhibiting the biofilm formation. The developed hydrogel can be potentially being used for the treatment of Gram-negative bacterial infected wounds.
Collapse
Affiliation(s)
- Aathira Pradeep
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Nivethitha Ashok
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - V Priya
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Anoop V Pillai
- Department of General Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Riju Ramachandran Menon
- Department of General Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
29
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
30
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
31
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Immunogenicity and Safety of Childhood Combination Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10030472. [PMID: 35335107 PMCID: PMC8954135 DOI: 10.3390/vaccines10030472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Vaccination is considered the most effective and economical measure for controlling infectious diseases. Although combination vaccines are widely used worldwide, whether any of the combination vaccines is superior to each separate vaccine has yet to be established. This systematic review and meta-analysis aimed to summarize the available evidence on the effectiveness and safety of combination vaccines in children. Methods: A systematic search was conducted from database inception to August 20, 2021, in MEDLINE, Embase, Cochrane, and Scopus. Published randomized clinical trials (RCTs) and open-label trials of immunogenicity and safety of combined vaccines were selected. The results of the studies were quantitatively synthesized. Results: Overall, 25 articles met the inclusion criteria and were included in the meta-analysis. The results indicated that the combined diptheria−tetanus−acellular pertussis (DTaP)−hepatitis B virus (HBV)−Haemophilus influenzae type B (Hib) vaccine group had lower levels of anti-tetanus antibodies than the combined DTaP−HBV and separate Hib vaccinations group (SMD = −0.23; 95% CI: −0.42, −0.05; p = 0.013). Meanwhile, the combined DTaP−HBV−inactivated polio virus (IPV)−Hib vaccine group had higher levels of anti-pertussis (PT) and anti-filamentous hemagglutinin (FHA) antibodies than the combined DTaP−IPV−Hib and separate HBV vaccinations group (anti-PT: SMD = 0.60; 95% CI: 0.45, 0.75; p < 0.0001; anti-FHA: SMD = 0.40; 95% CI: 0.01, 0.78; p = 0.042). The levels of anti-pertactin (PRN) antibodies were lower in the combined DTaP−IPV−Hib vaccine group than in the combined DTaP−IPV and separate Hib vaccinations group (SMD = −0.13; 95% CI: −0.27, −0.00; p = 0.047). The individuals injected with the DTaP−HBV−IPV−Hib vaccine had a lower risk of pain and swelling than those injected with the combined DTaP−HBV−IPV and separate Hib vaccines (pain: RR = 0.79; 95% CI: 0.69, 0.91; p = 0.001; swelling: RR = 0.87; 95% CI: 0.78, 0.98; p = 0.020). However, the group that received the DTaP−HBV−IPV−Hib vaccine had a higher risk of fever than the group that received DTaP−HBV−IPV and separate Hib vaccinations (RR = 1.13; 95% CI: 1.02, 1.26; p = 0.021). Conclusions: This meta-analysis suggests that the combined vaccines (DTaP−IPV−Hib, DTaP−HBV−Hib, DTaP−HBV−IPV−Hib) are safe, well-tolerated, and provide immunogenic alternatives to separate vaccines in children. The combined DTaP−HBV−IPV−Hib vaccine showed a higher incidence of fever, which was lower than the cumulative incidence of fever induced by all vaccines. Future studies should evaluate the cost-effectiveness of using combined vaccines and compare the potency of different formulations to improve routine local or national childhood immunization programs.
Collapse
|
33
|
Thonglao N, Pakkulnan R, Paluka J, Chareonsudjai P, Kanokmedhakul S, Kanokmedhakul K, Chareonsudjai S. Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int J Biol Macromol 2022; 201:676-685. [PMID: 35063492 DOI: 10.1016/j.ijbiomac.2022.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/05/2022]
Abstract
Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml-1 dCS/1-2 μg ml-1 CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml-1 dCS with 256-512 μg ml-1 CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml-1 dCS/512 μg ml-1 CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jakkapat Paluka
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
34
|
Debnath SK, Srivastava R. Potential Application of Bionanoparticles to Treat Severe Acute Respiratory Syndrome Coronavirus-2 Infection. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.813847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a contagious virus that spreads exponentially across the world, resulting in serious viral pneumonia. Several companies and researchers have put their tremendous effort into developing novel vaccines or drugs for the complete eradication of COVID-19 caused by SARS-CoV-2. Bionanotechnology plays a vital role in designing functionalized biocompatible nanoparticulate systems with higher antiviral capabilities. Thus, several nanocarriers have been explored in designing and delivering drugs and vaccines. This problem can be overcome with the intervention of biomaterials or bionanoparticles. The present review describes the comparative analysis of SARS infection and its associated etiological agents. This review also highlighted some nanoparticles that have been explored in the treatment of COVID-19. However, these carriers elicit several problems once they come in contact with biological systems. Often, the body’s immune system treats these nanocarriers as foreign particles and antigens. In contrast, some bionanoparticles are highlighted here with their potential application in SARS-CoV-2. However, bionanoparticles have demonstrated some drawbacks discussed here with the possible outcomes. The scope of bioinspired nanoparticles is also discussed in detail to explore the new era of research. It is highly essential for the effective delivery of these nanoparticles to the target site. For effective management of SARS-CoV-2, different delivery patterns are also discussed here.
Collapse
|
35
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
36
|
Meng Q, Zhong S, He S, Gao Y, Cui X. Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
38
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
39
|
Salahuddin N, Ali M, Al-Lohedan HA, Issa ZA, Barakat A, Ayad MM. Aniline- co- o-anthranilic Acid Copolymer-Chitosan/Ag@AgCl Nanohybrid as a Carrier for ( E)- N'-(Pyridin-2-ylmethylene) Hydrazinecarbothiohydrazide Release and Antimicrobial Activity. ACS OMEGA 2021; 6:21939-21951. [PMID: 34497889 PMCID: PMC8412903 DOI: 10.1021/acsomega.1c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Poly(aniline-co-o-anthranilic acid)-chitosan/silver@silver chloride (PAAN-CS/Ag@AgCl) nanohybrids were synthesized using different ratios of Ag@AgCl through a facile one-step process. The presence of CS led to the formation of the nanohybrid structure and prevented the aggregation of the copolymer efficiently. The synthesized nanohybrids were fully characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis. (E)-N'-(Pyridin-2-ylmethylene) hydrazinecarbothiohydrazide I was prepared using thiosemicarbazide and confirmed by 1H-NMR, 13C-NMR, and FTIR analyses. Loading of the azine derivative I using various concentrations at different pH values onto the nanohybrid was followed by UV-vis spectroscopy. Langmuir and Freundlich adsorption isotherm models were used to describe the equilibrium isotherm, and the adsorption followed the Langmuir adsorption isotherm. A pseudo-second-order model was used to describe the kinetic data. A PAAN-CS/Ag@AgCl nanohybrid loaded with azine I interestingly showed efficient antimicrobial activity against Escherichia coli and Staphylococcus aureus more than the azine derivative I. The release of azine I at different pH values (2-7.4) was investigated and the kinetics of release were studied using zero-order, first-order, second-order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas equations.
Collapse
Affiliation(s)
- Nehal
A. Salahuddin
- Chemistry
Department, Faculty of Science, Polymer Research Group, Tanta University, Tanta 31527, Egypt
| | - M. Ali
- Chemistry
Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hamad A. Al-Lohedan
- Surfactants
Research Chair, Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zuheir A. Issa
- Surfactants
Research Chair, Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Mohamad M. Ayad
- Chemistry
Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
40
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|
41
|
Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems. Mar Drugs 2021; 19:md19060345. [PMID: 34208540 PMCID: PMC8234399 DOI: 10.3390/md19060345] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Marine biomass is a treasure trove of materials. Marine polysaccharides have the characteristics of biocompatibility, biodegradability, non-toxicity, low cost, and abundance. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. The most studied marine polysaccharides include chitin, chitosan, alginates, hyaluronic acid, fucoidan, carrageenan, agarose, and Ulva. Marine polysaccharides have a wide range of applications in the field of biomedical materials, such as drug delivery, tissue engineering, wound dressings, and sensors. The drug delivery system (DDS) can comprehensively control the distribution of drugs in the organism in space, time, and dosage, thereby increasing the utilization efficiency of drugs, reducing costs, and reducing toxic side effects. The nano-drug delivery system (NDDS), due to its small size, can function at the subcellular level in vivo. The marine polysaccharide-based DDS combines the advantages of polysaccharide materials and nanotechnology, and is suitable as a carrier for different pharmaceutical preparations. This review summarizes the advantages and drawbacks of using marine polysaccharides to construct the NDDS and describes the preparation methods and modification strategies of marine polysaccharide-based nanocarriers.
Collapse
|
42
|
Drug delivery for fighting infectious diseases: a global perspective. Drug Deliv Transl Res 2021; 11:1316-1322. [PMID: 34109534 PMCID: PMC8189707 DOI: 10.1007/s13346-021-01009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
|