1
|
Mongongu C, Coudoré F, Domergue V, Ericsson M, Buisson C, Marchand A. Detection of LongR 3 -IGF-I, Des(1-3)-IGF-I, and R 3 -IGF-I using immunopurification and high resolution mass spectrometry for antidoping purposes. Drug Test Anal 2021; 13:1256-1269. [PMID: 33587816 DOI: 10.1002/dta.3016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and its analogs LongR3 -IGF-I, Des(1-3)-IGF-I, and R3 -IGF-I are prohibited substances in sport. Although they were never approved for use in humans, they are readily available as black market products for bodybuilding and can be used to enhance physical performance. This study's aims were to validate a fast and sensitive detection method for IGF-I analogs and to evaluate their detectability after intramuscular administration in rats. The sample preparation consisted of an immunopurification on MSIA™ microcolumns using a polyclonal anti-human-IGF-I antibody. The target substances were then directly analyzed by nano-liquid chromatography coupled with high-resolution mass spectrometry. Abundant signs of lower quality, oxidized peptide forms were found in black market products, justifying the need to monitor at least both the native and mono-oxidized forms. The analytical performance of this method (linearity, carry over, detection limits, precision, specificity, recovery, and matrix effect) was studied by spiking the analogs into human serum. Following a single intramuscular administration (100 μg/kg) in rats, detection was evaluated up to 36 h after injection. While unchanged Des(1-3)-IGF-I and R3 -IGF-I were detected until 24 h after administration, LongR3 -IGF-I disappeared rapidly after 4 h. Des(1)-LongR3 -IGF-I, a new N-terminal Long-R3 -IGF-I degradation product, was detected in addition to Des(1-10)-LongR3 -IGF-I and Des(1-11)-LongR3- IGF-I: the latter was detected up to 16 h. The same products were found after in vitro incubation of the analogs in human whole blood, suggesting that observations in rats may be extrapolated to humans and that the validated method may be applicable to antidoping testing.
Collapse
Affiliation(s)
- Cynthia Mongongu
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - François Coudoré
- Laboratoire de Neuropharmacologie, INSERM UMRS 1178, Université Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Domergue
- AnimEx Châtenay-Malabry, Plateforme AnimEx IPSIT, Faculté de Pharmacie-Université Paris-Saclay, Châtenay-Malabry, France
| | - Magnus Ericsson
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - Corinne Buisson
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| | - Alexandre Marchand
- AFLD-Agence Française de Lutte contre le Dopage, Département des Analyses, Châtenay-Malabry, France
| |
Collapse
|
2
|
Nedelkov D, Hu Y. Complexity, cost, and content – three important factors for translation of clinical protein mass spectrometry tests, and the case for apolipoprotein C-III proteoform testing. Clin Chem Lab Med 2019; 58:858-863. [DOI: 10.1515/cclm-2019-0977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Complexity, cost, and content are three important factors that can impede translation of clinical protein mass spectrometry (MS) tests at a larger scale. Complexity stems from the many components/steps involved in bottom-up protein MS workflows, making them significantly more complicated than enzymatic immunoassays (EIA) that currently dominate clinical testing. This complexity inevitably leads to increased costs, which is detrimental in the price-competitive clinical marketplace. To successfully compete, new clinical protein MS tests need to offer something new and unique that EIAs cannot – a new content of proteoform detection. The preferred method for proteoform profiling is intact protein MS analysis, in which all proteins are measured as intact species thus allowing discovery of new proteoforms. To illustrate the importance of intact proteoform testing with MS and its potential clinical implications, we discuss here recent findings from multiple studies on the distribution of apolipoprotein C-III proteoforms and their correlations with key clinical measures of dyslipidemia. Such studies are only made possible with assays that are low in cost, avoid unnecessary complexity, and are unique in providing the content of proteoforms.
Collapse
Affiliation(s)
- Dobrin Nedelkov
- Isoformix Inc. , 9830 S, 51st St. Suite B-113 , Phoenix AZ 85044 , USA , Phone: +1-602-295-4874
| | | |
Collapse
|
3
|
Top-down mass spectrometric immunoassay for human insulin and its therapeutic analogs. J Proteomics 2018; 175:27-33. [DOI: 10.1016/j.jprot.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
|
4
|
Klont F, Pouwels SD, Hermans J, van de Merbel NC, Horvatovich P, Ten Hacken NHT, Bischoff R. A fully validated liquid chromatography-mass spectrometry method for the quantification of the soluble receptor of advanced glycation end-products (sRAGE) in serum using immunopurification in a 96-well plate format. Talanta 2018; 182:414-421. [PMID: 29501172 DOI: 10.1016/j.talanta.2018.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
The study of proteins is central to unraveling (patho)physiological processes and has contributed greatly to our understanding of biological systems. Corresponding studies often employ procedures to enrich proteins from their biological matrix using antibodies or other affinity binders coupled to beads with a large surface area and a correspondingly high binding capacity. Striving for maximal binding capacity may, however, not always be required or desirable, for example for proteins of low abundance. Here we describe a simplified immunoprecipitation in 96-well ELISA format (IPE) approach for fast and easy enrichment of proteins. The applicability of this approach for enriching low-abundant proteins was demonstrated by an IPE-based quantitative workflow using liquid chromatography-mass spectrometry (LC-MS) for the soluble Receptor of Advanced Glycation End-products (sRAGE), a promising biomarker in chronic obstructive pulmonary disease (COPD). The method was validated according to U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines and enabled accurate quantitation of sRAGE between 0.1 and 10 ng/mL in 50 µL serum. The assay showed substantial correlation with the two most commonly-used sRAGE immunoassays (ELISAs) (R2-values between 0.7 and 0.8). However, the LC-MS method reported 2-4 times higher sRAGE levels compared to the ELISAs, which is largely due to a suboptimal amount of capturing antibody and/or calibration strategy used by the immunoassays. In conclusion, our simplified IPE approach proved to be an efficient strategy for enriching the low-abundant protein sRAGE from serum and may provide an easy to use platform for enriching other (low-abundant) proteins from complex, biological matrices.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Simon D Pouwels
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jos Hermans
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Nico C van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Bioanalytical Laboratory, PRA Health Sciences, Early Development Services, Amerikaweg 18, 9407 TK Assen, The Netherlands
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
5
|
Nedelkov D. Mass Spectrometric Studies of Apolipoprotein Proteoforms and Their Role in Lipid Metabolism and Type 2 Diabetes. Proteomes 2017; 5:E27. [PMID: 29036931 PMCID: PMC5748562 DOI: 10.3390/proteomes5040027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Apolipoproteins function as structural components of lipoprotein particles, cofactors for enzymes, and ligands for cell-surface receptors. Most of the apoliporoteins exhibit proteoforms, arising from single nucleotide polymorphisms (SNPs) and post-translational modifications such as glycosylation, oxidation, and sequence truncations. Reviewed here are recent studies correlating apolipoproteins proteoforms with the specific clinical measures of lipid metabolism and cardiometabolic risk. Targeted mass spectrometric immunoassays toward apolipoproteins A-I, A-II, and C-III were applied on large cross-sectional and longitudinal clinical cohorts. Several correlations were observed, including greater apolipoprotein A-I and A-II oxidation in patients with diabetes and cardiovascular disease, and a divergent apoC-III proteoforms association with plasma triglycerides, indicating significant differences in the metabolism of the individual apoC-III proteoforms. These are the first studies of their kind, correlating specific proteoforms with clinical measures in order to determine their utility as potential clinical biomarkers for disease diagnosis, risk stratification, and therapy decisions. Such studies provide the impetus for the further development and clinical translation of MS-based protein tests.
Collapse
|
6
|
Nedelkov D. Human proteoforms as new targets for clinical mass spectrometry protein tests. Expert Rev Proteomics 2017; 14:691-699. [DOI: 10.1080/14789450.2017.1362337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Thomas A, Schänzer W, Thevis M. Immunoaffinity techniques coupled to mass spectrometry for the analysis of human peptide hormones: advances and applications. Expert Rev Proteomics 2017; 14:799-807. [PMID: 28758805 DOI: 10.1080/14789450.2017.1362338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The accurate and comprehensive determination of peptide hormones from biological fluids has represented a considerable challenge to analytical chemists for decades. Besides long-established bioanalytical ligand binding assays (or ELISA, RIA, etc.), more and more mass spectrometry-based methods have been developed recently for purposes commonly referred to as targeted proteomics. Eventually the combination of both, analyte extraction by immunoaffinity and subsequent detection by mass spectrometry, has shown to synergistically enhance the test methods' performance characteristics. Areas covered: The review provides an overview about the actual state of existing methods and applications concerning the analysis of endogenous peptide hormones. Here, special focus is on recent developments considering the extraction procedures with immobilized antibodies, the subsequent separation of target analytes, and their detection by mass spectrometry. Expert commentary: Key aspects of procedures aiming at the detection and/or quantification of peptidic analytes in biological matrices have experienced considerable improvements in the last decade, particularly in terms of the assays' sensitivity, the option of multiplexing target compounds, automatization, and high throughput operation. Despite these advances and progress as expected to be seen in the near future, immunoaffinity purification coupled to mass spectrometry is not yet a standard procedure in routine analysis compared to ELISA/RIA.
Collapse
Affiliation(s)
- Andreas Thomas
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Wilhelm Schänzer
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Mario Thevis
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany.,b European Monitoring Center for Emerging Doping Agents (EuMoCEDA) , Cologne/Bonn , Germany
| |
Collapse
|
8
|
Klont F, Ten Hacken NHT, Horvatovich P, Bakker SJL, Bischoff R. Assuring Consistent Performance of an Insulin-Like Growth Factor 1 MALDImmunoassay by Monitoring Measurement Quality Indicators. Anal Chem 2017; 89:6188-6195. [PMID: 28467045 PMCID: PMC5463271 DOI: 10.1021/acs.analchem.7b01125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Analytical
methods based on mass spectrometry (MS) have been successfully
applied in biomarker discovery studies, while the role of MS in translating
biomarker candidates to clinical diagnostics is less pronounced. MALDImmunoassays—methods
that combine immunoaffinity enrichment with matrix-assisted laser
desorption ionization time-of-flight (MALDI-TOF) mass spectrometric
detection—are attractive analytical approaches for large-scale
sample analysis by virtue of their ease of operation and high-throughput
capabilities. Despite this fact, MALDImmunoassays are not widely used
in clinical diagnostics, which is mainly due to the limited availability
of internal standards that can adequately correct for variability
in sample preparation and the MALDI process itself. Here we present
a novel MALDImmunoassay for quantification of insulin-like growth
factor 1 (IGF1) in human plasma. Reliable IGF1 quantification in the
range of 10–1000 ng/mL was achieved by employing 15N-IGF1 as internal standard, which proved to be an essential feature
of the IGF1 MALDImmunoassay. The method was validated according to
U.S. Food and Drug Administration (FDA) guidelines, which included
demonstrating the effectiveness of IGF1/IGF binding protein (IGF1/IGFBP)
complex dissociation using sodium dodecyl sulfate (SDS). Furthermore,
the MALDImmunoassay compared well with the IDS-iSYS IGF1 immunoassay
with high correlation (R2 = 0.99), although
substantially lower levels were reported by the MALDImmunoassay. The
method was tested on >1000 samples from a cohort of renal transplant
recipients to assess its performance in a clinical setting. On the
basis of this study, we identified readouts to monitor the quality
of the measurements. Our work shows that MALDI-TOF mass spectrometry
is suitable for quantitative biomarker analysis provided that an appropriate
internal standard is used and that readouts are monitored to assess
the quality of the measurements.
Collapse
Affiliation(s)
- Frank Klont
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Péter Horvatovich
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
9
|
Affiliation(s)
- Dobrin Nedelkov
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Tran JC, Tran D, Hilderbrand A, Andersen N, Huang T, Reif K, Hotzel I, Stefanich EG, Liu Y, Wang J. Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate in Vivo Deamidation of Therapeutic Antibodies. Anal Chem 2016; 88:11521-11526. [PMID: 27797494 DOI: 10.1021/acs.analchem.6b02766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deamidation of therapeutic antibodies may result in decreased drug activity and undesirable changes in pharmacokinetics and immunogenicity. Therefore, it is necessary to monitor the deamidation levels [during storage] and after in vivo administration. Because of the complexity of in vivo samples, immuno-affinity capture is widely used for specific enrichment of the target antibody prior to LC-MS. However, the conventional use of bead-based methods requires large sample volumes and extensive processing steps. Furthermore, with automation difficulties and extended sample preparation time, bead-based approaches may increase artificial deamidation. To overcome these challenges, we developed an automated platform to perform tip-based affinity capture of antibodies from complex matrixes with rapid digestion and peptide elution into 96-well microtiter plates followed by LC-MS analysis. Detailed analyses showed that the new method presents high repeatability and reproducibility with both intra and inter assay CVs < 8%. Using the automated platform, we successfully quantified the levels of deamidation of a humanized monoclonal antibody in cynomolgus monkeys over a time period of 12 weeks after administration. Moreover, we found that deamidation kinetics between in vivo samples and samples stressed in vitro at neutral pH were consistent, suggesting that the in vitro stress test may be used as a method to predict the liability to deamidation of therapeutic antibodies in vivo.
Collapse
Affiliation(s)
- John C Tran
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Daniel Tran
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Amy Hilderbrand
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Nisana Andersen
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Tao Huang
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Karin Reif
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Isidro Hotzel
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Eric G Stefanich
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Yichin Liu
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| |
Collapse
|
11
|
Trenchevska O, Koska J, Sinari S, Yassine H, Reaven PD, Billheimer DD, Nelson RW, Nedelkov D. Association of Cystatin C Proteoforms with Estimated Glomerular Filtration Rate. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2016; 1:27-31. [PMID: 36778895 PMCID: PMC9913891 DOI: 10.1016/j.clinms.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Background Cystatin C (CysC), a marker for chronic kidney disease, exists as three sequence proteoforms, in addition to the wild-type sequence: one contains hydroxyproline at position 3 (3Pro-OH), the two others have truncated sequences (des-S and des-SSP). Here, we examine correlations between each of these CysC proteoforms and estimated glomerular filtration rate (eGFR), a diagnostic criterion for chronic kidney disease (CKD). Methods CysC proteoform concentrations were determined from the plasma of 297 diabetes patients at a baseline time point and nine-months later, using a mass spectrometric immunoassay, and were correlated with eGFR calculations. Results In all samples, 3Pro-OH was the most abundant CysC proteoform, followed by the wild-type proteoform. Least abundant were the truncated CysC proteoforms, des-S and des-SSP, although they demonstrated stronger negative correlation with eGFR than the 3Pro-OH and wild-type proteoforms. The des-SSP truncated proteoform exhibited negative predictive value for eGFR. Conclusions The truncated CysC proteoforms show potential for clinical and prognostic utility in CKD staging. This could be useful in populations where current methods do not provide satisfactory solutions.
Collapse
Affiliation(s)
| | - Juraj Koska
- Department of Medicine, Phoenix Veteran Affairs Medical Center, Phoenix, AZ, USA
| | - Shripad Sinari
- Biostatics Consulting Lab, University of Arizona, Tucson, AZ, USA
| | - Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Peter D. Reaven
- Department of Medicine, Phoenix Veteran Affairs Medical Center, Phoenix, AZ, USA
| | | | | | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Mass spectrometric immunoassays for discovery, screening and quantification of clinically relevant proteoforms. Bioanalysis 2016; 8:1623-1633. [PMID: 27396364 DOI: 10.4155/bio-2016-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human proteins can exist as multiple proteoforms with potential diagnostic or prognostic significance. MS top-down approaches are ideally suited for proteoforms identification because there is no prerequisite for a priori knowledge of the specific proteoform. One such top-down approach, termed mass spectrometric immunoassay utilizes antibody-derivatized microcolumns for rapid and contained proteoforms isolation and detection via MALDI-TOF MS. The mass spectrometric immunoassay can also provide quantitative measurement of the proteoforms through inclusion of an internal reference standard into the analytical sample, serving as normalizer for all sample processing and data acquisition steps. Reviewed here are recent developments and results from the application of mass spectrometric immunoassays for discovery of clinical correlations of specific proteoforms for the protein biomarkers RANTES, retinol binding protein, serum amyloid A and apolipoprotein C-III.
Collapse
|
13
|
Azizkhanian I, Trenchevska O, Bashawri Y, Hu J, Koska J, Reaven PD, Nelson RW, Nedelkov D, Yassine HN. Posttranslational modifications of apolipoprotein A-II proteoforms in type 2 diabetes. J Clin Lipidol 2016; 10:808-815. [PMID: 27578111 PMCID: PMC5195850 DOI: 10.1016/j.jacl.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Apolipoprotein A-II (apoA-II) is the second most abundant protein in high-density lipoprotein particles. However, it exists in plasma in multiple forms. The effect of diabetes on apoA-II proteoforms is not known. OBJECTIVE Our objective was to characterize plasma apoA-II proteoforms in participants with and without type 2 diabetes. METHODS Using a novel mass spectrometric immunoassay, the relative abundance of apoA-II proteoforms was examined in plasma of 30 participants with type 2 diabetes and 25 participants without diabetes. RESULTS Six apoA-II proteoforms (monomer, truncated TQ monomer, truncated Q monomer, dimer, truncated Q dimer, and truncated 2Qs dimer) and their oxidized proteoforms were identified. The ratios of oxidized monomer and all oxidized proteoforms to the native apoA-II were significantly greater in the diabetic group (P = .004 and P = .005, respectively) compared with the nondiabetic group. CONCLUSION The relative abundance of oxidized apoA-II is significantly increased in type 2 diabetes.
Collapse
Affiliation(s)
- Ida Azizkhanian
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Yara Bashawri
- Department of Medicine, University of Southern California, Los Angeles, CA, USA; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jiaqi Hu
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juraj Koska
- Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Peter D Reaven
- Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ, USA
| | | | | | - Hussein N Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Trenchevska O, Yassine HN, Borges CR, Nelson RW, Nedelkov D. Development of quantitative mass spectrometric immunoassay for serum amyloid A. Biomarkers 2016; 21:743-751. [PMID: 27308834 DOI: 10.1080/1354750x.2016.1201533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Proteins can exist as multiple proteoforms in vivo that can have important roles in physiological and pathological states. METHODS We present the development and characterization of mass spectrometric immunoassay (MSIA) for quantitative determination of serum amyloid A (SAA) proteoforms. RESULTS Intra- and inter-day precision revealed CVs <10%. Against existing SAA ELISA, the developed MSIA showed good correlation according to the Altman-Bland plot. Individual concentrations of the SAA proteoforms across a cohort of 170 samples revealed 7 diverse SAA polymorphic types and 12 different proteoforms. CONCLUSION The new SAA MSIA enables parallel analysis of SAA polymorphisms and quantification of all expressed SAA proteoforms, in a high-throughput and time-efficient manner.
Collapse
Affiliation(s)
| | - Hussein N Yassine
- b Department of Medicine , University of Southern California , Los Angeles , CA , USA
| | - Chad R Borges
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Randall W Nelson
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Dobrin Nedelkov
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
15
|
Trenchevska O, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes 2016; 4:proteomes4010013. [PMID: 28248223 PMCID: PMC5217360 DOI: 10.3390/proteomes4010013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Randall W Nelson
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
16
|
Torres VM, Popovic L, Vaz F, Penque D. Proteomics in the Assessment of the Therapeutic Response of Antineoplastic Drugs: Strategies and Practical Applications. Methods Mol Biol 2016; 1395:281-298. [PMID: 26910080 DOI: 10.1007/978-1-4939-3347-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Uncovering unknown pathological mechanisms and body response to applied medication are the driving forces toward personalized medicine. In this post-genomic era, all eyes are turned to the proteomics field, searching for answers and explanations by investigating the gene end point functional units-proteins and their proteoforms. The development of cutting-edge mass spectrometric technologies and bioinformatics tools have allowed the life-science community to discover disease-specific proteins as biomarkers, which are often concealed by high sample complexity and dynamic range of abundance. Currently, there are several proteomics-based approaches to investigate the proteome. This chapter focuses on gold standard proteomics strategies and related issues toward candidate biomarker discovery, which may have diagnostic/prognostic as well as mechanistic utility in cancer drug resistance.
Collapse
Affiliation(s)
- Vukosava Milic Torres
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Lazar Popovic
- Medical Oncology Department, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Fátima Vaz
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Deborah Penque
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal.
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
17
|
The Association of Human Apolipoprotein C-III Sialylation Proteoforms with Plasma Triglycerides. PLoS One 2015; 10:e0144138. [PMID: 26633899 PMCID: PMC4669142 DOI: 10.1371/journal.pone.0144138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/14/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III0b with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations. Methods In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay. Results Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (Si). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms. Conclusion We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC- III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.
Collapse
|
18
|
Duncan MW, Nedelkov D, Walsh R, Hattan SJ. Applications of MALDI Mass Spectrometry in Clinical Chemistry. Clin Chem 2015; 62:134-43. [PMID: 26585930 DOI: 10.1373/clinchem.2015.239491] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND MALDI-TOF mass spectrometry (MS) is set to make inroads into clinical chemistry because it offers advantages over other analytical platforms. These advantages include low acquisition and operating costs, ease of use, ruggedness, and high throughput. When coupled with innovative front-end strategies and applied to important clinical problems, it can deliver rapid, sensitive, and cost-effective assays. CONTENT This review describes the general principles of MALDI-TOF MS, highlights the unique features of the platform, and discusses some practical methods based upon it. There is substantial potential for MALDI-TOF MS to make further inroads into clinical chemistry because of the selectivity of mass detection and its ability to independently quantify proteoforms. SUMMARY MALDI-TOF MS has already transformed the practice of clinical microbiology and this review illustrates how and why it is now set to play an increasingly important role in in vitro diagnostics in particular, and clinical chemistry in general.
Collapse
Affiliation(s)
- Mark W Duncan
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO; Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Dobrin Nedelkov
- Molecular Biomarkers Laboratory, Biodesign Institute, Arizona State University, Tempe, AZ
| | - Ryan Walsh
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
19
|
Trenchevska O, Schaab MR, Nelson RW, Nedelkov D. Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. Methods 2015; 81:86-92. [PMID: 25752847 PMCID: PMC4574700 DOI: 10.1016/j.ymeth.2015.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Matthew R Schaab
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
20
|
Hartmann EM, Colquhoun DR, Schwab KJ, Halden RU. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:525-32. [PMID: 25603302 PMCID: PMC4369174 DOI: 10.1016/j.jhazmat.2014.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 05/16/2023]
Abstract
Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.
Collapse
Affiliation(s)
- Erica M Hartmann
- Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904, USA
| | - David R Colquhoun
- Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rolf U Halden
- Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904, USA; Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Korbakis D, Brinc D, Schiza C, Soosaipillai A, Jarvi K, Drabovich AP, Diamandis EP. Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids. Mol Cell Proteomics 2015; 14:1517-26. [PMID: 25813379 DOI: 10.1074/mcp.m114.047571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein-a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Davor Brinc
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Christina Schiza
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Keith Jarvi
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; **Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada;
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada;
| |
Collapse
|
22
|
Yassine HN, Trenchevska O, He H, Borges CR, Nedelkov D, Mack W, Kono N, Koska J, Reaven PD, Nelson RW. Serum amyloid a truncations in type 2 diabetes mellitus. PLoS One 2015; 10:e0115320. [PMID: 25607823 PMCID: PMC4301920 DOI: 10.1371/journal.pone.0115320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022] Open
Abstract
Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known.
Collapse
Affiliation(s)
- Hussein N Yassine
- University of Southern California, Los Angeles, CA, United States of America
| | | | - Huijuan He
- University of Southern California, Los Angeles, CA, United States of America
| | - Chad R Borges
- Arizona State University, Tempe, AZ, United States of America
| | - Dobrin Nedelkov
- Arizona State University, Tempe, AZ, United States of America
| | - Wendy Mack
- University of Southern California, Los Angeles, CA, United States of America
| | - Naoko Kono
- University of Southern California, Los Angeles, CA, United States of America
| | - Juraj Koska
- Phoenix VA Health Care System, Phoenix, AZ, United States of America
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, United States of America
| | | |
Collapse
|
23
|
Korbakis D, Prassas I, Brinc D, Batruch I, Krastins B, Lopez MF, Diamandis EP. Delineating monoclonal antibody specificity by mass spectrometry. J Proteomics 2014; 114:115-24. [PMID: 25462431 DOI: 10.1016/j.jprot.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023]
Abstract
UNLABELLED Generation of monoclonal antibody (mAb) libraries against antigens in complex matrices can prove a valuable analytical tool. However, delineating the specificity of newly generated antibodies is the limiting step of the procedure. Here, we propose a strategy for mAb production by injecting mice with complex biological fluid and mAb characterization by coupling immunoaffinity techniques with Mass spectrometry (immuno-MS). Mice were immunized against fractionated seminal plasma and mAbs were produced. Different immuno-MS protocols based on four types of solid support (i.e. polystyrene microtiter plates, NHS-activated agarose beads, tosyl-activated magnetic beads and MSIA™ pipette tips) were established. A well-characterized mouse monoclonal anti-KLK3 (PSA) Ab was used as a model to evaluate each protocol's robustness and reproducibility and to establish a set of criteria which would allow antigen characterization of newly developed Abs. Three of the newly generated Abs were analyzed using our optimized protocols. Analysis revealed that all assay configurations used were capable of antibody characterization. Furthermore, low-abundance antigens (e.g. ribonuclease T2) could be identified as efficiently as the high-abundance ones. Our data suggest that complex biological samples can be used for the production of mAbs, which will facilitate the analysis of their proteome, while the established immuno-MS protocols can offer efficient mAb characterization. BIOLOGICAL SIGNIFICANCE The inoculation of animals with complex biological samples is aiming at the discovery of novel disease biomarkers, present in the biological specimens, as well as the production of rare reagents that will facilitate the ultra-sensitive analysis of the biomolecules' native form. In the present study, we initially propose a general workflow concerning the handling of biological samples, as well as the monoclonal antibody production. Furthermore, we established protocols for the reliable and reproducible identification of antibody specificity using various immuno-affinity purification techniques coupled to mass spectrometry. Our data suggest that processed biological fluids can be used for the production of mAbs targeting proteins of varying abundance, and that various immuno-MS protocols can offer great capabilities for the mAb characterization procedure.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Davor Brinc
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Mary F Lopez
- Thermo Fisher Scientific BRIMS, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
24
|
Meyer K, Ueland PM. Targeted quantification of C-reactive protein and cystatin c and its variants by immuno-MALDI-MS. Anal Chem 2014; 86:5807-14. [PMID: 24848523 DOI: 10.1021/ac500704y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most common technologies for quantitative determination of protein biomarkers are immunoassays, which exist in various formats. Immunoassays offer sensitive and fast protein quantification, but can hardly discriminate between protein variants. Post-translational modifications and genetic variants increase protein microheterogeneity and may play important roles in biological processes. Mass spectrometry combined with immunoaffinity enrichment detects protein microheterogeneity and can quantify different isoforms. We here present an immuno-MALDI-MS approach for the combined quantification of two important biomarkers of inflammation and renal function, C-reactive protein (CRP) and cystatin C, respectively. Antibodies were immobilized onto reversed-phase tips, which allows easy and flexible sample processing. Quantification was performed in singleplex and duplex assays, and characteristics were evaluated for different internal standards, i.e., PEGylated and polyhistidine-tagged proteins. The best performances were obtained for polyhistidine-tagged standards with respect to limits of detection (CRP, 0.10 μg/mL; cystatin C, 0.003 μg/mL) and coefficients of variation (CRP, 2.4-7.0%; cystatin C, 3.0-8.9%). The methods were benchmarked against immunoturbidimetry and nephelometry and demonstrated good between-assay agreement (R(2) = 0.989 for CRP; R(2) = 0.939 for cystatin C). Several variants of cystatin C were identified and quantified, while none were observed for CRP. This immuno-MALDI method describes a novel approach for targeted quantitative investigation of protein microheterogeneity and is well suited for assessment of biomarker status in precious samples from biobanks due to its low sample consumption.
Collapse
Affiliation(s)
- Klaus Meyer
- Bevital AS , Laboratory Building, 9th Floor, Jonas Lies veg 87, 5021 Bergen, Norway
| | | |
Collapse
|
25
|
Al-Majdoub M, Opuni KFM, Koy C, Glocker MO. Facile Fabrication and Instant Application of Miniaturized Antibody-Decorated Affinity Columns for Higher-Order Structure and Functional Characterization of TRIM21 Epitope Peptides. Anal Chem 2013; 85:10479-87. [DOI: 10.1021/ac402559m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. Al-Majdoub
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - K. F. M. Opuni
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - C. Koy
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - M. O. Glocker
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
26
|
Ahmad-Tajudin A, Adler B, Ekström S, Marko-Varga G, Malm J, Lilja H, Laurell T. MALDI-target integrated platform for affinity-captured protein digestion. Anal Chim Acta 2013; 807:1-8. [PMID: 24356215 DOI: 10.1016/j.aca.2013.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
To address immunocapture of proteins in large cohorts of clinical samples high throughput sample processing is required. Here a method using the proteomic sample platform, ISET (integrated selective enrichment target) that integrates highly specific immunoaffinity capture of protein biomarker, digestion and sample cleanup with a direct interface to mass spectrometry is presented. The robustness of the on-ISET protein digestion protocol was validated by MALDI MS analysis of model proteins, ranging from 40 fmol to 1 pmol per nanovial. On-ISET digestion and MALDI MS/MS analysis of immunoaffinity captured disease-associated biomarker PSA (prostate specific antigen) from human seminal plasma are presented.
Collapse
Affiliation(s)
- Asilah Ahmad-Tajudin
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Box 118, 22100 Lund, Sweden; CREATE Health, Lund University, Medicon Village, Bldn 406, 22381 Lund, Sweden; Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Belinda Adler
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Box 118, 22100 Lund, Sweden; CREATE Health, Lund University, Medicon Village, Bldn 406, 22381 Lund, Sweden.
| | - Simon Ekström
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Box 118, 22100 Lund, Sweden; CREATE Health, Lund University, Medicon Village, Bldn 406, 22381 Lund, Sweden
| | - György Marko-Varga
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Box 118, 22100 Lund, Sweden
| | - Johan Malm
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, 20502 Skåne, Sweden
| | - Hans Lilja
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, 20502 Skåne, Sweden; Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery (Urology Service), Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine (GU Oncology Service), Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; Institute of Biomedical Technology, University of Tampere, Tampere 33520, Finland
| | - Thomas Laurell
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Box 118, 22100 Lund, Sweden; CREATE Health, Lund University, Medicon Village, Bldn 406, 22381 Lund, Sweden; Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P, Lau SS, Nelson R. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 2013; 7:528-40. [PMID: 23696124 DOI: 10.1002/prca.201200028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an important risk factor for cardiovascular disease (CVD)--the leading cause of death in the United States. Yet not all subjects with T2DM are at equal risk for CVD complications; the challenge lies in identifying those at greatest risk. Therapies directed toward treating conventional risk factors have failed to significantly reduce this residual risk in T2DM patients. Thus newer targets and markers are needed for the development and testing of novel therapies. Herein we review two complementary MS-based approaches--mass spectrometric immunoassay (MSIA) and MS/MS as MRM--for the analysis of plasma proteins and PTMs of relevance to T2DM and CVD. Together, these complementary approaches allow for high-throughput monitoring of many PTMs and the absolute quantification of proteins near the low picomolar range. In this review article, we discuss the clinical relevance of the high density lipoprotein (HDL) proteome and Apolipoprotein A-I PTMs to T2DM and CVD as well as provide illustrative MSIA and MRM data on HDL proteins from T2DM patients to provide examples of how these MS approaches can be applied to gain new insight regarding cardiovascular risk factors. Also discussed are the reproducibility, interpretation, and limitations of each technique with an emphasis on their capacities to facilitate the translation of new biomarkers into clinical practice.
Collapse
Affiliation(s)
- Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dai L, Preston R, Bacica M, Kinhikar A, Bolaños B, Murphy RE. Development of a Potential High-Throughput Workflow to Characterize Sites of Bioconjugation by Immuno-Affinity Capture Coupled to MALDI-TOF Mass Spectrometry. Bioconjug Chem 2012. [DOI: 10.1021/bc300413c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lan Dai
- Department of Analytical Sciences, CovX, Pfizer Worldwide Research and Development,
9381 Judicial Drive, Suite 200, San Diego, California 92121, United
States
| | - Ryan Preston
- Department of Analytical Sciences, CovX, Pfizer Worldwide Research and Development,
9381 Judicial Drive, Suite 200, San Diego, California 92121, United
States
| | - Michael Bacica
- Department of Analytical Sciences, CovX, Pfizer Worldwide Research and Development,
9381 Judicial Drive, Suite 200, San Diego, California 92121, United
States
| | - Arvind Kinhikar
- Department of Analytical Sciences, CovX, Pfizer Worldwide Research and Development,
9381 Judicial Drive, Suite 200, San Diego, California 92121, United
States
| | - Ben Bolaños
- Department of Oncology Platform Chemistry, Pfizer Worldwide Research and Development,
10770 Science Center Drive, La Jolla, California 92121, United States
| | - Robert E. Murphy
- Department of Analytical Sciences, CovX, Pfizer Worldwide Research and Development,
9381 Judicial Drive, Suite 200, San Diego, California 92121, United
States
| |
Collapse
|
29
|
Stolowitz ML. On-target and nanoparticle-facilitated selective enrichment of peptides and proteins for analysis by MALDI-MS. Proteomics 2012; 12:3438-50. [DOI: 10.1002/pmic.201200252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Mark L. Stolowitz
- Canary Center at Stanford for Cancer Early Detection; Department of Radiology; Stanford University School of Medicine; Palo Alto CA USA
| |
Collapse
|
30
|
Madian AG, Rochelle NS, Regnier FE. Mass-linked immuno-selective assays in targeted proteomics. Anal Chem 2012; 85:737-48. [PMID: 22950521 DOI: 10.1021/ac302071k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashraf G Madian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
31
|
Roth MJ, Kim J, Maresh EM, Plymire DA, Corbett JR, Zhang J, Patrie SM. Thin-layer matrix sublimation with vapor-sorption induced co-crystallization for sensitive and reproducible SAMDI-TOF MS analysis of protein biosensors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1661-1669. [PMID: 22847391 DOI: 10.1007/s13361-012-0442-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 06/01/2023]
Abstract
Coupling immunoassays on self-assembled monolayers (SAMs) to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) provides improved assay selectivity compared with traditional photometric detection techniques. We show that thin-layer-transfer (TLT) of α-cyano-4-hydroxycinnaminic acid (CHCA) MALDI matrix via vacuum sublimation followed by organic solvent-based vapor-sorption induced co-crystallization (VIC) results in unique matrix/analyte co-crystallization tendencies that optimizes assay reproducibility and sensitivity. Unique matrix crystal morphologies resulted from VIC solvent vapors, indicating nucleation and crystal growth characteristics depend upon VIC parameters. We observed that CHCA microcrystals generated by methanol VIC resulted in >10× better sensitivity, increased analyte charging, and improved precision compared with dried droplet measurements. The uniformity of matrix/analyte co-crystallization across planar immunoassays directed at intact proteins yielded low spectral variation for single shot replicates (18.5 % relative standard deviation, RSD) and signal averaged spectra (<10 % RSD). We envision that TLT and VIC for MALDI-TOF will enable high-throughput, reproducible array-based immunoassays for protein molecular diagnostic assays in diverse biochemical and clinical applications.
Collapse
Affiliation(s)
- Michael J Roth
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | | | | | | | | | |
Collapse
|