1
|
Murtada R, Szafranski CJ, Tevletidis M, Finn S, Gilles W, Tahsin T, Gao J. Sensitive Fluorescence Quantitation and Efficient Free Radical Characterization of N-Glycans via LC-FLR-HRMS/MS with a Novel Fluorescent Free Radical Tag. Anal Chem 2025; 97:7118-7127. [PMID: 40129309 PMCID: PMC11983377 DOI: 10.1021/acs.analchem.4c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Glycans are some of the most difficult biomolecules to analyze owing to their branching tendencies as well as their regiochemical and stereochemical diversity. Yet, the correlation between various pathological states and glycan quantity or structural alterations has demonstrated the importance and urgency for the development of a more robust glycan analytical technique. Furthermore, the manufacturing and regulation of biopharmaceuticals demands a feasible and improved analytical approach toward the characterization and quantitation of glycosylations. Unfortunately, multiple commercially available glycan tags lack, in combination, liquid chromatography detection sensitivity, chemical stability and, most importantly, optimal glycan characterization capabilities. Therefore, a novel fluorescent tag coupled with a free radical approach for glycan characterization was designed and developed to help address this gap in glycan analysis. The analytical capabilities of this novel tag were assessed via hydrophilic liquid chromatography-fluorescence quantitation and ESI/MS free radical-mediated characterization by using linear glycan standards, branched isobaric glycans lacto-N-difucohexaose I and lacto-N-difucohexaose II, and N-glycans released from ribonuclease B.
Collapse
Affiliation(s)
- Rayan Murtada
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - CJ Szafranski
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Maria Tevletidis
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Wilthon Gilles
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Tabia Tahsin
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jinshan Gao
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair, New Jersey 07043, United States
| |
Collapse
|
2
|
Gass DT, Pritchard AM, Alberti SN, Gallagher ES. Electron Transfer Higher-Energy Collisional Dissociation Can Distinguish Cobalt-Adducted Isomers of Human Milk Oligosaccharides. Anal Chem 2025; 97:5507-5516. [PMID: 40035718 DOI: 10.1021/acs.analchem.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The ability to identify isomers of human milk oligosaccharides (HMOs) remains a challenge. Typically, HMOs are analyzed using a combination of liquid chromatography and tandem mass spectrometry (LC-MS/MS). Yet, separation methods have been unable to resolve several HMO isomers, necessitating the need for fragmentation methods that can differentiate these structures within mixtures. Common fragmentation methods, such as collision-induced dissociation (CID), often fail to form fragments that can differentiate the linkage and branching isomers. Previously, we determined that electron transfer dissociation (ETD) yields distinct fragmentation products when using certain metal-charge carriers, such as Co2+. Here, we compare fragmentation methods, including CID, higher-energy collisional dissociation (HCD), ETD, and electron transfer, higher-energy collisional dissociation (EThcD) for Co2+- and Na+-adducted HMO isomers. The formation of several fragments using only ETD and EThcD, but not CID and HCD, indicates that certain fragmentation products only form from electron dissociation. EThcD enabled differentiation of Co2+-adducted tri-, tetra-, and pentasaccharide isomers, while CID, HCD, and ETD were incapable of differentiating all the examined HMO isomers as Co2+, Na+, and 2Na2+ adducts. We also show that Co2+ adduction combined with EThcD generates fragments that are related to the core structure and fucose branching location, allowing for further validation of the HMO structures. This work establishes a general method using fragmentation that can be used to differentiate HMOs, which should enable improved identification and structural validation of various carbohydrate linkage and branching isomers.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Andrew M Pritchard
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sebastian N Alberti
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
3
|
Omoto T, Yamakawa N, Wu D, Mori H, Takeda U, Hane M, Kitajima K, Sato C. An enhanced dual detection of DMB-labeled sialic acids using high-resolution accurate mass spectrometry and fluorescence detection. BBA ADVANCES 2025; 7:100152. [PMID: 40230505 PMCID: PMC11995755 DOI: 10.1016/j.bbadva.2025.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Sialic acids are important glycan components not only in the conformation of the structure but also in functions of many biological activities. Detection methods for sialic acid have been developed, and fluorescent labeling of sialic acids with 1,2-diamino-4,5-methylenedioxybenzene (DMB) is the best method for its analysis. However, identifying and quantifying sialic acids using mass spectrometry (MS) remains difficult because of the diversity of sialic acids, including O-acetylation. In this study, we initially focused on enhancing the liquid chromatography (LC) separation of DMB-labeled sialic acids in bovine submaxillary mucin (BSM). We successfully achieved highly resolutive separation of 14 types of sialic acids, including multiply O-acetylated species, using a CAPCELL CORE C18 column. These structures were subsequently confirmed through collision-induced dissociation (CID) fragmentation. We then assessed MS and fluorescence detection (FLD) sensitivity using Neu5Ac, Neu5Gc, and Kdn standards, determining detection limits of 32 fmol for MS and 320 amol for FLD, with 320 fmol needed for CID-based structural analysis. These findings highlight the complementary nature of fluorescence and mass spectrometry techniques for DMB-labeled sialic acids identification and quantification. We also examined both CID and electron-activated dissociation (EAD) on the ZenoTOF 7600. CID fragment analysis revealed C5-specific diagnostic fragment ions for Neu5Ac, Neu5Gc, and Kdn. EAD spectra predominantly induced fragmentation of the fluorescent DMB core, regardless of applied variable kinetic energies. This study also led to the discovery of a new structure, Neu5Gc7,8,9Ac3, alongside the previously reported Neu5,7,8,9Ac4 in BSM.
Collapse
Affiliation(s)
- Takayuki Omoto
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Nao Yamakawa
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- US 41-UAR 2014-PLBS, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Di Wu
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Ushio Takeda
- K.K. ABSciex Japan, Shinagawa Tokyo, 140-0001, Japan
| | - Masaya Hane
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
5
|
Murtada R, Finn S, Gao J. Development of mass spectrometric glycan characterization tags using acid-base chemistry and/or free radical chemistry. MASS SPECTROMETRY REVIEWS 2024; 43:269-288. [PMID: 36161326 DOI: 10.1002/mas.21810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Despite recent advances in glycomics, glycan characterization still remains an analytical challenge. Accordingly, numerous glycan-tagging reagents with different chemistries were developed, including those involving acid-base chemistry and/or free radical chemistry. Acid-base chemistry excels at dissociating glycans into their constituent components in a systematic and predictable manner to generate cleavages at glycosidic bonds. Glycans are also highly susceptible to depolymerization by free radical processes, which is supported by results observed from electron-activated dissociation techniques. Therefore, the free radical activated glycan sequencing (FRAGS) reagent was developed so as to possess the characteristics of both acid-base and free radical chemistry, thus generating information-rich glycosidic bond and cross-ring cleavages. Alternatively, the free radical processes can be induced via photodissociation of the specific carbon-iodine bond which gives birth to similar fragmentation patterns as the FRAGS reagent. Furthermore, the methylated-FRAGS (Me-FRAGS) reagent was developed to eliminate glycan rearrangements by way of a fixed charged as opposed to a labile proton, which would otherwise yield additional, yet unpredictable, fragmentations including internal residue losses or multiple external residue losses. Lastly, to further enhance glycan enrichment and characterization, solid-support FRAGS was developed.
Collapse
Affiliation(s)
- Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| |
Collapse
|
6
|
Li R, Xia C, Wu S, Downs MJ, Tong H, Tursumamat N, Zaia J, Costello CE, Lin C, Wei J. Direct and Detailed Site-Specific Glycopeptide Characterization by Higher-Energy Electron-Activated Dissociation Tandem Mass Spectrometry. Anal Chem 2024; 96:1251-1258. [PMID: 38206681 PMCID: PMC10885852 DOI: 10.1021/acs.analchem.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.
Collapse
Affiliation(s)
- Ruiqing Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Shuye Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Margaret J Downs
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Haowei Tong
- School of Life Science, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Juan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Gass DT, Cordes MS, Alberti SN, Kim HJ, Gallagher ES. Evidence of H/D Exchange within Metal-Adducted Carbohydrates after Ion/Ion-Dissociation Reactions. J Am Chem Soc 2023; 145:23972-23985. [PMID: 37874934 DOI: 10.1021/jacs.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information on biomolecules. Ion/ion reactions are competitive reactions, where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for the structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron-transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene─the primary, commercially available anion reagent─interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT─also described as HDX─mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogeneous biomolecules, such as carbohydrates.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sebastian N Alberti
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - H Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
8
|
Williamson DL, Nagy G. Coupling Isotopic Shifts with Collision Cross-Section Measurements for Carbohydrate Characterization in High-Resolution Ion Mobility Separations. Anal Chem 2023; 95:13992-14000. [PMID: 37683280 PMCID: PMC10538943 DOI: 10.1021/acs.analchem.3c02619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Herein, we introduce a two-dimensional strategy to better characterize carbohydrate isomers. In a single experiment, we can derive cyclic ion mobility-mass spectrometry (cIMS-MS)-based collision cross-section (CCS) values in conjunction with measuring isotopic shifts through the relative arrival times of light and heavy isotopologues. These isotopic shifts were introduced by permethylating carbohydrates with either light, CH3, or heavy, CD3, labels at every available hydroxyl group to generate a light/heavy pair of isotopologues for every individual species analyzed. We observed that our calculated CCS values, which were exclusively measured for the light isotopologues, were orthogonal to our measured isotopic shifts (i.e., relative arrival time values between heavy and light permethylated isotopologues). Our permethylation-induced isotopic shifts scaled well with increasing molecular weight, up to ∼m/z 1300, expanding the analysis of isotopic shifts to molecules 3-4 times as large as those previously studied. Our presented use of coupling CCS values with the measurement of isotopic shifts in a single cIMS-MS experiment is a proof-of-concept demonstration that our two-dimensional approach can improve the characterization of challenging isomeric carbohydrates. We envision that our presented 2D approach will have broad utility for varying molecular classes as well as being amenable to many forms of derivatization.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Fabijanczuk K, Yu ZJ, Bakestani RM, Murtada R, Denton N, Gaspar K, Otegui T, Acosta J, Kenttämaa HI, Eshuis H, Gao J. Mechanistic Study into Free Radical-Activated Glycan Dissociations through Isotope-Labeled Cellobioses. Anal Chem 2023; 95:2932-2941. [PMID: 36715667 PMCID: PMC10129047 DOI: 10.1021/acs.analchem.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inspired by the electron-activated dissociation technique, the most potent tool for glycan characterization, we recently developed free radical reagents for glycan structural elucidation. However, the underlying mechanisms of free radical-induced glycan dissociation remain unclear and, therefore, hinder the rational optimization of the free radical reagents and the interpretation of tandem mass spectra, especially the accurate assignment of the relatively low-abundant but information-rich ions. In this work, we selectively incorporate the 13C and/or 18O isotopes into cellobiose to study the mechanisms for free radical-induced dissociation of glycans. The eight isotope-labeled cellobioses include 1-13C, 3-13C, 1'-13C, 2'-13C, 3'-13C, 4'-13C, 5'-13C, and 1'-13C-4-18O-cellobioses. Upon one-step collisional activation, cross-ring (X ions), glycosidic bond (Y-, Z-, and B-related ions), and combinational (Y1 + 0,4X0 ion) cleavages are generated. These fragment ions can be unambiguously assigned and confirmed by the mass difference of isotope labeling. Importantly, the relatively low-abundant but information-rich ions, such as 1,5X0 + H, 1,4X0 + H, 2,4X0 + H-OH, Y1 + 0,4X0, 2,5X1-H, 3,5X0-H, 0,3X0-H, 1,4X0-H, and B2-3H, are confidently assigned. The mechanisms for the formations of these ions are investigated and supported by quantum chemical calculations. These ions are generally initiated by hydrogen abstraction followed by sequential β-elimination and/or radical migration. Here, the mechanistic study for free radical-induced glycan dissociation allows us to interpret all of the free radical-induced fragment ions accurately and, therefore, enables the differentiation of stereochemical isomers. Moreover, it provides fundamental knowledge for the subsequent development of bioinformatics tools to interpret the complex free radical-induced glycan spectra.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Zaikuan Josh Yu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Rose M Bakestani
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Nicholas Denton
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Tara Otegui
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jose Acosta
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Henk Eshuis
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| |
Collapse
|
10
|
Wong HTK, Chen X, Wu R, Wong YLE, Hung YLW, Chan TWD. Dissociation of Mannose-Rich Glycans Using Collision-Based and Electron-Based Ion Activation Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:803-812. [PMID: 35380839 DOI: 10.1021/jasms.1c00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three dissociation methods, including collision-induced dissociation (CID), electron capture dissociation (ECD), and electronic excitation dissociation (EED), were evaluated for the dissociation of doubly charged glycans using sodium or magnesium ions as charge carriers. CID produced mainly glycosidic cleavages, although more cross-ring fragment ions could be obtained at higher intensities when magnesium ions were used as charge carriers [M + Mg]2+. The 0,2A3, 0,3A3, and 0,4A3 ions provided structural information on the 3 → 1 and 6 → 1 linkages of the mannoses. Some internal fragment ions, such as 2,4A5_Y3β, were also produced in high abundance, thus providing additional information on the glycan structure. ECD produced limited fragments compared to other dissociation methods when either of the metal ions were used as charge carriers. Cross-ring fragments were obtained in relatively high abundance, with the charge mainly retained on the nonreducing end. EED produced extensive glycosidic and cross-ring cleavages when either metal charge carrier was used. A higher fragmentation efficiency was achieved and more structural-specific fragments were produced when Na+ was used as the charge carrier. Of the 31 possible cross-ring cleavages, including 0,2-, 0,4-, 1,5-, 2,4-, and 3,5-cleavages, 25 were found, thus providing extensive linkage information. A wide range of fragment ions could be obtained in all dissociation methods when Mg2+ was used as the charge carrier. Two specific analytical approaches were found to produce extensively structural-specific information on the glycans studied, namely CID of magnesiated glycans and EED of sodiated glycans. These two methods were selected to further analyze the larger mannose-rich glycans Man6GlcNAc2 and Man8GlcNAc2 and generated extensive structural information.
Collapse
Affiliation(s)
- H-T Kitty Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
- Shandong Analysis and Test Centre, School of Pharmaceutical Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Y-L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Y-L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
11
|
Williamson DL, Bergman AE, Nagy G. Investigating the Structure of α/β Carbohydrate Linkage Isomers as a Function of Group I Metal Adduction and Degree of Polymerization as Revealed by Cyclic Ion Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2573-2582. [PMID: 34464117 DOI: 10.1021/jasms.1c00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS)-based separations individual, pure, oligosaccharide species often produce multiple IMS peaks presumably from their α/β anomers, cation attachment site conformations, and/or other energetically favorable structures. Herein, the use of high-resolution traveling wave-based cyclic IMS-MS to systematically investigate the origin of these multiple peaks by analyzing α1,4- and β1,4-linked d-glucose homopolymers as a function of their group I metal adducts is presented. Across varying degrees of polymerization, and for certain metal adducts, at least two major IMS peaks with relative areas that matched the ∼40:60 ratio for the α/β anomers of a reducing-end d-glucose as previously calculated by NMR were observed. To further validate that these were indeed the α/β anomers, rather than other substructures, the reduced versions of several maltooligosaccharides were analyzed and all produced a single IMS peak. This result enabled the discovery of a mobility fingerprint trend: the β anomer was always higher mobility than the α anomer for the cellooligosaccharides, while the α anomer was always higher mobility than the β anomer for the maltooligosaccharides. For maltohexaose, a spurious, high mobility, fourth peak was present. This was hypothesized to potentially be from a highly compacted conformation. To investigate this, α-cyclodextrin, a cyclic oligosaccharide, produced similar arrival times as the high mobility maltohexaose peak. It is anticipated that these findings will aid in the data deconvolution of IMS-MS-based glycomics workflows and enable the improved characterization of biologically relevant carbohydrates.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Addison E Bergman
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Sasiene ZJ, Ropartz D, Rogniaux H, Jackson GP. Charge transfer dissociation of a branched glycan with alkali and alkaline earth metal adducts. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4774. [PMID: 34180110 PMCID: PMC8285033 DOI: 10.1002/jms.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 06/03/2021] [Indexed: 05/05/2023]
Abstract
Alkali and alkaline earth metal adducts of a branched glycan, XXXG, were analyzed with helium charge transfer dissociation (He-CTD) and low-energy collision-induced dissociation (LE-CID) to investigate if metalation would impact the type of fragments generated and the structural characterization of the analyte. The studied adducts included 1+ and 2+ precursors involving one or more of the cations: H+ , Na+ , K+ , Ca2+ , and Mg2+ . Regardless of the metal adduct, He-CTD generated abundant and numerous glycosidic and cross-ring cleavages that were structurally informative and able to identify the 1,4-linkage and 1,6-branching patterns. In contrast, the LE-CID spectra mainly contained glycosidic cleavages, consecutive fragments, and numerous neutral losses, which complicated spectral interpretation. LE-CID of [M + K + H]2+ and [M + Na]+ precursors generated a few cross-ring cleavages, but they were not sufficient to identify the 1,4-linkage and 1,6-branching pattern of the XXXG xyloglucan. He-CTD predominantly generated 1+ fragments from 1+ precursors and 2+ product ions from 2+ precursors, although both LE-CID and He-CTD were able to generate 1+ product ions from 2+ adducts of magnesium and calcium. The singly charged fragments derive from the loss of H+ from the metalated product ions and the formation of a protonated complementary product ion; such observations are similar to previous reports for magnesium and calcium salts undergoing electron capture dissociation (ECD) activation. However, during He-CTD, the [M + Mg]2+ precursor generated more singly charged product ions than [M + Ca]2+ , either because Mg has a higher second ionization potential than Ca or because of conformational differences and the locations of the charging adducts during fragmentation. He-CTD of the [M + 2Na]2+ and the [M + 2 K]2+ precursors generated singly charged product ions from the loss of a sodium ion and potassium ion, respectively. In summary, although the metal ions influence the mass and charge state of the observed product ions, the metal ions had a negligible effect on the types of cross-ring cleavages observed.
Collapse
Affiliation(s)
- Zachary J Sasiene
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, 26506-6121, USA
| | - David Ropartz
- UR BIA, INRAE, Nantes, F-44316, France
- BIBS Facility, INRAE, Nantes, F-44316, France
| | - Hélène Rogniaux
- UR BIA, INRAE, Nantes, F-44316, France
- BIBS Facility, INRAE, Nantes, F-44316, France
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, 26506-6121, USA
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia, 26506-6121, USA
| |
Collapse
|
13
|
Peterson TL, Nagy G. Toward Sequencing the Human Milk Glycome: High-Resolution Cyclic Ion Mobility Separations of Core Human Milk Oligosaccharide Building Blocks. Anal Chem 2021; 93:9397-9407. [PMID: 34185494 DOI: 10.1021/acs.analchem.1c00942] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human milk oligosaccharides (HMOs) are an unconjugated class of glycans that have been implicated for their role in promoting the healthy development of the brain-gut axes of infants. Production of HMOs is ever-changing and specifically tailored for each infant in response to various biological factors (e.g., cognitive development, diseases, or allergies). While every HMO consists of up to only five monosaccharides, their structures can be composed of many possible glycosidic linkage positions and corresponding α/β anomericities, linear or branched chains, and potential fucosylation/sialylation modifications, thus leading to a tremendous degree of isomeric heterogeneity. With limited availability of authentic standards for every putative HMO structure (estimated to be >200 total), new analytical methods are needed for their accurate characterization. Complete sequencing of the human milk glycome would enable a better understanding of their infant-specific biological roles and potentially lead to their widespread incorporation into infant formula. Herein, we explore the use of our high-resolution cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based platform for the separation of core disaccharide and trisaccharide isomer building blocks as a first step toward the sequencing of larger HMOs. By utilizing the flexible capabilities of the cIMS array, separation pathlengths were extended up to 40 m, thus enabling the resolution of all seven sets of sialylated, fucosylated galactosyllactose and lactosamine HMO building block isomers. Additionally, we assessed the utility of pre-/post-cIMS tandem mass spectrometry (MS/MS) and tandem cIMS (cIMS/cIMS) for the characterization of HMOs based on their diagnostic fragmentation patterns and mobility fingerprints. We anticipate that our presented cIMS-MS-based methodology will enable the better characterization of larger, unknown HMOs when incorporated into an overall workflow that also includes online liquid chromatography and enzymatic hydrolyses.
Collapse
Affiliation(s)
- Tyler L Peterson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Murtada R, Fabijanczuk K, Gaspar K, Dong X, Alzarieni KZ, Calix K, Manriquez E, Bakestani RM, Kenttämaa HI, Gao J. Free-Radical-Mediated Glycan Isomer Differentiation. Anal Chem 2020; 92:13794-13802. [PMID: 32935980 DOI: 10.1021/acs.analchem.0c02213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inherent structural complexity and diversity of glycans pose a major analytical challenge to their structural analysis. Radical chemistry has gained considerable momentum in the field of mass spectrometric biomolecule analysis, including proteomics, glycomics, and lipidomics. Herein, seven isomeric disaccharides and two isomeric tetrasaccharides with subtle structural differences are distinguished rapidly and accurately via one-step radical-induced dissociation. The free-radical-activated glycan-sequencing reagent (FRAGS) selectively conjugates to the unique reducing terminus of glycans in which a localized nascent free radical is generated upon collisional activation and simultaneously induces glycan fragmentation. Higher-energy collisional dissociation (HCD) and collision-induced dissociation (CID) are employed to provide complementary structural information for the identification and discrimination of glycan isomers by providing different fragmentation pathways to generate informative, structurally significant product ions. Furthermore, multiple-stage tandem mass spectrometry (MS3 CID) provides supplementary and valuable structural information through the generation of characteristic parent-structure-dependent fragment ions.
Collapse
Affiliation(s)
- Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Xueming Dong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kawthar Zeyad Alzarieni
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kimberly Calix
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Edgar Manriquez
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Rose Mery Bakestani
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| |
Collapse
|
15
|
Fabijanczuk K, Gaspar K, Desai N, Lee J, Thomas DA, Beauchamp JL, Gao J. Resin and Magnetic Nanoparticle-Based Free Radical Probes for Glycan Capture, Isolation, and Structural Characterization. Anal Chem 2019; 91:15387-15396. [PMID: 31718152 DOI: 10.1021/acs.analchem.9b01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By combining the merits of solid supports and free radical activated glycan sequencing (FRAGS) reagents, we develop a multifunctional solid-supported free radical probe (SS-FRAGS) that enables glycan enrichment and characterization. SS-FRAGS comprises a solid support, free radical precursor, disulfide bond, pyridyl, and hydrazine moieties. Thio-activated resin and magnetic nanoparticles (MNPs) are chosen as the solid support to selectively capture free glycans via the hydrazine moiety, allowing for their enrichment and isolation. The disulfide bond acts as a temporary covalent linkage between the solid support and the captured glycan, allowing the release of glycans via the cleavage of the disulfide bond by dithiothreitol. The basic pyridyl functional group provides a site for the formation of a fixed charge, enabling detection by mass spectrometry and avoiding glycan rearrangement during collisional activation. The free radical precursor generates a nascent free radical upon collisional activation and thus simultaneously induces systematic and predictable fragmentation for glycan structure elucidation. A radical-driven glycan deconstruction diagram (R-DECON) is developed to visually summarize the MS2 results and thus allow for the assembly of the glycan skeleton, making the differentiation of isobaric glycan isomers unambiguous. For application to a real-world sample, we demonstrate the efficacy of the SS-FRAGS by analyzing glycan structures enzymatically cleaved from RNase-B.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Nikunj Desai
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Jungeun Lee
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| |
Collapse
|
16
|
Gaspar K, Fabijanczuk K, Otegui T, Acosta J, Gao J. Development of Novel Free Radical Initiated Peptide Sequencing Reagent: Application to Identification and Characterization of Peptides by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:548-556. [PMID: 30547308 PMCID: PMC6417990 DOI: 10.1007/s13361-018-2114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 05/19/2023]
Abstract
By incorporating a high proton affinity moiety to the charge localized free radical-initiated peptide sequencing (CL-FRIPS) reagent, FRIPS-MS technique has extended the applicability to hydrophobic peptides and peptides without basic amino acid residues (lysine, arginine, and histidine). Herein, the CL-FRIPS reagent has three moieties: (1) pyridine acting as the basic site to locate the proton, (2) 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, a stable free radical) acting as the free radical precursor to generate the nascent free radical in the gas phase, and (3) N-hydroxysuccinimide (NHS) activated carboxylic acid acting as the coupling site to derivatize the N-terminus of peptides. The CL-FRIPS reagent allows for the characterization of peptides by generating sequencing ions, enzymatic cleavage-like radical-induced side chain losses, and the loss of TEMPO simultaneously via one-step collisional activation. Further collisional activation of enzymatic cleavage-like radical-induced side chain loss ions provides more information for the structure determination of peptides. The application of CL-FRIPS reagent to characterize peptides is proved by employing bovine insulin as the model peptide. Both scaffold structure of bovine insulin and sequencing information of each chain are achieved. Graphical Abstract.
Collapse
Affiliation(s)
- Kaylee Gaspar
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Tara Otegui
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jose Acosta
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA.
| |
Collapse
|
17
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Tang Y, Wei J, Costello CE, Lin C. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1295-1307. [PMID: 29654534 PMCID: PMC6004250 DOI: 10.1007/s13361-018-1943-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 05/15/2023]
Abstract
The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. Graphical Abstract.
Collapse
Affiliation(s)
- Yang Tang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Juan Wei
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Schaller-Duke RM, Bogala MR, Cassady CJ. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1021-1035. [PMID: 29492773 PMCID: PMC5943087 DOI: 10.1007/s13361-018-1906-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ranelle M Schaller-Duke
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mallikharjuna R Bogala
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carolyn J Cassady
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
20
|
Tang Y, Pu Y, Gao J, Hong P, Costello CE, Lin C. De Novo Glycan Sequencing by Electronic Excitation Dissociation and Fixed-Charge Derivatization. Anal Chem 2018; 90:3793-3801. [PMID: 29443510 DOI: 10.1021/acs.analchem.7b04077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detailed glycan structural characterization is frequently achieved by collisionally activated dissociation (CAD) based sequential tandem mass spectrometry (MS n) analysis of permethylated glycans. However, it is challenging to implement MS n ( n > 2) during online glycan separation, and this has limited its application to analysis of complex glycan mixtures from biological samples. Further, permethylation can reduce liquid chromatographic (LC) resolution of isomeric glycans. Here, we studied the electronic excitation dissociation (EED) fragmentation behavior of native glycans with a reducing-end fixed charge tag and identified key spectral features that are useful for topology and linkage determination. We also developed a de novo glycan sequencing software that showed remarkable accuracy in glycan topology elucidation based on the EED spectra of fixed charge-derivatized glycans. The ability to obtain glycan structural details at the MS2 level, without permethylation, via a combination of fixed charge derivatization, EED, and de novo spectral interpretation, makes the present approach a promising tool for comprehensive and rapid characterization of glycan mixtures.
Collapse
Affiliation(s)
- Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Yi Pu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
21
|
Wong YLE, Chen X, Wu R, Hung YLW, Chan TWD. Structural Characterization of Intact Glycoconjugates by Tandem Mass Spectrometry Using Electron-Induced Dissociation. Anal Chem 2017; 89:10111-10117. [PMID: 28838234 DOI: 10.1021/acs.analchem.7b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Characterizing the structures of glycoconjungates is important because of glycan heterogeneity and structural complexity of aglycon. The presence of relatively weak glycosidic linkages leads to preferential cleavages that limit the acquisition of structural information under typical mass spectrometry dissociation conditions, such as collision-induced dissociation (CID) and infrared multiphoton dissociation. In this paper, we explored the dissociation behaviors of different members of glycoconjugates, including glycopeptides, glycoalkaloids, and glycolipids, under electron-induced dissociation (EID) conditions. Using CID spectra as references, we found that EID is not only a complementary method to CID, but also a method that can generate extensive fragment ions for the structural characterization of all intact glycoconjugates studied. Furthermore, isomeric ganglioside species can be differentiated, and the double bond location in the ceramide moiety of the gangliosides can be identified through the MS3 approach involving sequential CID and EID processes.
Collapse
Affiliation(s)
- Y L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China.,Shandong Analysis and Test Centre, Shandong Academy of Sciences, Qilu University of Technology , Jinan, Shandong, People's Republic of China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| |
Collapse
|
22
|
Osburn S, Speciale G, Williams SJ, O'Hair RAJ. Gas-Phase Intercluster Thiyl-Radical Induced C-H Bond Homolysis Selectively Forms Sugar C2-Radical Cations of Methyl D-Glucopyranoside: Isotopic Labeling Studies and Cleavage Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1425-1431. [PMID: 28474266 DOI: 10.1007/s13361-017-1667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
A suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed 'bio-inspired' method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and NH protons with deuterons reveals that the sugar radical cation is formed in a process involving abstraction of a hydrogen atom from a C-H bond of the sugar coupled with proton transfer to the sugar, to form [M - H• + D+]. Investigation of this process using individual C-D labeled sugars reveals that the main site of H/D abstraction is the C2 position, since only the C2-deuterium labeled sugar yields a dominant [M - D• + H+] product ion. The fragmentation reactions of the distonic sugar radical cation, [M - H•+ H+], were studied by another stage of CID (MS4). 13C-labeling studies revealed that a series of three related fragment ions each contain the C1-C3 atoms; these arise from cross-ring cleavage reactions of the sugar. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandra Osburn
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
- ARC Center of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| | - Gaetano Speciale
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
- ARC Center of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Desai N, Thomas DA, Lee J, Gao J, Beauchamp JL. Eradicating mass spectrometric glycan rearrangement by utilizing free radicals. Chem Sci 2016; 7:5390-5397. [PMID: 30155192 PMCID: PMC6020757 DOI: 10.1039/c6sc01371f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
We designed and synthesized a methylated free radical activated glycan sequencing reagent (Me-FRAGS) for eliminating mass spectrometric glycan rearrangement.
Mass spectrometric glycan rearrangement is problematic because it provides misleading structural information. Here we report on a new reagent, a methylated free radical activated glycan sequencing reagent (Me-FRAGS), which combines a free radical precursor with a methylated pyridine moiety that can be coupled to the reducing terminus of glycans. The collisional activation of Me-FRAGS-derivatized glycans generates a nascent free radical that concurrently induces abundant glycosidic bond and cross-ring cleavage without the need for subsequent activation. The product ions resulting from glycan rearrangement, including internal residue loss and multiple external residue losses, are precluded. Glycan structures can be easily assembled and visualized using a radical driven glycan deconstruction diagram (R-DECON diagram). The presence and location of N-acetylated saccharide units and branch sites can be identified from the characteristic dissociation patterns observed only at these locations. The mechanisms of dissociation are investigated and discussed. This Me-FRAGS based mass spectrometric approach creates a new blueprint for glycan structure analysis.
Collapse
Affiliation(s)
- Nikunj Desai
- Department of Chemistry and Biochemistry , Center for Quantitative Obesity Research , Montclair State University , 1 Normal Avenue , Montclair , NJ 07043 , USA .
| | - Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , 1200 East California Blvd , Pasadena , CA 91125 , USA .
| | - Jungeun Lee
- Department of Chemistry and Biochemistry , Center for Quantitative Obesity Research , Montclair State University , 1 Normal Avenue , Montclair , NJ 07043 , USA .
| | - Jinshan Gao
- Department of Chemistry and Biochemistry , Center for Quantitative Obesity Research , Montclair State University , 1 Normal Avenue , Montclair , NJ 07043 , USA .
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , 1200 East California Blvd , Pasadena , CA 91125 , USA .
| |
Collapse
|
24
|
Huang Y, Dodds ED. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst 2016. [PMID: 26225371 DOI: 10.1039/c5an01093d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the gravity of glycoscience continues to amass, a commensurate demand for rapid, sensitive, and structurally comprehensive glycoanalytical tools has arisen. Among the most elusive but desirable analytical capabilities is the ability to expeditiously and unambiguously detect, distinguish, and resolve carbohydrates that differ only in their constitutional isomerism and/or stereoisomerism. While ion mobility spectrometry (IMS) has proven a highly promising tool for such analyses, the facility of this method to discriminate larger oligosaccharides is still somewhat limited. In an effort to expand the capabilities of IMS to discriminate among carbohydrate isomers, the present investigation was focused on IMS studies of four trisaccharide isomers, four pentasaccharide isomers, and two hexasaccharide isomers, each as group II metal ion adducts and their corresponding gas-phase electron transfer (ET) products. These studies were also evaluated in the context of previously investigated group I metal ion adducts of the same saccharides. The orientationally averaged ion-neutral collisional cross sections (CCSs) of the various carbohydrate/metal ion adducts were found to be dependent on the structures of specific carbohydrate isomers, sensitive to the electronic characteristics of the bound cation, and responsive to the attachment of an additional electron (in the case of divalent metal ion adducts). Overall, these results underscore the utility of metal ions for probing carbohydrate structure in concert with IMS, and the capacity of gas-phase ion chemistry to expand the menu of such probes.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | |
Collapse
|
25
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic Study on Electronic Excitation Dissociation of the Cellobiose-Na(+) Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:319-28. [PMID: 26432580 PMCID: PMC4724539 DOI: 10.1007/s13361-015-1277-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
The recent development of electron activated dissociation (ExD) techniques has opened the door for high-throughput, detailed glycan structural elucidation. Among them, ExD methods employing higher-energy electrons offer several advantages over low-energy electron capture dissociation (ECD), owing to their applicability towards chromophore-labeled glycans and singly charged ions, and ability to provide more extensive structural information. However, a lack of understanding of these processes has hindered rational optimization of the experimental conditions for more efficient fragmentation as well as the development of informatics tools for interpretation of the complex glycan ExD spectra. Here, cellobiose-Na(+) was used as the model system to investigate the fragmentation behavior of metal-adducted glycans under irradiation of electrons with energy exceeding their ionization potential, and served as the basis on which a novel electronic excitation dissociation (EED) mechanism was proposed. It was found that ionization of the glycan produces a mixture of radical cations and ring-opened distonic ions. These distonic ions then capture a low-energy electron to produce diradicals with trivial singlet-triplet splitting, and subsequently undergo radical-induced dissociation to produce a variety of fragment ions, the abundances of which are influenced by the stability of the distonic ions from which they originate. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
26
|
Yuan H, Liu L, Gu J, Liu Y, Fang M, Zhao Y. Distinguishing isomeric aldohexose-ketohexose disaccharides by electrospray ionization mass spectrometry in positive mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2167-2174. [PMID: 26467229 DOI: 10.1002/rcm.7294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/16/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The identification of the structure of carbohydrates is challenging because of their complex composition of monosaccharide units, linkage position and anomeric configuration. We used a combination of principle component analysis (PCA) and tandem mass spectrometry (MS/MS), including collision-induced dissociation (CID) and higher energy collision dissociation (HCD), to distinguish four aldohexose-ketohexose isomers, sucrose, turanose, maltulose, and palatinose, which are composed of glucose and fructose. METHODS The electrospray ionization (ESI)-MS/MS spectra of the lithium and sodium adducts of the glucopyranosyl fructose (Glc-Fru) isomers were recorded on two independent mass spectrometers using CID (MicroTOF QII) and HCD (Q-Exactive Orbitrap). The differences between the fragment ions were evaluated by the PCA models. The glycosidic bond cleavage mechanism of lithiated sucrose was verified by a deuterium-labeling experiment combined with density functional theory calculations (Gaussian 09). RESULTS The main fragment ions in the MS/MS spectra from the glycosidic bond decomposition, cross-ring cleavage (-90 Da), and dehydration of the precursor ions of m/z 349 ([M+Li](+)) and m/z 365 ([M+Na](+)) were observed. Surprisingly, cross-ring cleavage and dehydration of the precursor ions were rarely observed in both lithiated and sodiated sucrose. There were significant differences in the fragmentation patterns and relative abundances of fragment ions in second-order mass spectrometry, which allowed discriminant models to be constructed for the alkali adducts and collision modes. CONCLUSIONS Glc-Fru isomers were discriminated in the PCA score plots for their lithium and sodium adducts by using different collision modes. The results showed that HCD-MS/MS is an ideal tool for differentiating lithium adducts, whereas, CID-MS/MS is better for discriminating sodium adducts. The hydrogen migration of the hydroxyl group at C3 of the fructose unit caused the glycosidic bond decomposition of lithiated sucrose.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, China
| | - Liu Liu
- Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jinping Gu
- Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yan Liu
- Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yufen Zhao
- Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Huang Y, Dodds ED. Discrimination of Isomeric Carbohydrates as the Electron Transfer Products of Group II Cation Adducts by Ion Mobility Spectrometry and Tandem Mass Spectrometry. Anal Chem 2015; 87:5664-8. [PMID: 25955237 DOI: 10.1021/acs.analchem.5b00759] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and unambiguous distinction of isomeric carbohydrate structures persists as a tremendous analytical challenge. This paper reports the first exploitation of carbohydrate/metal ion interactions in concert with gas-phase ion chemistry to improve discrimination of oligosaccharide isomers by both ion mobility spectrometry and tandem mass spectrometry. This is demonstrated for two isomeric pentasaccharides and two isomeric hexasaccharides, each studied in an underivatized form as their calcium ion adducts, barium ion adducts, and gas-phase electron transfer products thereof. With appropriate selection of the charge carrier, transfer of a single electron to the carbohydrate metal ion adducts resulted in isomer-distinguishing shifts in their ion/neutral collision cross sections and the appearance of unique features in their vibrational activation/dissociation spectra. These findings suggest novel and elegant gas-phase strategies for rapid differentiation of isomeric oligosaccharides.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
28
|
Liu X, Wesdemiotis C. Electron transfer dissociation of doubly charged ions with different cationizing agents. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:713-723. [PMID: 26579927 DOI: 10.1255/ejms.1393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electron transfer dissociation (ETD) studies have been performed on a peptide and a synthetic polysaccharide doubly charged by different cationization agents. The ETD of protonated-sodiated bombesin gave rise to contiguous series of abundant c- and z-type ions that identified the complete sequence. ETD of the doubly protonated peptide produced a different fragment distribution, which also allowed for complete sequence coverage, but the relative intensities of some sequence ions were very small. Collisionally activated dissociation (CAD) of either precursor rendered limited sequence information. ETD of the sodiated-ammoniated pentamer of a starch-derived linear polysaccharide caused extensive fragmentation through cross-ring cleavages that revealed the possible position of a hydroxyethyl substituent on the saccharide ring. In contrast, ETD of the di-sodiated pentasaccharide did not produce a structure-revealing fragmentation pattern. On the other hand, CAD resulted in efficient glycosidic bond cleavages, either directly (from the sodiated-ammoniated precursor) or via multi-stage fragmentation (from the di-sodiated precursor), which indicated that hydroxyethylation occurs randomly at any saccharide repeat unit along the chain. Overall, the use of different cationizing agents complements the information available by using identical charge sites and opens or enhances ETD pathways that unveil valuable sequence or positional information.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA. Current address: Covance Inc., 3301 Kinsman Blvd., Madison, WI 53704, USA.
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|