1
|
Chen B, Pathak R, Subekti A, Cheng X, Singh S, Ostermeyer-Fay AG, Hannun YA, Luberto C, Canals D. Critical Evaluation of Sphingolipids Detection by MALDI-MSI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636486. [PMID: 39975012 PMCID: PMC11838543 DOI: 10.1101/2025.02.04.636486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The increasing interest in the role of sphingolipids in (patho)physiology has led to the demand for visualization of these lipids within tissue samples (both from animal models and patient specimens) using techniques such as matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While increasingly adopted, detection of sphingolipids with MALDI-MSI is challenging due to: i) the significant structural variations of sphingolipid molecules, ii) the potential breakdown of the more complex molecules into structurally simpler species which may confound the analysis, and iii) the great difference in levels among sphingolipid classes and subspecies, with the low-abundant ones often being close to the detection limit. In this study, we adopted a multi-pronged approach to establish a robust pipeline for the detection of sphingolipids by MALDI-MSI and to establish best practices and limitations of this technology. First, we evaluated the more commonly adopted methods [2,5-Dihydroxyacetophenon (DHA) or 2,5-Dihydroxybenzoic acid (DHB) matrix in positive ion mode and 1,5-Diaminonaphthalene (DAN) matrix in negative ion mode] using MALDI-MS on reference standards. These standards were used at ratios similar to their relative levels in biological samples to evaluate signal artifacts originating from fragmentation of more complex sphingolipids and impacting low level species. Next, by applying the most appropriate protocol for each sphingolipid class, MALDI-MSI signals were validated in cell culture by modulating specific sphingolipid species using sphingolipid enzymes and inhibitors. Finally, the optimized parameters were utilized on breast cancer tissue from the PyMT mouse model. We report the optimal signal for sphingomyelin (SM) and, for the first time, Sph in DHB positive ion mode (in cells and PyMT tissue), and the validated detection of ceramides and glycosphingolipids in DAN negative ion mode. We document the extensive fragmentation of SM into sphingosine-1-phosphate (S1P) and even more so into ceramide-1-phosphate (C1P) using DAN in negative ion mode and its effect in generating an artifactual C1P tissue signal; we also report the lack of detectable signal for S1P and C1P in biological samples (cells and tissue) using the more suitable DHB positive ion mode protocol.
Collapse
|
2
|
Anderson DM, Kotnala A, Migas LG, Patterson NH, Tideman L, Cao D, Adhikari B, Messinger JD, Ach T, Tortorella S, Van de Plas R, Curcio CA, Schey KL. Lysolipids are prominent in subretinal drusenoid deposits, a high-risk phenotype in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1258734. [PMID: 38186747 PMCID: PMC10769005 DOI: 10.3389/fopht.2023.1258734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.
Collapse
Affiliation(s)
| | - Ankita Kotnala
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Lukasz G. Migas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | | | - Léonore Tideman
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Bibek Adhikari
- Vision Science Graduate Program, University of Alabama at Birmingham, Birmingham AL
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Sara Tortorella
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Raf Van de Plas
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville TN
| |
Collapse
|
3
|
Gordon WC, Kautzmann MAI, Jun B, Cothern ML, Fang Z, Bazan NG. Rod-specific downregulation of omega-3 very-long-chain polyunsaturated fatty acid pathway in age-related macular degeneration. Exp Eye Res 2023; 235:109639. [PMID: 37659709 PMCID: PMC11371070 DOI: 10.1016/j.exer.2023.109639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.
Collapse
Affiliation(s)
- William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Megan L Cothern
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Cho KH, Sato N, Yamamoto M, Watanabe G, Taniguchi S, Murakami G, Abe SI. Histology of the optic nerve head with special reference to the layer-specific distribution of composite fibers at and near the lamina cribrosa: An immunohistochemical study using specimens from elderly donated cadavers. Ann Anat 2023; 247:152051. [PMID: 36693547 DOI: 10.1016/j.aanat.2023.152051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND This study aimed to demonstrate the composite fibers of the lamina cribrosa (LC) and their layer-specific distributions. The elastic fiber-rich septa, showing a cribriform arrangement in the optic nerve, may continue into the LC. METHODS Orbital content, including the long course of the optic nerve, was obtained from 25 elderly cadavers. Sagittal and cross-sections were prepared from each specimen. In addition to elastica Masson staining, immunohistochemistry was performed for elastin, glial fibrillary acidic protein (GFAP), S100 protein (S100), and CD68 in microglia. RESULTS The LC beam usually had fewer elastic fibers than the septa, but an elastic fiber-rich zone was observed along the scleral flange. GFAP-positive fibers were rich in the prelaminar area, whereas S100-positive fibers were rich in all layers of the LC. Double-positive (GFAP+/S100+) fibers were present in the prelaminar area. In contrast, S100-single positive fibers were evident in the LC and retrolaminar areas and were likely to insert into a sclera-choroid border area. The density of macrophages and microglia was not different between the septa and LC. Individual variations were observed in the distribution and density of the nerve-associated fibrous tissues. CONCLUSION The LC beam was quite different from the septa in the composite fibers and architecture. Transverse fibers, dominant in the LC beam, corresponded to fibrous processes of astrocytes and other nerve-associated fibrous tissues. Many of these nerve elements suggest low mechanical properties of the LC.
Collapse
Affiliation(s)
- Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, 895, Muwang-ro, Iksan-si, Jeollabuk-do 54538, the Republic of Korea.
| | - Noriyuki Sato
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| | | | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan; Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan.
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
5
|
Anderson DMG, Kotnala A, Messinger JD, Patterson NH, Spraggins JM, Curcio CA, Caprioli RM, Schey KL. High-Resolution Imaging Mass Spectrometry of Human Donor Eye: Photoreceptors Cells and Basal Laminar Deposit of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:3-7. [PMID: 37440006 DOI: 10.1007/978-3-031-27681-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pathologies of the retina are clinically visualized in vivo with OCT and ex vivo with immunohistochemistry. Although both techniques provide valuable information on prognosis and disease state, a comprehensive method for fully elucidating molecular constituents present in locations of interest is desirable. The purpose of this work was to use multimodal imaging technologies to localize the vast number of molecular species observed with matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) in aged and diseased retinal tissues. Herein, MALDI IMS was utilized to observe molecular species that reside in photoreceptor cells and also a basal laminar deposit from two human donor eyes. The molecular species observed to accumulate in these discrete regions can be further identified and studied to attempt to gain a greater understanding of biological processes occurring in debilitating eye diseases such as age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- David M G Anderson
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ankita Kotnala
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Heath Patterson
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
7
|
Coronado BNL, da Cunha FBS, de Toledo Nobrega O, Martins AMA. The impact of mass spectrometry application to screen new proteomics biomarkers in Ophthalmology. Int Ophthalmol 2021; 41:2619-2633. [PMID: 33811281 DOI: 10.1007/s10792-021-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In the search for molecular markers that aid in the early diagnosis and treatment of various human diseases, many studies have focused on changes in genes, their transcripts and protein products. Recent advances in proteomic methodologies, such as mass spectrometry (MS), generate new opportunities to obtain relevant information on normal and abnormal processes that occur in many important cell pathways. The human eye is a highly specialized and compartmentalized organ, and the interpretation of molecular biomarkers helps to evaluate its cellular structure, providing a broader molecular understanding that corroborates in the pathophysiology of ophthalmological diseases, with marked improvements in their diagnosis, prognosis and treatment. This review summarizes the most important protein biomarkers in Ophthalmology screened by MS tools. CONCLUSION The use of translational medicine techniques (as MS), integrating basic and clinical research, still transforms scientific findings, from laboratory researches to clinical applications, from the bedside into the community.
Collapse
Affiliation(s)
- Bruno Nobre Lins Coronado
- School of Medicine, Universidade de Brasilia, Brasília, DF, Brazil. .,Department of Ophthalmology, University Center CESMAC, Maceio, AL, Brazil.
| | | | | | - Aline Maria Araujo Martins
- School of Medicine, Universidade de Brasilia, Brasília, DF, Brazil. .,Translational Medicine Group, School of Medicine, University Center of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
8
|
Drake RR, Scott DA, Angel PM. Imaging Mass Spectrometry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Anderson DMG, Messinger JD, Patterson NH, Rivera ES, Kotnala A, Spraggins JM, Caprioli RM, Curcio CA, Schey KL. Lipid Landscape of the Human Retina and Supporting Tissues Revealed by High-Resolution Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2426-2436. [PMID: 32628476 PMCID: PMC8161663 DOI: 10.1021/jasms.0c00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human retina provides vision at light levels ranging from starlight to sunlight. Its supporting tissues regulate plasma-delivered lipophilic essentials for vision, including retinoids. The macula is an anatomic specialization for high-acuity and color vision that is also vulnerable to prevalent blinding diseases. The retina's exquisite architecture comprises numerous cell types that are aligned horizontally, yielding structurally distinct cell, synaptic, and vascular layers that are visible in histology and in diagnostic clinical imaging. MALDI imaging mass spectrometry (IMS) is now capable of uniting low micrometer spatial resolution with high levels of chemical specificity. In this study, a multimodal imaging approach fortified with accurate multi-image registration was used to localize lipids in human retina tissue at laminar, cellular, and subcellular levels. Multimodal imaging results indicate differences in distributions and abundances of lipid species across and within single cell types. Of note are distinct localizations of signals within specific layers of the macula. For example, phosphatidylethanolamine and phosphatidylinositol lipids were localized to central RPE cells, whereas specific plasmalogen lipids were localized to cells of the perifoveal RPE and Henle fiber layer. Subcellular compartments of photoreceptors were distinguished by PE(20:0_22:5) in the outer nuclear layer, PE(18:0_22:6) in outer and inner segments, and cardiolipin CL(70:5) in the mitochondria-rich inner segments. Several lipids, differing by a single double bond, have markedly different distributions between the central fovea and the ganglion cell and inner nuclear layers. A lipid atlas, initiated in this study, can serve as a reference database for future examination of diseased tissues.
Collapse
Affiliation(s)
- David M G Anderson
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Nathan H Patterson
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Emilio S Rivera
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Ankita Kotnala
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Richard M Caprioli
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
10
|
Vestal M, Vestal C, Li S, Parker K. The Seven S Criteria for Evaluating the Performance of a MALDI Mass Spectrometer for MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2521-2530. [PMID: 32877189 DOI: 10.1021/jasms.0c00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Our goal in this work is to evaluate a new combination linear/reflector MALDI-TOF instrument toward satisfying all "7S criteria" for the ideal MSI mass spectrometer. The linear analyzer satisfies all of the 7 criteria except for Specificity. The new instrument described here adds a reflector to provide up to 50,000 mass resolving power with ppm mass accuracy and with no sacrifice in speed, spatial resolution, and sensitivity demonstrated earlier for the linear MALDI-TOF. This instrument employs new laser optics that produces a 5 kHz laser beam with 2.5-25 μm diameter under computer control. The most important advance is the patented combination of laser and ion optics that provides very high efficiency for production and detection of ions generated by laser desorption using small diameter laser beams. This provides spectra with a wide dynamic range summing a relatively small number of laser shots/pixels. Rat and mouse brain tissues have been used for these initial studies. Examples of negative ion images of lipids and positive ion images from tryptic digestion of proteins are presented. These results demonstrate a very high speed for MSI. This speed is derived from a combination of high laser rate (5 kHz), fast motion of sample relative to the laser beam (20 mm/s), very high ionization efficiency (up to 50%), and the ability to acquire, process, and save spectra at a very high rate (1000/s). As a result, the speed that is possible is imposed by other limits, including the mass range, concentration of samples on the surface, and the spatial resolution required.
Collapse
Affiliation(s)
- Marvin Vestal
- SimulTOF Systems, Virgin Instruments Corporation, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| | - Christina Vestal
- SimulTOF Systems, Virgin Instruments Corporation, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| | - Sicheng Li
- SimulTOF Systems, Virgin Instruments Corporation, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| | - Kenneth Parker
- SimulTOF Systems, Virgin Instruments Corporation, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
11
|
Fernández-Vega A, Chicano-Gálvez E, Prentice BM, Anderson D, Priego-Capote F, López-Bascón MA, Calderón-Santiago M, Avendaño MS, Guzmán-Ruiz R, Tena-Sempere M, Fernández JA, Caprioli RM, Malagón MM. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders. Talanta 2020; 219:121184. [PMID: 32887102 DOI: 10.1016/j.talanta.2020.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is increasingly recognized for its potential in the discovery of novel biomarkers directly from tissue sections. However, there are no MALDI IMS studies as yet on the adipose tissue, a lipid-enriched tissue that plays a pivotal role in the development of obesity-associated disorders. Herein, we aimed at developing an optimized method for analyzing adipose tissue lipid composition under both physiological and pathological conditions by MALDI IMS. Our studies showed an exacerbated lipid delocalization from adipose tissue sections when conventional strategies were applied. However, our optimized method using conductive-tape sampling and 2,5-dihydroxybenzoic acid (DHB) as a matrix, preserved the anatomical organization and minimized lipid diffusion from sample sections. This method enabled the identification of a total of 625 down-regulated and 328 up-regulated m/z values in the adipose tissue from a rat model of extreme obesity as compared to lean animals. Combination of MALDI IMS and liquid chromatography (LC)-MS/MS data identified 44 differentially expressed lipid species between lean and obese animals, including phospholipids and sphingomyelins. Among the lipids identified, SM(d18:0_18:2), PE(P-16:0_20:0), and PC(O-16:0_16:1) showed a differential spatial distribution in the adipose tissue of lean vs. obese animals. In sum, our method provides a valuable new tool for research on adipose tissue that may pave the way for the identification of novel biomarkers of obesity and metabolic disease.
Collapse
Affiliation(s)
- A Fernández-Vega
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | | | - B M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - D Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - F Priego-Capote
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | - M A López-Bascón
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | | | - M S Avendaño
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - R Guzmán-Ruiz
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - M Tena-Sempere
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - J A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - R M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - M M Malagón
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain.
| |
Collapse
|
12
|
Thoman ME, McKarns SC. Metabolomic Profiling in Neuromyelitis Optica Spectrum Disorder Biomarker Discovery. Metabolites 2020; 10:metabo10090374. [PMID: 32961928 PMCID: PMC7570337 DOI: 10.3390/metabo10090374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
There is no specific test for diagnosing neuromyelitis optica spectrum disorder (NMOSD), a disabling autoimmune disease of the central nervous system. Instead, diagnosis relies on ruling out other related disorders with overlapping clinical symptoms. An urgency for NMOSD biomarker discovery is underscored by adverse responses to treatment following misdiagnosis and poor prognosis following the delayed onset of treatment. Pathogenic autoantibiotics that target the water channel aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) contribute to NMOSD pathology. The importance of early diagnosis between AQP4-Ab+ NMOSD, MOG-Ab+ NMOSD, AQP4-Ab− MOG-Ab− NMOSD, and related disorders cannot be overemphasized. Here, we provide a comprehensive data collection and analysis of the currently known metabolomic perturbations and related proteomic outcomes of NMOSD. We highlight short chain fatty acids, lipoproteins, amino acids, and lactate as candidate diagnostic biomarkers. Although the application of metabolomic profiling to individual NMOSD patient care shows promise, more research is needed.
Collapse
Affiliation(s)
- Maxton E. Thoman
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Susan C. McKarns
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
13
|
Vestal M, Li L, Dobrinskikh E, Shi Y, Wang B, Shi X, Li S, Vestal C, Parker K. Rapid MALDI-TOF molecular imaging: Instrument enhancements and their practical consequences. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4423. [PMID: 31314129 DOI: 10.1002/jms.4423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A new high performance linear MALDI-TOF mass spectrometer provides both high spatial resolution and high speed. This instrument employs a new ion optics system with a grounded ion source and efficient transfer and detection of ions over a broad mass range. This provides very high sensitivity, precision, and an extended dynamic range for both positive and negative ion detection. Here we demonstrate the capabilities of this system by imaging pancreatic tissue samples from rats and mice.
Collapse
Affiliation(s)
- Marvin Vestal
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Bowen Wang
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, 43210
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Sicheng Li
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Christina Vestal
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Kenneth Parker
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| |
Collapse
|
14
|
Harris A, Roseborough A, Mor R, Yeung KKC, Whitehead SN. Ganglioside Detection from Formalin-Fixed Human Brain Tissue Utilizing MALDI Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:479-487. [PMID: 31971797 DOI: 10.1021/jasms.9b00110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is used to perform mass spectrometric analysis directly on biological samples providing visual and anatomical spatial information on molecules within tissues. A current obscuration of MALDI-IMS is that it is largely performed on fresh frozen tissue, whereas clinical tissue samples stored long-term are fixed in formalin, and the fixation process is thought to cause signal suppression for lipid molecules. Studies have shown that fresh frozen tissue sections applied with an ammonium formate (AF) wash prior to matrix application in the MALDI-IMS procedure display an increase in observed signal intensity and sensitivity for lipid molecules detected within the brain while maintaining the spatial distribution of molecules throughout the tissue. In this work, we investigate the viability of formalin-fixed tissue imaging in a clinical setting by comparing MALDI data of fresh frozen and postfixed rat brain samples, along with postfixed human brain samples washed with AF to assess the capabilities of ganglioside analysis in MALDI imaging of formalin-fixed tissue. Results herein demonstrate that MALDI-IMS spectra for gangliosides, including GM1, were significantly enhanced in fresh frozen rat brain, formalin-fixed rat brain, and formalin-fixed human brain samples through the use of an AF wash. Improvements in MALDI-IMS image quality were demonstrated, and the spatial distribution of molecules was retained. Results indicate that this method will allow for the analysis of gangliosides from formalin-fixed clinical samples, which can open additional avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Aaron Harris
- Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - A Roseborough
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Rahul Mor
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Ken K-C Yeung
- Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7
- Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
15
|
Chauhan MZ, Valencia AK, Piqueras MC, Enriquez-Algeciras M, Bhattacharya SK. Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1789-1798. [PMID: 31022733 PMCID: PMC6485987 DOI: 10.1167/iovs.18-25802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose To determine major differences in lipid profile between human control and glaucomatous optic nerve. To assess major enzymes in lipid pathway if aberration is revealed for a lipid class by profiling. Methods Optic nerve (ON) samples were obtained from human cadaveric donors [control (n = 11) and primary open-angle glaucoma (POAG; n = 12)]; the lipids were extracted using Bligh and Dyer methods. Control and glaucoma donors were all Caucasians age 72.3 ± 5.9 and 70.3 ± 10.5 (inclusive of both sexes), respectively. Lipids were extracted after weighing the tissue; the protein amounts in the corresponding aqueous phase of organic solvent extraction were recorded. High-resolution mass spectrometry was performed using a Q-exactive mass spectrometer coupled with an EASY-nLC 1000 liquid chromatograph instrument. Bioinformatics and statistical analysis were performed using LipidSearch v.4.1 and MetaboAnalyst 4.0/STATA 14.2. Protein amounts were determined using Bradford's method. Western blot, ELISA, and immunohistochemistry utilized established protocols and were performed for protein quantification and localization, respectively. Additional donor tissues were utilized for Western blot, ELISA, and immunohistochemistry. Results Principal component analysis (PCA) placed control and glaucomatous ONs in two distinct groups based on analysis of lipid profiles. Total lipid, total phospholipids, total ceramide, and total sphingolipids were similar (without significant difference) between control and glaucoma. However, we found a significant increase in glucosylsphingosine in glaucoma compared to control samples. We found similar levels of glucocerebrosidase (GBA), ceramide glucosyltransferase (UGCG), decreased nonlysosomal glucocerebrosidase (GBA2), and increased lysosomal and nonlysosomal acylsphingosine amidohydrolase (ASAH1 and ASAH2) levels in glaucomatous ON compared to control. Conclusions We found significant differences in glucosylsphingosine lipids, consistent with decreased GBA and GBA2 and increased ASAH1 and ASAH2 immunoreactivity in glaucoma, suggesting the potential impairment of sphingolipid enzymatic pathways in lysosomal and nonlysosomal cellular compartments.
Collapse
Affiliation(s)
- Muhammad Zain Chauhan
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Ann-Katrin Valencia
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Maria Carmen Piqueras
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Mabel Enriquez-Algeciras
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| |
Collapse
|
16
|
Development and evaluation of matrix application techniques for high throughput mass spectrometry imaging of tissues in the clinic. CLINICAL MASS SPECTROMETRY 2019; 12:7-15. [DOI: 10.1016/j.clinms.2019.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
|
17
|
Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton JJ, Doyle B, Oko R, Xu H, Panza L, Saewu A. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 2018; 72:18-41. [PMID: 30149090 PMCID: PMC6239905 DOI: 10.1016/j.plipres.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics/Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brendon Doyle
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
González de San Román E, Bidmon HJ, Malisic M, Susnea I, Küppers A, Hübbers R, Wree A, Nischwitz V, Amunts K, Huesgen PF. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct Funct 2018; 223:2767-2783. [PMID: 29633039 PMCID: PMC5995978 DOI: 10.1007/s00429-018-1660-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcβ. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.
Collapse
Affiliation(s)
- Estibaliz González de San Román
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Milena Malisic
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Küppers
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rene Hübbers
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Volker Nischwitz
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Pitter F Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
19
|
Femtosecond laser desorption ionization mass spectrometry imaging and multivariate analysis of lipids in pancreatic tissue. Biointerphases 2018; 13:03B416. [PMID: 29609468 DOI: 10.1116/1.5016301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Femtosecond laser desorption ionization mass spectrometry was used to obtain mass spectrometric (MS) images of lipids in human pancreatic tissue. The resulting MS images were analyzed using multivariate analysis, specifically principal component analysis and maximum a posteriori (MAP) reconstruction. Both analysis methods showed that the MS images can be separated into lipid and non-lipid areas. MAP analysis further indicated that the lipid areas are composed of phosphatidylcholines and fatty acids. However, definitive identification of the lipids cannot be made because none of the intact parent ions of phosphatidylcholine, sphingomyelins, and/or other lipids were observed. The MAP analysis also revealed that the non-lipid areas could be separated into components that are due to the sample chemical treatment and topography.
Collapse
|
20
|
Abstract
The visual system is comprised of many specialized cell types that are essential for relaying sensory information about an animal's surroundings to the brain. The cells present in ocular tissue are notoriously delicate, making it particularly challenging to section thin slices of unfixed tissue. Maintaining the morphology of the native tissue is crucial for accurate observations by either conventional staining techniques or in this instance matrix-assisted laser desorption ionization (MALDI IMS) or imaging using mass spectrometry. As vision loss is a significantly debilitating condition, studying molecular mechanisms involved in the process of vision loss is a critically important area of research.
Collapse
|
21
|
Anderson DMG, Ablonczy Z, Koutalos Y, Hanneken AM, Spraggins JM, Calcutt MW, Crouch RK, Caprioli RM, Schey KL. Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Sci Rep 2017; 7:17352. [PMID: 29229934 PMCID: PMC5725462 DOI: 10.1038/s41598-017-17402-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
Stargardt disease is a juvenile onset retinal degeneration, associated with elevated levels of lipofuscin and its bis-retinoid components, such as N-retinylidene-N-retinylethanolamine (A2E). However, the pathogenesis of Stargardt is still poorly understood and targeted treatments are not available. Utilizing high spatial and high mass resolution matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS), we determined alterations of lipid profiles specifically localized to the retinal pigment epithelium (RPE) in Abca4 -/- Stargardt model mice compared to their relevant background strain. Extensive analysis by LC-MS/MS in both positive and negative ion mode was required to accurately confirm the identity of one highly expressed lipid class, bis(monoacylgylercoro)phosphate (BMP) lipids, and to distinguish them from isobaric species. The same BMP lipids were also detected in the RPE of healthy human retina. BMP lipids have been previously associated with the endosomal/lysosomal storage diseases Niemann-Pick and neuronal ceroid lipofuscinosis and have been reported to regulate cholesterol levels in endosomes. These results suggest that perturbations in lipid metabolism associated with late endosomal/lysosomal dysfunction may play a role in the pathogenesis of Stargardt disease and is evidenced in human retinas.
Collapse
Affiliation(s)
- David M G Anderson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
- Preclinical Department, Ora Inc, Andover, MA, USA
| | - Yiannis Koutalos
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Anne M Hanneken
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Nashville, TN, USA
| | - M Wade Calcutt
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rosalie K Crouch
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Nashville, TN, USA
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
23
|
Chen Y, Jester JV, Anderson DM, Marchitti SA, Schey KL, Thompson DC, Vasiliou V. Corneal haze phenotype in Aldh3a1 -null mice: In vivo confocal microscopy and tissue imaging mass spectrometry. Chem Biol Interact 2017; 276:9-14. [DOI: 10.1016/j.cbi.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022]
|
24
|
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation. Talanta 2017; 174:325-335. [PMID: 28738588 DOI: 10.1016/j.talanta.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection.
Collapse
|
25
|
Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, Drake RR. Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:927-935. [PMID: 28341601 DOI: 10.1016/j.bbapap.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
Significant progress has been made for tissue imaging of proteins using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). These advancements now facilitate mapping of a wide range of proteins, peptides, and post-translational modifications in a wide variety of tissues; however, the use of MALDI IMS to detect proteins from cardiac tissue is limited. This review discusses the most recent advances in protein imaging and demonstrates application to cardiac tissue, including the heart valve. Protein imaging by MALDI IMS allows multiplexed histological mapping of proteins and protein components that are inaccessible by antibodies and should be considered an important tool for basic and clinical cardiovascular research. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA.
| | - H Scott Baldwin
- Department of Pediatrics and Cell Development and Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John E Mayer
- Department of Cardiac Surgery, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - David Bichell
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
26
|
Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci Rep 2016; 6:39571. [PMID: 28004822 PMCID: PMC5177920 DOI: 10.1038/srep39571] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7d, and 20d after permanent focal cerebral ischaemia. Within 24 h, N-acyl-phosphatidylethanolamines, lysophosphatidylcholine, and ceramide accumulated, while sphingomyelin disappeared. At the later resolution stages, bis(monoacylglycero)phosphate (BMP(22:6/22:6)), 2-arachidonoyl-glycerol, ceramide-phosphate, sphingosine-1-phosphate, lysophosphatidylserine, and cholesteryl ester appeared. At day 5 to 7, dihydroxy derivates of docosahexaenoic and docosapentaenoic acid, some of which may be pro-resolving mediators, e.g. resolvins, were found in the injured area, and BMP(22:6/22:6) co-localized with the macrophage biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers for phagocytizing macrophages/microglia cells and dead neurones, respectively.
Collapse
|
27
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Bowrey HE, Anderson DM, Pallitto P, Gutierrez DB, Fan J, Crouch RK, Schey KL, Ablonczy Z. Imaging mass spectrometry of the visual system: Advancing the molecular understanding of retina degenerations. Proteomics Clin Appl 2016; 10:391-402. [PMID: 26586164 DOI: 10.1002/prca.201500103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/15/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022]
Abstract
Visual sensation is fundamental for quality of life, and loss of vision to retinal degeneration is a debilitating condition. The eye is the only part of the central nervous system that can be noninvasively observed with optical imaging. In the clinics, various spectroscopic methods provide high spatial resolution images of the fundus and the developing degenerative lesions. However, the currently utilized tools are not specific enough to establish the molecular underpinnings of retinal diseases. In contrast, mass spectrometric imaging (MSI) is a powerful tool to identify molecularly specific disease indicators and classification markers. This technique is particularly well suited to the eye, where molecular information can be correlated with clinical data collected via noninvasive diagnostic imaging modalities. Recent studies during the last few recent years have uncovered a plethora of new spatially defined molecular information on several vision-threatening diseases, including age-related macular degeneration, Stargardt disease, glaucoma, cataract, as well as lipid disorders. Even though MS inside the eye cannot be performed noninvasively, by linking diagnostic and molecular information, these studies are the first step toward the development of smart ophthalmic diagnostic and surgical tools. Here, we provide an overview of current approaches applying MSI technology to ocular pathology.
Collapse
Affiliation(s)
- Hannah E Bowrey
- Brain Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - David M Anderson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patrick Pallitto
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Danielle B Gutierrez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jie Fan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|