1
|
Steidel M, Knecht S, Sweetman G, Klös-Hudak M, Kammerer K, Bantscheff M, Zinn N. Impact of Local Air Pressure on Ion Mobilities and Data Consistency in diaPASEF-Based High Throughput Proteomics. J Proteome Res 2025; 24:966-973. [PMID: 39853253 DOI: 10.1021/acs.jproteome.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K0) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts. By comparing experimental ion mobilities with historical weather data, we attributed observed drifts to fluctuations in the ground air pressure. Moderate air pressure changes of e.g. fifteen mbar induce ion mobility shifts of 0.025 Vs/cm2. These drifts negatively impact peptide quantification across consecutively acquired samples due to drift-dependent abundance changes and increased missing values for ions located at the boundaries of diaPASEF isolation windows, which cannot be corrected by postprocessing. To address this, we applied an in-batch mobility autocalibration feature on a run-wise basis, leading to full elimination of ion mobility drifts.
Collapse
Affiliation(s)
- Michael Steidel
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Sascha Knecht
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Gavain Sweetman
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Manuela Klös-Hudak
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Kerstin Kammerer
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Marcus Bantscheff
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Nico Zinn
- Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
2
|
Zhang M, Pan Y, Feng S, Chi C, Wu F, Ding CF. Rapid separation of bile acid isomers via ion mobility mass spectrometry by complexing with spiramycin. Anal Bioanal Chem 2024; 416:6563-6573. [PMID: 39373918 DOI: 10.1007/s00216-024-05553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Bile acid (BA) is one of the main active components of bile and has multiple isomers, the structure or content of its isomers often changes due to diseases and other health problems; thus, the accurate detection of BA isomers is very important. In this study, two groups of BA isomers of glycine-conjugated BAs and taurine-conjugated BAs were simultaneously separated and quantitatively analyzed by ion mobility mass spectrometry (IM-MS). Especially, baseline mobility separation between the isomers was achieved by the formation of binary complexes via simple interaction with spiramycin (SPM), for which a separation resolution (Rp-p) of 1.96 was reached. Moreover, BA isomers were quantitatively analyzed, and the limit of detection (LOD) of absolute quantification for TCDCA/TUDCA and GUDCA/GCDCA/GHDCA was 0.514 and 0.611 ng∙mL-1, respectively; the LODs for molar ratio ranges of relative quantification for TCDCA/TUDCA, GUDCA/GHDCA, and GCDCA/GHDCA were 1:18-30:1, 1:18-21:1, and 1:19-21:1, respectively. Additionally, BA isomers analyzed in pig bile powder and bear bile powder were measured, which were in good consistency with those labeled, revealing the differences in BA composition and content between the two powders. Finally, BA detection and recovery analyses were performed on serum samples, with a recovery rate of ≥73.69%, RSD of ≤6.8%, and SR (standard deviation of recoveries, the degree of difference between measured values and average recovery) of ≤1.27. Due to the simple, rapid, and lack of need for complex sample preparation and chromatographic separation, the proposed method can be an effective method for BA detection in practical samples.
Collapse
Affiliation(s)
- Manli Zhang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yao Pan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shugai Feng
- Department of Reproductive Center, 906 Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Ningbo, 315020, Zhejiang, China
| | - Chaoxian Chi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
3
|
B Oliveira PR, Leyva D, V Tose L, Weisbrod C, Kozhinov AN, Nagornov KO, Tsybin YO, Fernandez-Lima F. Revisiting Dissolved Organic Matter Analysis Using High-Resolution Trapped Ion Mobility and FT-ICR Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2400-2407. [PMID: 39265105 DOI: 10.1021/jasms.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The molecular level characterization of complex mixtures remains an analytical challenge. We have shown that the integration of complementary, high-resolution, gas-phase separations allows for chemical formula level isomeric content description. In the current work, we revisited the current challenges associated with the analysis of dissolved organic matter using high-resolution trapped ion mobility separation (TIMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In particular, we evaluated the separation capabilities provided by TIMS-MS compared to MS alone, the use of ICR complementary data acquisition (DAQ) systems and transient processing strategies, ICR cell geometries (e.g., Infinity cell vs harmonized cell), and magnetic field strengths (7 T vs 9.4 T vs 21 T) for the case of a Harney River DOM sample. Results showed that the external high-performance DAQ enables direct representation of mass spectra in absorption mode FT (aFT), doubling the MS resolution compared to the default magnitude mode FT (mFT). Changes between half- vs full-apodization result in greater MS signal/noise vs superior MS resolving power (RP); in the case of DOM analysis, a 45% increase in assigned formulas is observed when employing the DAQ half (Kaiser-type)-apodization window and aFT when compared to the default instrument mFT. Results showed the advantages of reprocessing 2D-TIMS-FT-ICR MS data with higher RP and magnetic field chemical formulas generated list acquired (e.g., 21 T led to a 24% increase in isomers reported) or the implementation of alternative strategies.
Collapse
Affiliation(s)
- Pablo R B Oliveira
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Lilian V Tose
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Chad Weisbrod
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building 1, 1015 Lausanne, Switzerland
| | | | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building 1, 1015 Lausanne, Switzerland
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
4
|
Miller SA, Jeanne Dit Fouque K, Mebel AM, Chandler KB, Fernandez-Lima F. Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences. J Phys Chem B 2024; 128:8869-8877. [PMID: 39226480 PMCID: PMC11421426 DOI: 10.1021/acs.jpcb.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fucosylated carbohydrate antigens play critical roles in physiology and pathology with function linked to their structural details. However, the separation and structural characterization of isomeric fucosylated epitopes remain challenging analytically. Here, we report for the first time the influence of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) and halogen anions (Cl-, Br-, and I-) on the gas-phase conformational landscapes of common fucosylated trisaccharides (Lewis A, X, and H types 1 and 2) and tetrasaccharides (Lewis B and Y) using trapped ion mobility spectrometry coupled to mass spectrometry and theoretical calculations. Inspection of the mobility profiles of individual standards showed a dependence on the number of mobility bands with the oligosaccharide and the alkali metal and halogen; collision cross sections are reported for all of the observed species. Results showed that trisaccharides (Lewis A, X, and H types 1 and 2) can be best mobility resolved in the positive mode using the [M + Li]+ molecular ion form (baseline resolution r ≈ 2.88 between Lewis X and A); tetrasaccharides can be best mobility resolved in the negative mode using the [M + I]- molecular ion form (baseline separation r ≈ 1.35 between Lewis B and Y). The correlation between the number of oligosaccharide conformers as a function of the molecular ion adduct was studied using density functional theory. Theoretical calculations revealed that smaller cations can form more stable structures based on the number of coordinations, while larger cations induced greater oligosaccharide reorganizations; candidate structures are proposed to better understand the gas-phase oligosaccharide rearrangement trends. Inspection of the candidate structures suggests that the interplay between ion size/charge density and molecular structure dictated the conformational preferences and, consequently, the number of mobility bands and the mobility separation across isomers. This work provides a fundamental understanding of the gas-phase structural dynamics of fucosylated oligosaccharides and their interaction with alkali metals and halogens.
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Brown Chandler
- Translational Glycobiology Institute, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Stroganova I, Toprakcioglu Z, Willenberg H, Knowles TPJ, Rijs AM. Unraveling the Structure and Dynamics of Ac-PHF6-NH 2 Tau Segment Oligomers. ACS Chem Neurosci 2024; 15:3391-3400. [PMID: 39215387 PMCID: PMC11413852 DOI: 10.1021/acschemneuro.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aggregation of the proteins tau and amyloid-β is a salient feature of Alzheimer's disease, the most common form of neurodegenerative disorders. Upon aggregation, proteins transition from their soluble, monomeric, and functional state into insoluble, fibrillar deposits through a complex process involving a variety of intermediate species of different morphologies, including monomers, toxic oligomers, and insoluble fibrils. To control and direct peptide aggregation, a complete characterization of all species present and an understanding of the molecular processes along the aggregation pathway are essential. However, this is extremely challenging due to the transient nature of oligomers and the complexity of the reaction networks. Therefore, we have employed a combined approach that allows us to probe the structure and kinetics of oligomeric species, following them over time as they form fibrillar structures. Targeting the tau protein peptide segment Ac-PHF6-NH2, which is crucial for the aggregation of the full protein, soft nano-electrospray ionization combined with ion mobility mass spectrometry has been employed to study the kinetics of heparin-induced intact oligomer formation. The oligomers are identified and characterized using high-resolution ion mobility mass spectrometry, demonstrating that the addition of heparin does not alter the structure of the oligomeric species. The kinetics of fibril formation is monitored through a Thioflavin T fluorescence assay. Global fitting of the kinetic data indicates that secondary nucleation plays a key role in the aggregation of the Ac-PHF6-NH2 tau segment, while the primary nucleation rate is greatly accelerated by heparin.
Collapse
Affiliation(s)
- Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Hannah Willenberg
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Fouque KJD, Fernandez-Rojas M, Roque AE, Fernandez-Lima F. Top-Down Structural Characterization of Native Ubiquitin Combining Solution-Stable Isotope Labeling, Trapped Ion Mobility Spectrometry, and Tandem Electron Capture Dissociation Mass Spectrometry. Anal Chem 2024; 96:14963-14970. [PMID: 39214608 PMCID: PMC11798544 DOI: 10.1021/acs.analchem.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solution-phase hydrogen/deuterium exchange (HDX) coupled to native ion mobility spectrometry mass spectrometry (IMS-MS) can provide complementary structural information about the conformational dynamics of biological molecules. In the present work, the solution-stable isotope labeling (SIL) combined with trapped ion mobility spectrometry (TIMS) in tandem with top-down electron capture dissociation (ECD) is illustrated for the structural characterization of the solution native states of ubiquitin. Four different ubiquitin electrospray solution conditions: (i) single-tip nondeuterated, (ii) theta tip for online SIL HDX, (iii) single-tip SIL-deuterated, and (iv) theta tip for online SIL H/D back exchange (HDbX), were investigated to assess the H/D exchange reactivities of native ubiquitin. The combination of TIMS and ECD in a q-ToF MS instrument allowed for additional inspection of gas-phase HDbX added by top-down fragmentation, revealing the exposed and protected residues with limited scrambling effects (e.g., intramolecular H/D migration). A native charge state distribution (5+ to 7+) and TIMS profiles were observed under the single-tip nondeuterated solution conditions. Mass shift distributions of ∼40, ∼104, and ∼87D were observed when incorporating deuterium for online SIL HDX, SIL HDX, and online SIL HDbX, respectively, while retaining similar conformational states. ECD fragmentation allowed for the localization of the deuterated labeled residues of the peptide fragments, with a sequence coverage of ∼90%, for each of the ubiquitin solution condition. Changes in the TIMS trapping time settings (∼70 to ∼795 ms) were used to determine the H/D back exchange dynamics of native ubiquitin. HDbX-TIMS-q-ECD-MS/MS exhibited H/D back exchanges in the six-residue C-terminal tail as well as around Lys6, Lys11, Lys33, Lys48, and Lys63 residues, indicating that these regions are the most exposed area (less protected hydrogens) of ubiquitin as compared to the rest of the core residues that adopt a compact β-grasp fold (protected hydrogens), which was consistent with the accessible surface area of ubiquitin. The present data highlight for the first time consistency between the solution HDX and gas-phase HDbX-TIMS data for native studies.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Meiby Fernandez-Rojas
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Anelis E. Roque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
7
|
Fouque KJD, Molano-Arevalo JC, Leng F, Fernandez-Lima F. Conformational and Structural Characterization of Knotted Proteins. Biochemistry 2024; 63:2293-2299. [PMID: 39189377 PMCID: PMC11790308 DOI: 10.1021/acs.biochem.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Knotted proteins are fascinating natural biomolecules whose backbones entangle themselves in a knot. Their particular knotted configurations provide them with a wide range of topological features. However, their folding/unfolding mechanisms, stability, and function are poorly understood. In the present work, native trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used for characterizing structural features of two model knotted proteins: a Gordian 52 knot ubiquitin C-terminal hydrolase (UCH) and a Stevedore 61 knot (α-haloacid dehalogenase, DehI). Experimental results showed structural transitions of UCH and DehI as a function of solution composition (0-50% MeOH) and temperature (T ∼20-95 °C). An increase in the protein charge states and collision cross sections (∼2750-8750 Å2 and ∼3250-15,385 Å2 for UCH and DehI, respectively) with the solution organic content (OC) and temperature suggested a three-step unfolding pathway with at least four structural transitions. Results also showed that the integrity of the UCH knot core was more resistant to thermal unfolding when compared to DehI; however, both knot cores can be disrupted with the increase in the solution OC. Additional enzymatic digestion experiments using carboxypeptidase Y combined with molecular dynamics simulations showed that the knot core was preserved between Glu20 and Glu188 and Arg89 and His304 residues for UCH and DehI, respectively, where disruption of the knot core led to structural collapse followed by unfolding events. This work highlights the potential of solution OC and temperature studies combined with native TIMS-MS for the comprehensive characterization of knotted proteins to gain a better understanding of their structural transitions.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Juan Camilo Molano-Arevalo
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
8
|
Djambazova K, Gibson-Corley KN, Freiberg JA, Caprioli RM, Skaar EP, Spraggins JM. MALDI TIMS IMS Reveals Ganglioside Molecular Diversity within Murine S. aureus Kidney Tissue Abscesses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1692-1701. [PMID: 39052897 PMCID: PMC11311236 DOI: 10.1021/jasms.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.
Collapse
Affiliation(s)
- Katerina
V. Djambazova
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jeffrey A. Freiberg
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Division
of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Jeffrey M. Spraggins
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Jaspers YRJ, Meyer SW, Pras-Raves ML, Dijkstra IME, Wever EJM, Dane AD, van Klinken JB, Salomons GS, Houtkooper RH, Engelen M, Kemp S, Van Weeghel M, Vaz FM. Four-dimensional lipidomics profiling in X-linked adrenoleukodystrophy using trapped ion mobility mass spectrometry. J Lipid Res 2024; 65:100567. [PMID: 38795862 PMCID: PMC11234049 DOI: 10.1016/j.jlr.2024.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.
Collapse
Affiliation(s)
- Yorrick R J Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Amsterdam Neuroscience institute, Amsterdam, The Netherlands
| | | | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Inge M E Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Adrie D Dane
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Amsterdam Neuroscience institute, Amsterdam, The Netherlands; Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Amsterdam Neuroscience institute, Amsterdam, The Netherlands.
| | - Michel Van Weeghel
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Miller SA, Jeanne Dit Fouque K, Hard ER, Balana AT, Kaplan D, Voinov VG, Ridgeway ME, Park MA, Anderson GA, Pratt MR, Fernandez-Lima F. Top/Middle-Down Characterization of α-Synuclein Glycoforms. Anal Chem 2023; 95:18039-18045. [PMID: 38047498 PMCID: PMC10836061 DOI: 10.1021/acs.analchem.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
α-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked N-acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies. In the present work, for the first time, the potential of fast, high-resolution trapped ion mobility spectrometry (TIMS) preseparation in tandem with mass spectrometry assisted by an electromagnetostatic (EMS) cell, capable of electron capture dissociation (ECD), and ultraviolet photodissociation (213 nm UVPD) is illustrated for the characterization of α-synuclein positional glycoforms: T72, T75, T81, and S87 modified with a single O-GlcNAc. Top-down 213 nm UVPD and ECD MS/MS experiments of the intact proteoforms showed specific product ions for each α-synuclein glycoforms associated with the O-GlcNAc position with a sequence coverage of ∼68 and ∼82%, respectively. TIMS-MS profiles of α-synuclein and the four glycoforms exhibited large structural heterogeneity and signature patterns across the 8+-15+ charge state distribution; however, while the α-synuclein positional glycoforms showed signature mobility profiles, they were only partially separated in the mobility domain. Moreover, a middle-down approach based on the Val40-Phe94 (55 residues) chymotrypsin proteolytic product using tandem TIMS-q-ECD-TOF MS/MS permitted the separation of the parent positional isomeric glycoforms. The ECD fragmentation of the ion mobility and m/z separated isomeric Val40-Phe94 proteolytic peptides with single O-GlcNAc in the T72, T75, T81, and S87 positions provided the O-GlcNAc confirmation and positional assignment with a sequence coverage of ∼80%. This method enables the high-throughput screening of positional glycoforms and further enhances the structural mass spectrometry toolbox with fast, high-resolution mobility separations and 213 nm UVPD and ECD fragmentation capabilities.
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Eldon R Hard
- Department of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90007, United States
| | - Aaron T Balana
- Department of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90007, United States
| | - Desmond Kaplan
- KapScience LLC, Tewksbury, Massachusetts 01876, United States
| | | | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | | | - Matthew R Pratt
- Department of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90007, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
12
|
Liu FC, Ridgeway ME, Wootton CA, Theisen A, Panczyk EM, Meier F, Park MA, Bleiholder C. Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2232-2246. [PMID: 37638640 PMCID: PMC11162218 DOI: 10.1021/jasms.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar. The present work builds on this with an exploration of a top-down method that couples tandem-TIMS/MS with UVPD and parallel-accumulation serial fragmentation (PASEF) MS/MS analysis. We first survey types and structures of UVPD-specific fragment ions generated in the 2-3 mbar pressure regime of our instrument. Notably, we observe UVPD-induced fragment ions with multiple conformations that differ from those produced in the absence of UV irradiation. Subsequently, we discuss how MS/MS spectra of top-down fragment ions lend themselves ideally for probability-based scoring methods developed in the bottom-up proteomics field and how the ability to record automated PASEF-MS/MS spectra resolves ambiguities in the assignment of top-down fragment ions. Finally, we describe the coupling of tandem-TIMS/MS workflows with UVPD and PASEF-MS/MS analysis for native top-down protein analysis.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | | | | | | | | | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | | | - Christian Bleiholder
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
13
|
Liu FC, Cropley TC, Bleiholder C. Elucidating Structures of Protein Complexes by Collision-Induced Dissociation at Elevated Gas Pressures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2247-2258. [PMID: 37729591 PMCID: PMC11162217 DOI: 10.1021/jasms.3c00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ion activation methods carried out at gas pressures compatible with ion mobility separations are not yet widely established. This limits the analytical utility of emerging tandem-ion mobility spectrometers that conduct multiple ion mobility separations in series. The present work investigates the applicability of collision-induced dissociation (CID) at 1 to 3 mbar in a tandem-trapped ion mobility spectrometer (tandem-TIMS) to study the architecture of protein complexes. We show that CID of the homotetrameric protein complexes streptavidin (53 kDa), neutravidin (60 kDa), and concanavalin A (110 kDa) provides access to all subunits of the investigated protein complexes, including structurally informative dimers. We report on an "atypical" dissociation pathway, which for concanavalin A proceeds via symmetric partitioning of the precursor charges and produces dimers with the same charge states that were previously reported from surface induced dissociation. Our data suggest a correlation between the formation of subunits by CID in tandem-TIMS/MS, their binding strengths in the native tetramer structures, and the applied activation voltage. Ion mobility spectra of in situ-generated subunits reveal a marked structural heterogeneity inconsistent with annealing into their most stable gas phase structures. Structural transitions are observed for in situ-generated subunits that resemble the transitions reported from collision-induced unfolding of natively folded proteins. These observations indicate that some aspects of the native precursor structure is preserved in the subunits generated from disassembly of the precursor complex. We rationalize our observations by an approximately 100-fold shorter activation time scale in comparison to traditional CID in a collision cell. Finally, the approach discussed here to conduct CID at elevated pressures appears generally applicable also for other types of tandem-ion mobility spectrometers.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Tyler C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
14
|
Perchepied S, Zhou Z, Mitulović G, Eeltink S. Exploiting ion-mobility mass spectrometry for unraveling proteome complexity. J Sep Sci 2023; 46:e2300512. [PMID: 37746674 DOI: 10.1002/jssc.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
Collapse
Affiliation(s)
- Stan Perchepied
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Zhuoheng Zhou
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
15
|
Mejia G, Su L, Pandey P, Jeanne Dit Fouque K, McGoron AJ, Fernandez-Lima F, He J, Mebel AM, Leng F. Anticancer Drug Doxorubicin Spontaneously Reacts with GTP and dGTP. Chem Res Toxicol 2023; 36:660-668. [PMID: 37000908 DOI: 10.1021/acs.chemrestox.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Here, we reported a spontaneous reaction between anticancer drug doxorubicin and GTP or dGTP. Incubation of doxorubicin with GTP or dGTP at 37 °C or above yields a covalent product: the doxorubicin-GTP or -dGTP conjugate where a covalent bond is formed between the C14 position of doxorubicin and the 2-amino group of guanine. Density functional theory calculations show the feasibility of this spontaneous reaction. Fluorescence imaging studies demonstrate that the doxorubicin-GTP and -dGTP conjugates cannot enter nuclei although they rapidly accumulate in human SK-OV-3 and NCI/ADR-RES cells. Consequently, the doxorubicin-GTP and -dGTP conjugates are less cytotoxic than doxorubicin. We also demonstrate that doxorubicin binds to ATP, GTP, and other nucleotides with a dissociation constant (Kd) in the sub-millimolar range. Since human cells contain millimolar levels of ATP and GTP, these results suggest that doxorubicin may target ATP and GTP, energy molecules that support essential processes in living organisms.
Collapse
Affiliation(s)
- German Mejia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Popular Pandey
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Anthony J McGoron
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
16
|
Falconer TM, Schneider B, Baessmann C, Wendt K, Filipenko A. Combining trapped ion mobility spectrometry with liquid chromatography and tandem mass spectrometry for analysis of isomeric PDE-5 inhibitor analogs. J Pharm Biomed Anal 2023; 225:115210. [PMID: 36586385 DOI: 10.1016/j.jpba.2022.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The detection and identification of phosphodiesterase type 5 enzyme (PDE-5) inhibitors in dietary supplements poses an analytical challenge due to the large number of analogs and isomers currently available and the continued introduction of novel analogs. The use of trapped ion mobility spectrometry (TIMS) in conjunction with liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (MS/MS) was explored for the analysis of two groups of isomeric PDE-5 inhibitor analogs using a 5-minute method. Of the eight compounds studied, six were resolved by a combination of LC and TIMS; the two remaining isomers were distinguished by one or more unique product ions in the MS/MS spectrum. The results revealed that separation by LC corresponded to differences in substitution on the piperazine moiety of the PDE-5 inhibitors, while separation by TIMS corresponded to the position of a nitrogen atom in the fused ring region of the molecules. Samples prepared by spiking mixtures of varying amounts of the Group 2 isomers into a representative dietary supplement matrix were analyzed and concentrations determined from the mobility-adjusted extracted ion chromatograms exhibited relative standard deviations of 6.0 % or less for 17 of 20 measurements and recoveries between 80 % and 120 % for all measurements. Quantitative measurements from a short LC gradient were possible due to the reduced chemical background associated with the TIMS separation of co-eluting matrix compounds, which enabled acquisition of rapid and qualitatively relevant broadband collision induced dissociation spectra that didn't require precursor ion isolation; the reduced chemical background permits non-targeted detection of novel analogs and eliminates the need for a separate method for quantitative measurement.
Collapse
Affiliation(s)
- Travis M Falconer
- US Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, Cincinnati, OH, USA.
| | - Birgit Schneider
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | - Carsten Baessmann
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | - Karin Wendt
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | | |
Collapse
|
17
|
Atakay M. Monitoring Conformational Changes of Lysozyme–Polyelectrolyte Complexes Using Trapped Ion Mobility-Mass Spectrometry (IM-MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mehmet Atakay
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Depraz Depland A, Stroganova I, Wootton CA, Rijs AM. Developments in Trapped Ion Mobility Mass Spectrometry to Probe the Early Stages of Peptide Aggregation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:193-204. [PMID: 36633834 PMCID: PMC9896548 DOI: 10.1021/jasms.2c00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments. This would allow us to enhance the mobility separation and MS characterization. Trapped ion mobility spectrometry (TIMS) is an ion mobility technique known for its inherently high resolution and has successfully been applied to the analysis of protein conformations among others. To obtain conformational information on fragile peptide aggregates, the instrumental parameters of the TIMS-Quadrupole-Time-of-Flight mass spectrometer (TIMS-qToF-MS) have to be optimized to allow the study of intact aggregates and ensure their transmission toward the detector. Here, we investigate the suitability and application of TIMS to probe the aggregation process, targeting the well-characterized M307-N319 peptide segment of the TDP-43 protein, which is involved in the development of amyotrophic lateral sclerosis. By studying the influence of key parameters over the full mass spectrometer, such as source temperature, applied voltages or RFs among others, we demonstrate that by using an optimized instrumental method TIMS can be used to probe peptide aggregation.
Collapse
Affiliation(s)
- Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Fouque KJD, Miller SA, Pham K, Bhanu NV, Cintron-Diaz YL, Leyva D, Kaplan D, Voinov VG, Ridgeway ME, Park MA, Garcia BA, Fernandez-Lima F. Top-"Double-Down" Mass Spectrometry of Histone H4 Proteoforms: Tandem Ultraviolet-Photon and Mobility/Mass-Selected Electron Capture Dissociations. Anal Chem 2022; 94:15377-15385. [PMID: 36282112 PMCID: PMC11037235 DOI: 10.1021/acs.analchem.2c03147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms. The comparison between q-ECD-ToF MS/MS spectra and traditional Fourier-transform-ion cyclotron resonance-ECD MS/MS spectra of a H4 standard showed a similar sequence coverage (∼75%) with significant faster data acquisition in the ToF MS/MS platform (∼3 vs ∼15 min). Multiple mass shifts (e.g., 14 and 42 Da) were observed for the HeLa derived H4 proteoforms for which the top-down UVPD and ECD fragmentation analysis were consistent in detecting the presence of acetylated PTMs at the N-terminus and Lys5, Lys8, Lys12, and Lys16 residues, as well as methylated, dimethylated, and trimethylated PTMs at the Lys20 residue with a high sequence coverage (∼90%). The presented top-down results are in good agreement with bottom-up TIMS ToF MS/MS experiments and allowed for additional description of PTMs at the N-terminus. The integration of a 213 nm UV laser in the present platform allowed for UVPD events prior to the ion mobility-mass precursor separation for collision-induced dissociation (CID)/ECD-ToF MS. Selected c305+ UVPD fragments, from different H4 proteoforms (e.g., Ac + Me2, 2Ac + Me2 and 3Ac + Me2), exhibited multiple IMS bands for which similar CID/ECD fragmentation patterns per IMS band pointed toward the presence of conformers, adopting the same PTM distribution, with a clear assignment of the PTM localization for each of the c305+ UVPD fragment H4 proteoforms. These results were consistent with the biological "zip" model, where acetylation proceeds in the Lys16 to Lys5 direction. This novel platform further enhances the structural toolbox with alternative fragmentation mechanisms (UVPD, CID, and ECD) in tandem with fast, high-resolution mobility separations and shows great promise for global proteoform analysis.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Samuel A. Miller
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Yarixa L. Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | | | | | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
20
|
Jeanne Dit Fouque K, Sipe SN, Garabedian A, Mejia G, Su L, Hossen ML, Chapagain PP, Leng F, Brodbelt JS, Fernandez-Lima F. Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1103-1112. [PMID: 35687119 PMCID: PMC9280850 DOI: 10.1021/jasms.2c00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is an intrinsically disordered DNA-binding protein expressed during embryogenesis. In the present work, the conformational and binding dynamics of HMGA2 and HMGA2 in complex with a 22-nt (DNA22) and a 50-nt (DNA50) AT-rich DNA hairpin were investigated using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) under native starting solvent conditions (e.g., 100 mM aqueous NH4Ac) and collision-induced unfolding/dissociation (CIU/CID) as well as solution fluorescence anisotropy to assess the role of the DNA ligand when binding to the HMGA2 protein. CIU-TIMS-CID-MS/MS experiments showed a significant reduction of the conformational space and charge-state distribution accompanied by an energy stability increase of the native HMGA2 upon DNA binding. Fluorescence anisotropy experiments and CIU-TIMS-CID-MS/MS demonstrated for the first time that HMGA2 binds with high affinity to the minor groove of AT-rich DNA oligomers and with lower affinity to the major groove of AT-rich DNA oligomers (minor groove occupied by a minor groove binder Hoechst 33258). The HMGA2·DNA22 complex (18.2 kDa) 1:1 and 1:2 stoichiometry suggests that two of the AT-hook sites are accessible for DNA binding, while the other AT-hook site is probably coordinated by the C-terminal motif peptide (CTMP). The HMGA2 transition from disordered to ordered upon DNA binding is driven by the interaction of the three basic AT-hook residues with the minor and/or major grooves of AT-rich DNA oligomers.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - German Mejia
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Md Lokman Hossen
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry ( tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 2022; 147:2317-2337. [PMID: 35521797 PMCID: PMC9914546 DOI: 10.1039/d2an00335j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
22
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
23
|
Schessner JP, Voytik E, Bludau I. A practical guide to interpreting and generating bottom-up proteomics data visualizations. Proteomics 2022; 22:e2100103. [PMID: 35107884 DOI: 10.1002/pmic.202100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Mass-spectrometry based bottom-up proteomics is the main method to analyze proteomes comprehensively and the rapid evolution of instrumentation and data analysis has made the technology widely available. Data visualization is an integral part of the analysis process and it is crucial for the communication of results. This is a major challenge due to the immense complexity of MS data. In this review, we provide an overview of commonly used visualizations, starting with raw data of traditional and novel MS technologies, then basic peptide and protein level analyses, and finally visualization of highly complex datasets and networks. We specifically provide guidance on how to critically interpret and discuss the multitude of different proteomics data visualizations. Furthermore, we highlight Python-based libraries and other open science tools that can be applied for independent and transparent generation of customized visualizations. To further encourage programmatic data visualization, we provide the Python code used to generate all data Figures in this review on GitHub (https://github.com/MannLabs/ProteomicsVisualization). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Patricia Schessner
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Planegg, Germany
| | - Eugenia Voytik
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Planegg, Germany
| | - Isabell Bludau
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Planegg, Germany
| |
Collapse
|
24
|
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021; 9:813359. [PMID: 34993180 PMCID: PMC8724130 DOI: 10.3389/fchem.2021.813359] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers' sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
25
|
Phosphoproteomics Sample Preparation Impacts Biological Interpretation of Phosphorylation Signaling Outcomes. Cells 2021; 10:cells10123407. [PMID: 34943915 PMCID: PMC8699897 DOI: 10.3390/cells10123407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
The influence of phosphoproteomics sample preparation methods on the biological interpretation of signaling outcome is unclear. Here, we demonstrate a strong bias in phosphorylation signaling targets uncovered by comparing the phosphoproteomes generated by two commonly used methods-strong cation exchange chromatography-based phosphoproteomics (SCXPhos) and single-run high-throughput phosphoproteomics (HighPhos). Phosphoproteomes of embryonic stem cells exposed to ionizing radiation (IR) profiled by both methods achieved equivalent coverage (around 20,000 phosphosites), whereas a combined dataset significantly increased the depth (>30,000 phosphosites). While both methods reproducibly quantified a subset of shared IR-responsive phosphosites that represent DNA damage and cell-cycle-related signaling events, most IR-responsive phosphoproteins (>82%) and phosphosites (>96%) were method-specific. Both methods uncovered unique insights into phospho-signaling mediated by single (SCXPhos) versus double/multi-site (HighPhos) phosphorylation events; particularly, each method identified a distinct set of previously unreported IR-responsive kinome/phosphatome (95% disparate) directly impacting the uncovered biology.
Collapse
|
26
|
Jeanne Dit Fouque K, Wellmann M, Leyva Bombuse D, Santos-Fernandez M, Cintron-Diaz YL, Gomez-Hernandez ME, Kaplan D, Voinov VG, Fernandez-Lima F. Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5216-5223. [PMID: 34698320 PMCID: PMC8596503 DOI: 10.1039/d1ay01461g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present work, four, well-studied, model peptides (e.g., substance P, bradykinin, angiotensin I and AT-Hook 3) were used to correlate structural information provided by ion mobility and ECD/CID fragmentation in a TIMS-q-EMS-ToF MS/MS platform, incorporporating an electromagnetostatic cell (EMS). The structural heterogeneity of the model peptides was observed by (i) multi-component ion mobility profiles (high ion mobility resolving power, R ∼115-145), and (ii) fast online characteristic ECD fragmentation patterns per ion mobility band (∼0.2 min). Particularly, it was demonstrated that all investigated species were probably conformers, involving cis/trans-isomerizations at X-Pro peptide bond, following the same protonation schemes, in good agreement with previous ion mobility and single point mutation experiments. The comparison between ion mobility selected ECD spectra and traditional FT-ICR ECD MS/MS spectra showed comparable ECD fragmentation efficiencies but differences in the ratio of radical (˙)/prime (') fragment species (H˙ transfer), which were associated with the differences in detection time after the electron capture event. The analysis of model peptides using online TIMS-q-EMSToF MS/MS provided complementary structural information on the intramolecular interactions that stabilize the different gas-phase conformations to those obtained by ion mobility or ECD alone.
Collapse
Affiliation(s)
- K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - M Wellmann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - D Leyva Bombuse
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Y L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M E Gomez-Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - D Kaplan
- KapScience LLC, Tewksbury, MA 01876, USA
| | - V G Voinov
- e-MSion Inc., Corvallis, OR 97330, USA
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
27
|
Korzhenko O, Führer P, Göldner V, Olthuis W, Odijk M, Karst U. Microfluidic Electrochemistry Meets Trapped Ion Mobility Spectrometry and High-Resolution Mass Spectrometry-In Situ Generation, Separation, and Detection of Isomeric Conjugates of Paracetamol and Ethoxyquin. Anal Chem 2021; 93:12740-12747. [PMID: 34495637 DOI: 10.1021/acs.analchem.1c02791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last 3 decades, electrochemistry (EC) has been successfully applied in phase I and phase II metabolism simulation studies. The electrochemically generated phase I metabolite-like oxidation products can react with selected reagents to form phase II conjugates. During conjugate formation, the generation of isomeric compounds is possible. Such isomeric conjugates are often separated by high-performance liquid chromatography (HPLC). Here, we demonstrate a powerful approach that combines EC with ion mobility spectrometry to separate possible isomeric conjugates. In detail, we present the hyphenation of a microfluidic electrochemical chip with an integrated mixer coupled online to trapped ion mobility spectrometry (TIMS) and time-of-flight high-resolution mass spectrometry (ToF-HRMS), briefly chipEC-TIMS-ToF-HRMS. This novel method achieves results in several minutes, which is much faster than traditional separation approaches like HPLC, and was applied to the drug paracetamol and the controversial feed preservative ethoxyquin. The analytes were oxidized in situ in the electrochemical microfluidic chip under formation of reactive intermediates and mixed with different thiol-containing reagents to form conjugates. These were analyzed by TIMS-ToF-HRMS to identify possible isomers. It was observed that the oxidation products of both paracetamol and ethoxyquin form two isomeric conjugates, which are characterized by different ion mobilities, with each reagent. Therefore, using this hyphenated technique, it is possible to not only form reactive oxidation products and their conjugates in situ but also separate and detect these isomeric conjugates within only a few minutes.
Collapse
Affiliation(s)
- Oxana Korzhenko
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Pascal Führer
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Wouter Olthuis
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| |
Collapse
|
28
|
Meier F, Park MA, Mann M. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Mol Cell Proteomics 2021; 20:100138. [PMID: 34416385 PMCID: PMC8453224 DOI: 10.1016/j.mcpro.2021.100138] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in efficiency and ease of implementation have rekindled interest in ion mobility spectrometry, a technique that separates gas phase ions by their size and shape and that can be hybridized with conventional LC and MS. Here, we review the recent development of trapped ion mobility spectrometry (TIMS) coupled to TOF mass analysis. In particular, the parallel accumulation-serial fragmentation (PASEF) operation mode offers unique advantages in terms of sequencing speed and sensitivity. Its defining feature is that it synchronizes the release of ions from the TIMS device with the downstream selection of precursors for fragmentation in a TIMS quadrupole TOF configuration. As ions are compressed into narrow ion mobility peaks, the number of peptide fragment ion spectra obtained in data-dependent or targeted analyses can be increased by an order of magnitude without compromising sensitivity. Taking advantage of the correlation between ion mobility and mass, the PASEF principle also multiplies the efficiency of data-independent acquisition. This makes the technology well suited for rapid proteome profiling, an increasingly important attribute in clinical proteomics, as well as for ultrasensitive measurements down to single cells. The speed and accuracy of TIMS and PASEF also enable precise measurements of collisional cross section values at the scale of more than a million data points and the development of neural networks capable of predicting them based only on peptide sequences. Peptide collisional cross section values can differ for isobaric sequences or positional isomers of post-translational modifications. This additional information may be leveraged in real time to direct data acquisition or in postprocessing to increase confidence in peptide identifications. These developments make TIMS quadrupole TOF PASEF a powerful and expandable platform for proteomics and beyond.
Collapse
Affiliation(s)
- Florian Meier
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Functional Proteomics, Jena University Hospital, Jena, Germany.
| | - Melvin A Park
- Bruker Daltonics Inc, Billerica, Massachusetts, USA.
| | - Matthias Mann
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
29
|
Naylor CN, Reinecke T, Ridgeway ME, Park MA, Clowers BH. Implications of Blanc's Law for Use in Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2241-2250. [PMID: 34279925 DOI: 10.1021/jasms.1c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blanc's Law has served as a way to predict the mobilities of ions in mixed drift gases for over 100 years yet has remained largely unexplored using newer ion mobility spectrometry (IMS) configurations, including traveling wave and trapped IMS (TIMS) systems. Here, we evaluate a drift-tube IMS (DTIMS) and compare it to a similar set of experiments performed in TIMS. We found that Blanc's Law can be applied in a DTIMS to determine the mobility of an analyte in the minor gas component of a ternary mixed drift gas system within 2% error. Additionally, the calibration procedure for TIMS to convert elution voltages into a mobility value corrects for significant deviations (>4%) from Blanc's Law in the elution voltage domain. For the range of gas identities probed in this effort, up to an 11% error in calibrated mobilities was observed when using a gas mixture in the TIMS that differed from the gas used for the reference mobility. However, when the gas mixture within the TIMS was the same as the respective calibrant mobilities, calibration errors within the TIMS were as low as 0.01%. Interestingly, when probing the behavior of ions with argon-containing mixtures within the TIMS, the current accepted paradigm of elution voltage being proportional to inverse mobilities in TIMS calibrations procedures was shown to deviate substantially from the trends observed with DTIMS measurements. With this initial effort, foundations for future mixed drift gas measurements in TIMS are set for expanded analyte classes and larger molecules.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Mark E Ridgeway
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
30
|
Borotto NB, Graham KA. Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device. Anal Chem 2021; 93:9959-9964. [PMID: 34258993 DOI: 10.1021/acs.analchem.1c01188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion mobility separations (IMS) have increasingly been coupled with mass spectrometry to increase peak capacity and deconvolute complex mass spectra in proteomics workflows. IMS separations can be integrated prior to or following the collisional activation step. Post-activation IMS separations have demonstrated many advantages, yet few instrument platforms are capable of this feat. Here, we present the fragmentation of peptide ions within a commercially available trapped-ion mobility spectrometry device. Fragmentation is initiated prior to mobility analysis enabling the separation of generated product ions. The added separation step deconvolutes product ion spectra and permits improved annotation of product ions. Furthermore, we demonstrate the isolation and fragmentation of mobility separated product ions with the downstream quadrupole and collisional cell. When applied to melittin and ubiquitin, this ion mobility assisted pseudo-MS3 fragmentation approach generates sequence coverage ∼50% greater than that of typical MS2 analyses. We envision this ion-mobility-assisted fragmentation technique as the foundation of a powerful new pseudo-MS3 workflow for application toward middle- or top-down proteomics.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
31
|
Jeanne Dit Fouque K, Kaplan D, Voinov VG, Holck FHV, Jensen ON, Fernandez-Lima F. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Anal Chem 2021; 93:9575-9582. [PMID: 34170114 DOI: 10.1021/acs.analchem.1c01735] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comprehensive characterization of post-translationally modified histone proteoforms is challenging due to their high isobaric and isomeric content. Trapped ion mobility spectrometry (TIMS), implemented on a quadrupole/time-of-flight (Q-ToF) mass spectrometer, has shown great promise in discriminating isomeric complete histone tails. The absence of electron activated dissociation (ExD) in the current platform prevents the comprehensive characterization of unknown histone proteoforms. In the present work, we report for the first time the use of an electromagnetostatic (EMS) cell devised for nonergodic dissociation based on electron capture dissociation (ECD), implemented within a nESI-TIMS-Q-ToF mass spectrometer for the characterization of acetylated (AcK18 and AcK27) and trimethylated (TriMetK4, TriMetK9 and TriMetK27) complete histone tails. The integration of the EMS cell in a TIMS-q-TOF MS permitted fast mobility-selected top-down ECD fragmentation with near 10% efficiency overall. The potential of this coupling was illustrated using isobaric (AcK18/TriMetK4) and isomeric (AcK18/AcK27 and TriMetK4/TriMetK9) binary H3 histone tail mixtures, and the H3.1 TriMetK27 histone tail structural diversity (e.g., three IMS bands at z = 7+). The binary isobaric and isomeric mixtures can be separated in the mobility domain with RIMS > 100 and the nonergodic ECD fragmentation permitted the PTM localization (sequence coverage of ∼86%). Differences in the ECD patterns per mobility band of the z = 7+ H3 TriMetK27 molecular ions suggested that the charge location is responsible for the structural differences observed in the mobility domain. This coupling further enhances the structural toolbox with fast, high resolution mobility separations in tandem with nonergodic fragmentation for effective proteoform differentiation.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Desmond Kaplan
- KapScience, LLC., Tewksbury, Massachusetts 01876, United States
| | - Valery G Voinov
- e-MSion, Inc., Corvallis, Oregon 97330, United States.,Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Frederik H V Holck
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
32
|
Gao Z, Li L, Chen W, Ma Z, Li Y, Gao Y, Ding CF, Zhao X, Pan Y. Distinguishment of Glycan Isomers by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:9209-9217. [PMID: 34165974 DOI: 10.1021/acs.analchem.1c01461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in-depth study of glycan has drawn large research interests since it is one of the main biopolymers on the earth with a variety of biological functions. However, the distinguishment of glycans is still difficult due to the similarity of the monosaccharide building block, the anomer, and the linkage of glycosidic bonds. In this study, four novel and representative copper-bound diastereoisomeric complex ions were simultaneously detected in a single measurement by trapped ion mobility mass spectrometry, including mononuclear copper-bound dimeric ions [(Cu2+)(A)(l-Ser)-H]+ and [(Cu2+)(A)(l-His)-H]+, the mononuclear copper-bound trimeric ion [(Cu2+)(A)(l-Ser)(l-His)-H]+, and the binuclear copper-bound tetrameric ion [(Cu2+)2(A)(l-Ser)2(l-His)-3H]+ (where A denotes an oligosaccharide, and l-Ser and l-His denote l-serine and l-histidine, respectively). By combining the collision cross sections of complex ions, 23 oligosaccharide isomers were successfully distinguished including two pairs of sialylated glycan linkage isomers. In addition, due to the unique dissociation pathways of the trimeric ion, both the relative and absolute quantification of the individual isomer in the mixture could be determined using a mass spectrometry-based kinetic method. Finally, the method established above was successfully applied to the identification and quantification of glycan isomers in dairy beverages and juice. The method in the present study was sensitive to the fine difference of glycan isomers and might have wide applicability in glycoscience.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanji Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
33
|
Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Anal Bioanal Chem 2021; 413:4815-4824. [PMID: 34105020 DOI: 10.1007/s00216-021-03437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by intramolecular thioether cross-links formed between a dehydrated serine/threonine (dSer/dThr) and a cysteine residue. Prochlorosin 2.8 (Pcn2.8) is a class II lanthipeptide that exhibits a non-overlapping thioether ring pattern, for which no biological activity has been reported yet. The variant Pcn2.8[16RGD] has been shown to bind tightly to the αvβ3 integrin receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate structural signatures for the non-overlapping thioether ring pattern of Pcn2.8. CID experiments on Pcn2.8 yielded bi and yj fragments between the thioether cross-links, evidencing the presence of a non-overlapping thioether ring pattern. ECD experiments of Pcn2.8 showed a significant increase of hydrogen migration events near the residues involved in the thioether rings with a more pronounced effect at the dehydrated residues as compared to the cysteine residues. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P8A], [P11A], [P12A], [P8A/P11A], [P8A/P12A], [P11A/P12A], and [P8A/P11A/P12A] variants), demonstrated that Pcn2.8 adopts cis/trans-conformations at Pro8, Pro11, and Pro12 residues. These observations were complementary to recent NMR findings, for which only the Pro8 residue was evidenced to adopt cis/trans-orientations. This study highlights the analytical power of the TIMS-MS/MS workflow for the structural characterization of lanthipeptides and could be a useful tool in our understanding of the biologically important structural elements that drive the thioether cyclization process.
Collapse
|
34
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
35
|
Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nat Commun 2021; 12:1185. [PMID: 33608539 PMCID: PMC7896072 DOI: 10.1038/s41467-021-21352-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
The size and shape of peptide ions in the gas phase are an under-explored dimension for mass spectrometry-based proteomics. To investigate the nature and utility of the peptide collisional cross section (CCS) space, we measure more than a million data points from whole-proteome digests of five organisms with trapped ion mobility spectrometry (TIMS) and parallel accumulation-serial fragmentation (PASEF). The scale and precision (CV < 1%) of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS values solely based on the peptide sequence. Cross section predictions for the synthetic ProteomeTools peptides validate the model within a 1.4% median relative error (R > 0.99). Hydrophobicity, proportion of prolines and position of histidines are main determinants of the cross sections in addition to sequence-specific interactions. CCS values can now be predicted for any peptide and organism, forming a basis for advanced proteomics workflows that make full use of the additional information. Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS prediction.
Collapse
|
36
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
37
|
Will JM, Behrens A, Macke M, Quarles CD, Karst U. Automated Chiral Analysis of Amino Acids Based on Chiral Derivatization and Trapped Ion Mobility–Mass Spectrometry. Anal Chem 2020; 93:878-885. [DOI: 10.1021/acs.analchem.0c03481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonas M. Will
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Marcel Macke
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - C. Derrick Quarles
- Elemental Scientific Inc., 7277 World Communications Dr., Omaha, Nebraska 68022, United States
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| |
Collapse
|
38
|
Bleiholder C, Liu FC, Chai M. Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:16329-16333. [PMID: 32578979 DOI: 10.1021/acs.analchem.0c02052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
39
|
Barth M, Schmidt C. Native mass spectrometry-A valuable tool in structural biology. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4578. [PMID: 32662584 DOI: 10.1002/jms.4578] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein-ligand complexes essential. Classical techniques of structural biology include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo-electron microscopy. However, protein-ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high-resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Porter J, Dit Fouque KJ, Miksovska J, Fernandez-Lima F. Salt bridges govern the structural heterogeneity of heme protein interactions and porphyrin networks: microperoxidase-11. RSC Adv 2020; 10:33861-33867. [PMID: 35519052 PMCID: PMC9056719 DOI: 10.1039/d0ra04956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, a proteolytic digest of cytochrome c (microperoxidase 11, MP-11) was used as a model to study the structural aspects of heme protein interactions and porphyrin networks. The MP-11 structural heterogeneity was studied as a function of the starting pH (e.g., pH 3.1-6.1) and concentration (e.g., 1-50 μM) conditions and adduct coordination. Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) showed the MP-11 structural dependence of the charge state distribution and molecular ion forms with the starting pH conditions. The singly charged (e.g., [M]+, [M - 2H + NH4]+, [M - H + Na]+ and [M - H + K]+) and doubly charged (e.g., [M + H]2+, [M - H + NH4]2+, [M + Na]2+ and [M + K]2+) molecular ion forms were observed for all solvent conditions, although the structural heterogeneity (e.g., number of mobility bands) significantly varied with the pH value and ion form. The MP-11 dimer formation as a model for heme-protein protein interactions showed that dimer formation is favored toward more neutral pH and favored when assisted by salt bridges (e.g., NH4 +, Na+ and K+ vs. H+). Inspection of the dimer mobility profiles (2+ and 3+ charge states) showed a high degree of structural heterogeneity as a function of the solution pH and ion form; the observation of common mobility bands suggest that the different salt bridges can stabilize similar structural motifs. In addition, the salt bridge influence on the MP-11 dimer formations was measured using collision induced dissociation and showed a strong dependence with the type of salt bridge (i.e., a CE50 of 10.0, 11.5, 11.8 and 13.0 eV was observed for [2M + H]3+, [2M - H + NH4]3+, [2M + Na]3+ and [2M + K]3+, respectively). Measurements of the dimer equilibrium constant showed that the salt bridge interactions increase the binding strength of the dimeric species.
Collapse
Affiliation(s)
- J Porter
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
| | - K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
| | - J Miksovska
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
- Biomolecular Science Institute, Florida International University Miami FL 33199 USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
- Biomolecular Science Institute, Florida International University Miami FL 33199 USA
| |
Collapse
|
41
|
Neumann EK, Migas LG, Allen JL, Caprioli RM, Van de Plas R, Spraggins JM. Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry. Anal Chem 2020; 92:13084-13091. [PMID: 32668145 DOI: 10.1021/acs.analchem.0c02051] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolomics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI matrix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representative analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight metabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 μm) while maintaining broad coverage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, we have found >40 low molecular weight metabolites in human kidney tissue, such as argininic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. Future work will involve further exploring metabolomic profiles of human kidneys as a function of age, sex, and race.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Lukasz G Migas
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, Building 34, 2628 CD Delft, The Netherlands
| | - Jamie L Allen
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States.,Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, Building 34, 2628 CD Delft, The Netherlands
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
42
|
Schmitz T, Pengelley S, Belau E, Suckau D, Imhof D. LC-Trapped Ion Mobility Spectrometry-TOF MS Differentiation of 2- and 3-Disulfide-Bonded Isomers of the μ-Conotoxin PIIIA. Anal Chem 2020; 92:10920-10924. [PMID: 32806900 DOI: 10.1021/acs.analchem.0c02151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disulfide bonds within cysteine-rich peptides are important for their stability and biological function. In this respect, the correct disulfide connectivity plays a decisive role. The differentiation of individual disulfide-bonded isomers by traditional high-performance liquid chromatography (HPLC) and mass spectrometry (MS) is limited due to the similarity in physicochemical properties of the isomers sharing the same amino acid sequence. By using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), several 2- and 3-disulfide-bonded isomers of the μ-conotoxin PIIIA were investigated for their distinguishability by collision cross section (CCS) values and their characteristic mobilogram traces. The isomers could be differentiated by TIMS-MS and also identified in mixing experiments. Thus, TIMS-MS provides a highly valuable and enriching addition to standard HPLC and MS analysis of conformational isomers of disulfide-rich peptides and proteins.
Collapse
Affiliation(s)
- Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stuart Pengelley
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Eckhard Belau
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Detlev Suckau
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
43
|
Jeanne Dit Fouque K, Fernandez-Lima F. Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem B 2020; 124:6257-6265. [PMID: 32560586 PMCID: PMC8341290 DOI: 10.1021/acs.jpcb.0c04276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The behavior of biomolecules as a function of the solution temperature is often crucial to assessing their biological activity and function. While heat-induced changes of biomolecules are traditionally monitored using optical spectroscopy methods, their conformational changes and unfolding transitions remain challenging to interpret. In the present work, the structural transitions of bovine serum albumin (BSA) in native conditions (100 mM aqueous ammonium acetate) were investigated as a function of the starting solution temperature (T ∼ 23-70 °C) using a temperature-controlled nanoelectrospray ionization source (nESI) coupled to a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) instrument. The charge state distribution of the monomeric BSA changed from a native-like, narrow charge state ([M + 12H]12+ to [M + 16H]16+ at ∼23 °C) and narrow mobility distribution toward an unfolded-like, broad charge state (up to [M + 46H]46+ at ∼70 °C) and broad mobility distribution. Inspection of the average charge state and collision cross section (CCS) distribution suggested a two-state unfolding transition with a melting temperature Tm ∼ 56 ± 1 °C; however, the inspection of the CCS profiles at the charge state level as a function of the solution temperature showcases at least six structural transitions (T1-T7). If the starting solution concentration is slightly increased (from 2 to 25 μM), this method can detect nonspecific BSA dimers and trimers which dissociate early (Td ∼ 34 ± 1 °C) and may disturb the melting curve of the BSA monomer. In a single experiment, this technology provides a detailed view of the solution, protein structural landscape (mobility vs solution temperature vs relative intensity for each charge state).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
44
|
Naylor CN, Ridgeway ME, Park MA, Clowers BH. Evaluation of Trapped Ion Mobility Spectrometry Source Conditions Using Benzylammonium Thermometer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1593-1602. [PMID: 32510214 DOI: 10.1021/jasms.0c00151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A key aspect of reduced pressure ion mobility spectrometry (IMS) experiments is to identify experimental conditions that minimize the role of collisional energy transfer that allows for assessing effective ion-neutral collision cross sections of metabolites, peptides, and proteins in "native-like" or compact states. Across two separate experimental campaigns using a prototype trapped ion mobility spectrometer (TIMS) coupled to a time-of-flight mass spectrometer, we present independent findings that support the results recently published by Morsa et al. using a different set of thermometer ions (Morsa et al. Anal. Chem. 2020, 92 (6), 4573-4582). First, using five para-substituted benzylammonium ions, we conducted survival yield experiments to assess ion internal energy across different experimental settings. Results from the present set of experiments illustrate that greater ion heating occurs at lower pressures and higher voltage settings applied to the TIMS. At the "softest" settings where the benzylammonium thermometer ions have an effective average energy of 1.73 eV, we observe the majority of bradykinin in the compact state. Under more extreme operating conditions where the energy of the benzylammonium ions varies from 1.83 to 1.86 eV, the bradykinin transitions from the compact to the elongated state. In addition to independently confirming the findings of Morsa et al., we also report the mobilities for the benzylammonium parent and fragment ions using the tandem drift-tube-TIMS calibration procedure described by Naylor et al. ( J. Am. Soc. Mass Spectrom. 2019, 30 (10), 2152-2162).
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
45
|
Palacio Lozano DC, Thomas MJ, Jones HE, Barrow MP. Petroleomics: Tools, Challenges, and Developments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:405-430. [PMID: 32197051 DOI: 10.1146/annurev-anchem-091619-091824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detailed molecular characterization of petroleum-related samples by mass spectrometry, often referred to as petroleomics, continues to present significant analytical challenges. As a result, petroleomics continues to be a driving force for the development of new ultrahigh resolution instrumentation, experimental methods, and data analysis procedures. Recent advances in ionization, resolving power, mass accuracy, and the use of separation methods, have allowed for record levels of compositional detail to be obtained for petroleum-related samples. To address the growing size and complexity of the data generated, vital software tools for data processing, analysis, and visualization continue to be developed. The insights gained impact upon the fields of energy and environmental science and the petrochemical industry, among others. In addition to advancing the understanding of one of nature's most complex mixtures, advances in petroleomics methodologies are being adapted for the study of other sample types, resulting in direct benefits to other fields.
Collapse
Affiliation(s)
| | - Mary J Thomas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
- Molecular Analytical Sciences Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hugh E Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
- Molecular Analytical Sciences Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|
46
|
Morsa D, Hanozin E, Eppe G, De Pauw E. Solvent Adducts in Ion Mobility Spectrometry: Toward an Alternative Reaction Probe for Thermometer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1167-1171. [PMID: 32420738 DOI: 10.1021/jasms.0c00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fragmentation of benzylpyridinium "thermometer" ions is widely used to quantify the energetics of ions studied by mass spectrometry and other hyphenated techniques such as ion mobility. The reaction pathway leads to a benzylium cation with the release of a neutral pyridine. Using trapped ion mobility spectrometry, we noticed that the addition of acetonitrile, present in the electrosprayed solvent mixture, could occur on some electrophilic benzylium cations. This process results in the formation of adducts and in the appearance of a supplementary mobility peak. We here demonstrate that the addition takes place both in the electrospray source and inside the mobility analyzer, thereby evidencing possible outflow of solvent vapors downstream the instrument. By further characterizing the initial kinetics and the resulting equilibrium linked with the addition reaction, we presently discuss these as alternative probes to calibrate ion temperature in the framework of ion mobility.
Collapse
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
47
|
Hernández-Mesa M, D'Atri V, Barknowitz G, Fanuel M, Pezzatti J, Dreolin N, Ropartz D, Monteau F, Vigneau E, Rudaz S, Stead S, Rogniaux H, Guillarme D, Dervilly G, Le Bizec B. Interlaboratory and Interplatform Study of Steroids Collision Cross Section by Traveling Wave Ion Mobility Spectrometry. Anal Chem 2020; 92:5013-5022. [PMID: 32167758 DOI: 10.1021/acs.analchem.9b05247] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collision cross section (CCS) databases based on single-laboratory measurements must be cross-validated to extend their use in peak annotation. This work addresses the validation of the first comprehensive TWCCSN2 database for steroids. First, its long-term robustness was evaluated (i.e., a year and a half after database generation; Synapt G2-S instrument; bias within ±1.0% for 157 ions, 95.7% of the total ions). It was further cross-validated by three external laboratories, including two different TWIMS platforms (i.e., Synapt G2-Si and two Vion IMS QToF; bias within the threshold of ±2.0% for 98.8, 79.9, and 94.0% of the total ions detected by each instrument, respectively). Finally, a cross-laboratory TWCCSN2 database was built for 87 steroids (142 ions). The cross-laboratory database consists of average TWCCSN2 values obtained by the four TWIMS instruments in triplicate measurements. In general, lower deviations were observed between TWCCSN2 measurements and reference values when the cross-laboratory database was applied as a reference instead of the single-laboratory database. Relative standard deviations below 1.5% were observed for interlaboratory measurements (<1.0% for 85.2% of ions) and bias between average values and TWCCSN2 measurements was within the range of ±1.5% for 96.8% of all cases. In the context of this interlaboratory study, this threshold was also suitable for TWCCSN2 measurements of steroid metabolites in calf urine. Greater deviations were observed for steroid sulfates in complex urine samples of adult bovines, showing a slight matrix effect. The implementation of a scoring system for the application of the CCS descriptor in peak annotation is also discussed.
Collapse
Affiliation(s)
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Gitte Barknowitz
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - Mathieu Fanuel
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Nicola Dreolin
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - David Ropartz
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | | | | | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Sara Stead
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - Hélène Rogniaux
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
48
|
Morsa D, Hanozin E, Eppe G, Quinton L, Gabelica V, Pauw ED. Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:4573-4582. [DOI: 10.1021/acs.analchem.9b05850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoire Acides Nucléiques: Régulations Naturelles et Artificielles (ARNA, U1212, UMR5320), IECB, Pessac 33600, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
49
|
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun 2020; 11:331. [PMID: 31949144 PMCID: PMC6965134 DOI: 10.1038/s41467-019-14044-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation–serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 µL of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions. Trapped ion mobility (TIMS)-mass spectrometry with parallel accumulation-serial fragmentation (PASEF) facilitates high-sensitivity proteomics experiments. Here, the authors expand TIMS and PASEF to small molecules and demonstrate fast and comprehensive lipidomics of low biological sample amounts.
Collapse
|
50
|
Schroeder M, Meyer SW, Heyman HM, Barsch A, Sumner LW. Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites 2019; 10:metabo10010013. [PMID: 31878231 PMCID: PMC7023306 DOI: 10.3390/metabo10010013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
The utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS). TIMS offers additional depth-of-coverage through increased peak capacities realized with the multi-dimensional UHPLC-TIMS separations. Metabolite identification confidence is simultaneously enhanced by incorporating orthogonal collision cross section (CCS) data matching. To facilitate metabolite identifications, we created a CCS library of 146 plant natural products. This library was generated using TIMS with N2 drift gas to record the TIMSCCSN2 of plant natural products with a high degree of reproducibility; i.e., average RSD = 0.10%. The robustness of TIMSCCSN2 data matching was tested using authentic standards spiked into complex plant extracts, and the precision of CCS measurements were determined to be independent of matrix affects. The utility of the UHPLC-TIMS-TOF-MS/MS in metabolomics was then demonstrated using extracts from the model legume Medicago truncatula and metabolites were confidently identified based on retention time, accurate mass, molecular formula, and CCS.
Collapse
Affiliation(s)
- Mark Schroeder
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Sven W. Meyer
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Heino M. Heyman
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Aiko Barsch
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Lloyd W. Sumner
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-573-882-5486
| |
Collapse
|