1
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
2
|
Byrnes SJ, Busman-Sahay K, Angelovich TA, Younger S, Taylor-Brill S, Nekorchuk M, Bondoc S, Dannay R, Terry M, Cochrane CR, Jenkins TA, Roche M, Deleage C, Bosinger SE, Paiardini M, Brew BJ, Estes JD, Churchill MJ. Chronic immune activation and gut barrier dysfunction is associated with neuroinflammation in ART-suppressed SIV+ rhesus macaques. PLoS Pathog 2023; 19:e1011290. [PMID: 36989320 PMCID: PMC10085024 DOI: 10.1371/journal.ppat.1011290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect ~40% of virally suppressed people with HIV (PWH), however, the precise viral dependent and independent changes to the brain are unclear. Here we characterized the CNS reservoir and immune environment of SIV-infected (SIV+) rhesus macaques during acute (n = 4), chronic (n = 12) or ART-suppressed SIV infection (n = 11). Multiplex immunofluorescence for markers of SIV infection (vRNA/vDNA) and immune activation was performed on frontal cortex and matched colon tissue. SIV+ animals contained detectable viral DNA+ cells that were not reduced in the frontal cortex or the gut by ART, supporting the presence of a stable viral reservoir in these compartments. SIV+ animals had impaired blood brain barrier (BBB) integrity and heightened levels of astrocytes or myeloid cells expressing antiviral, anti-inflammatory or oxidative stress markers which were not abrogated by ART. Neuroinflammation and BBB dysfunction correlated with measures of viremia and immune activation in the gut. Furthermore, SIV-uninfected animals with experimentally induced gut damage and colitis showed a similar immune activation profile in the frontal cortex to those of SIV-infected animals, supporting the role of chronic gut damage as an independent source of neuroinflammation. Together, these findings implicate gut-associated immune activation/damage as a significant contributor to neuroinflammation in ART-suppressed HIV/SIV infection which may drive HAND pathogenesis.
Collapse
Affiliation(s)
- Sarah J. Byrnes
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Thomas A. Angelovich
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Life Science, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Skyler Younger
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sol Taylor-Brill
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Stephen Bondoc
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rachel Dannay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Margaret Terry
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | | | - Trisha A. Jenkins
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bruce J. Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St Vincent’s Hospital, University of New South Wales and University of Notre Dame, Sydney, New South Wales, Australia
| | - Jacob D. Estes
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melissa J. Churchill
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Life Science, Burnet Institute, Melbourne, Australia
- Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Deme P, Moniruzzaman M, Moore D, Heaton R, Ellis R, Letendre S, Haughey N. Association of Plasma Eicosanoid Levels With Immune, Viral, and Cognitive Outcomes in People With HIV. Neurology 2022; 99:e1251-e1264. [PMID: 35851253 PMCID: PMC9576290 DOI: 10.1212/wnl.0000000000200945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To determine whether plasma eicosanoid levels are associated with immune, viral, and cognitive outcomes in people with HIV (PWH). METHODS We measured 42 eicosanoids in a longitudinal study of 95 PWH and 25 demographically comparable uninfected participants. Routine clinical chemistry, virologic, immune markers, and a neuropsychological test battery assessing 7 cognitive domains were administered to all participants at 2 study visits over an average of 6.5 months. RESULTS Plasma eicosanoid concentrations were elevated in PWH (n = 95) compared with seronegative controls (n = 25) (100% prediction power at 5% false discovery rate [FDR], α = 0.0531) and were negatively associated with lower current and nadir CD4 lymphocyte counts. Higher levels of eicosanoids were associated with impairments in working memory, verbal fluency, and executive function. Higher plasma viral load was associated with elevated proinflammatory eicosanoids (24% prediction power at 5% FDR and 42.4% prediction power at 10% FDR, α = 0.10). Longitudinal analyses showed that eicosanoid levels were correlated with viral load and with plasma creatinine. Despite associations of eicosanoids with viral loads, elevated plasma eicosanoids were similar in virally suppressed and not fully suppressed PWH. DISCUSSION These data show that HIV infection is associated with a robust production of eicosanoids that are not substantially reduced by antiretroviral therapy (ART). The sustained elevation of these oxylipins in PWH despite ART may contribute to an accelerated aging phenotype that includes earlier than expected brain and peripheral organ damage.
Collapse
Affiliation(s)
- Pragney Deme
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohammed Moniruzzaman
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Moore
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert Heaton
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ronald Ellis
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Scott Letendre
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Norman Haughey
- From the Department of Neurology (P.D., M.M., N.H.), Johns Hopkins University School of Medicine, Baltimore, MD; HIV Neurobehavioral Research Program and Departments of Neurosciences and Psychiatry (D.M., R.H., R.E., S.L.), School of Medicine, University of California, San Diego, La Jolla; and the Department of Psychiatry (N.H.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
4
|
Morgello S, Buyukturkoglu K, Murray J, Veenstra M, Berman JW, Byrd D, Inglese M. MR spectroscopy and diffusion imaging in people with human immunodeficiency virus: Relationships to clinical and immunologic findings. J Neuroimaging 2022; 32:158-170. [PMID: 34520593 PMCID: PMC8752497 DOI: 10.1111/jon.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Departments of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Mike Veenstra
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Joan W. Berman
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Desiree Byrd
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Department of Psychology, Queens College and the Graduate Center, City University of New York, Queens, New York
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Anderson AM, Ma Q, Letendre SL, Iudicello J. Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era. Curr HIV/AIDS Rep 2021; 18:558-568. [PMID: 34780037 PMCID: PMC8860504 DOI: 10.1007/s11904-021-00581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment and depression continue to be common among people with HIV (PWH) in the combination antiretroviral therapy (ART) era. A better understanding of the biological mechanisms that may underpin these disorders is needed. The purpose of this review is to describe published findings on soluble biomarkers from blood and cerebrospinal fluid (CSF) that have been associated with either cognition or depression among PWH in the setting of ART. RECENT FINDINGS Several biomarkers, including those that reflect viral persistence, monocyte/macrophage activation, and other processes, are associated with cognition and depressive symptoms. Some but not all results have been consistent across multiple studies. More research has been published on biomarkers of cognition relative to biomarkers of depression (particularly from CSF). More studies are needed that investigate multiple biomarkers to understand the role of distinct but additive pathways in these disorders and to guide the development of new therapies.
Collapse
Affiliation(s)
- Albert M Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA, 30308, USA.
| | - Qing Ma
- University at Buffalo, Buffalo, NY, USA
| | - Scott L Letendre
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - Jennifer Iudicello
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
6
|
Dahmani S, Kaliss N, VanMeter JW, Moore DJ, Ellis RJ, Jiang X. Alterations of Brain Metabolites in Adults With HIV: A Systematic Meta-analysis of Magnetic Resonance Spectroscopy Studies. Neurology 2021; 97:e1085-e1096. [PMID: 34253633 PMCID: PMC8456358 DOI: 10.1212/wnl.0000000000012394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A meta-analysis of proton magnetic resonance spectroscopy studies to investigate alterations in brain metabolites in people with HIV (PWH), the relationship between metabolite alterations and combination antiretroviral therapy (cART), and the relationship between metabolite alterations and cognitive impairment. METHODS The PubMed database was searched for studies published from 1997 to 2020. Twenty-seven studies were identified, which included 1255 PWH and 633 controls. Four metabolites (N-acetyl aspartate [NAA], myo-inositol [mI], choline [Cho], and glutamatergic metabolites [Glx]) from 5 brain regions (basal ganglia [BG], frontal gray and white matter [FGM and FWM], and parietal gray and white matter [PGM and PWM]) were pooled separately using random-effects meta-analysis. RESULTS During early HIV infection, metabolite alterations were largely limited to the BG, including Cho elevation, a marker of inflammation. cART led to global mI and Cho normalization (i.e., less elevations), but improvement in NAA was negligible. In chronic PWH on cART, there were consistent NAA reductions across brain regions, along with Cho and mI elevations in the FWM and BG, and Glx elevations in the FWM. Cognitive impairment was associated with NAA reduction and to a lesser degree mI elevation. CONCLUSIONS The BG are the primary region affected during early infection. cART is successful in partially controlling neuroinflammation (global mI and Cho normalization). However, neuronal dysfunction (NAA reductions) and neuroinflammation (mI and Cho elevations) persist and contribute to cognitive impairment in chronic PWH. Novel compounds targeting NAA signal pathways, along with better neuroinflammation control, may help to reduce cognitive impairment in PWH.
Collapse
Affiliation(s)
- Sophia Dahmani
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Nicholas Kaliss
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - John W VanMeter
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - David J Moore
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Ronald J Ellis
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Xiong Jiang
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla.
| |
Collapse
|
7
|
Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption. Alcohol 2021; 94:25-41. [PMID: 33864851 DOI: 10.1016/j.alcohol.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.
Collapse
|
8
|
Gisslen M, Keating SM, Spudich S, Arechiga V, Stephenson S, Zetterberg H, Di Germanio C, Blennow K, Fuchs D, Hagberg L, Norris PJ, Peterson J, Shacklett BL, Yiannoutsos CT, Price RW. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One 2021; 16:e0250987. [PMID: 33983973 PMCID: PMC8118251 DOI: 10.1371/journal.pone.0250987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To characterize the evolution of central nervous system (CNS) inflammation in HIV-1 infection applying a panel of cerebrospinal fluid (CSF) inflammatory biomarkers to grouped subjects representing a broad spectrum of systemic HIV-1 immune suppression, CNS injury and viral control. METHODS This is a cross-sectional analysis of archived CSF and blood samples, assessing concentrations of 10 functionally diverse soluble inflammatory biomarkers by immunoassays in 143 HIV-1-infected subjects divided into 8 groups: untreated primary HIV-1 infection (PHI); four untreated groups defined by their blood CD4+ T lymphocyte counts; untreated patients presenting with subacute HIV-associated dementia (HAD); antiretroviral-treated subjects with ≥1 years of plasma viral suppression; and untreated elite controllers. Twenty HIV-1-uninfected controls were included for comparison. Background biomarkers included blood CD4+ and CD8+ T lymphocytes, CSF and blood HIV-1 RNA, CSF white blood cell (WBC) count, CSF/blood albumin ratio, CSF neurofilament light chain (NfL), and CSF t-tau. FINDINGS HIV-1 infection was associated with a broad compartmentalized CSF inflammatory response that developed early in its course and changed with systemic disease progression, development of neurological injury, and viral suppression. CSF inflammation in untreated individuals without overt HAD exhibited at least two overall patterns of inflammation as blood CD4+ T lymphocytes decreased: one that peaked at 200-350 blood CD4+ T cells/μL and associated with lymphocytic CSF inflammation and HIV-1 RNA concentrations; and a second that steadily increased through the full range of CD4+ T cell decline and associated with macrophage responses and increasing CNS injury. Subacute HAD was distinguished by a third inflammatory profile with increased blood-brain barrier permeability and robust combined lymphocytic and macrophage CSF inflammation. Suppression of CSF and blood HIV-1 infections by antiretroviral treatment and elite viral control were associated with reduced CSF inflammation, though not fully to levels found in HIV-1 seronegative controls.
Collapse
Affiliation(s)
- Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila M. Keating
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Victor Arechiga
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sophie Stephenson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Clara Di Germanio
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philip J. Norris
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Julia Peterson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California Davis, Davis CA, United States of America
| | - Constantin T. Yiannoutsos
- Department of Biostatistics, Indiana University R.M. Fairbanks School of Public Health, Indianapolis, IN, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mueller C, Lin JC, Sheriff S, Maudsley AA, Younger JW. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav 2021; 14:562-572. [PMID: 30617782 DOI: 10.1007/s11682-018-0029-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous neuroimaging studies have detected markers of neuroinflammation in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Magnetic Resonance Spectroscopy (MRS) is suitable for measuring brain metabolites linked to inflammation, but has only been applied to discrete regions of interest in ME/CFS. We extended the MRS analysis of ME/CFS by capturing multi-voxel information across the entire brain. Additionally, we tested whether MRS-derived brain temperature is elevated in ME/CFS patients. Fifteen women with ME/CFS and 15 age- and gender-matched healthy controls completed fatigue and mood symptom questionnaires and whole-brain echo-planar spectroscopic imaging (EPSI). Choline (CHO), myo-inositol (MI), lactate (LAC), and N-acetylaspartate (NAA) were quantified in 47 regions, expressed as ratios over creatine (CR), and compared between ME/CFS patients and controls using independent-samples t-tests. Brain temperature was similarly tested between groups. Significant between-group differences were detected in several regions, most notably elevated CHO/CR in the left anterior cingulate (p < 0.001). Metabolite ratios in seven regions were correlated with fatigue (p < 0.05). ME/CFS patients had increased temperature in the right insula, putamen, frontal cortex, thalamus, and the cerebellum (all p < 0.05), which was not attributable to increased body temperature or differences in cerebral perfusion. Brain temperature increases converged with elevated LAC/CR in the right insula, right thalamus, and cerebellum (all p < 0.05). We report metabolite and temperature abnormalities in ME/CFS patients in widely distributed regions. Our findings may indicate that ME/CFS involves neuroinflammation.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Psychology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
| | - Joanne C Lin
- Department of Psychology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA
| | - Sulaiman Sheriff
- Department of Radiology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Jarred W Younger
- Department of Psychology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Saloner R, Cherner M, Grelotti DJ, Paolillo EW, Moore DJ, Heaton RK, Letendre SL, Kumar A, Grant I, Ellis RJ. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav Immun 2020; 90:353-363. [PMID: 32966871 PMCID: PMC7544671 DOI: 10.1016/j.bbi.2020.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-related neuroinflammation has been proposed as a catalyst for dopaminergic dysregulation in mesocortical pathways, which may contribute to the pathogenesis of depression. Abnormalities in dopaminergic neurotransmission and depression are common in people with HIV (PWH), however the link between dopamine (DA) and depression in PWH is poorly characterized. This study investigated CSF dopaminergic biomarkers, specifically DA and its metabolite, homovanillic acid (HVA), and examined their relationship with depressive symptoms and CSF neuroinflammatory markers in PWH and HIV-seronegative (HIV-) individuals. METHODS Participants were 102 HIV- individuals and 123 PWH (mean age = 42) who underwent neuropsychiatric evaluations and lumbar puncture. Current depression severity was classified using the Beck Depression Inventory-II (BDI-II). CSF was assayed for DA and HVA using high performance liquid chromatography and neuroinflammatory markers using immunoassays. Linear regressions modelled BDI-II scores as a function of HIV, dopaminergic biomarker z-scores, and their interaction, controlling for psychosocial factors. Correlational analyses examined dopaminergic and neuroinflammatory relationships. RESULTS PWH had significantly higher BDI-II scores than HIV- participants. DA and HVA were not associated with HIV status but both significantly moderated the effect of HIV on BDI-II scores, such that PWH exhibited higher depressive symptoms than HIV- participants only at lower concentrations of HVA (z ≤ 0.06) and DA (z ≤ 0.11). In PWH only, lower HVA significantly correlated with higher BDI-II scores and higher neuroinflammation, including higher MCP-1 and IP-10. CONCLUSIONS Results suggest that the pathophysiology of depression in PWH differs from that in HIV- individuals. Specifically, lower central dopaminergic activity was selectively associated with greater depressive symptoms and neuroinflammation in PWH. With the rise in consideration of DA agonists for the treatment of depression, these results suggest that PWH may show a greater response to these agents than their HIV- peers.
Collapse
Affiliation(s)
- Rowan Saloner
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA.
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Grelotti
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Emily W Paolillo
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Adarsh Kumar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Fennema-Notestine C, Thornton-Wells TA, Hulgan T, Letendre S, Ellis RJ, Franklin DR, Anderson AM, Heaton RK, Bloss CS, Grant I, Kallianpur AR. Iron-regulatory genes are associated with Neuroimaging measures in HIV infection. Brain Imaging Behav 2020; 14:2037-2049. [PMID: 31273671 PMCID: PMC6940558 DOI: 10.1007/s11682-019-00153-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pathogenesis of HIV-associated neurocognitive impairment (NCI) may involve iron dysregulation. In 243 HIV-seropositive adults without severe comorbidities, we therefore genotyped 250 variants in 20 iron-related genes and evaluated their associations with magnetic resonance imaging measures of brain structure and metabolites, including measures previously linked to NCI. Multivariable regression analyses examined associations between genetic variants and neuroimaging measures, adjusting for relevant covariates and multiple testing. Exploratory analyses stratified by NCI (Global Deficit Score ≥ 0.5 vs. <0.5), virus detectability in plasma, and comorbidity levels were also performed. Of 27 variants (in 12 iron-regulatory genes) associated with neuroimaging measures after correction for the 37 haplotype blocks represented, 3 variants survived additional correction for the 21 neuroimaging measures evaluated and demonstrated biologically plausible associations. SLC11A1 rs7576974_T was significantly associated with higher frontal gray matter N-acetylaspartate (p = 3.62e-5). Among individuals with detectable plasma virus, TFRC rs17091382_A was associated with smaller subcortical gray matter volume (p = 3.23e-5), and CP rs4974389_A (p = 3.52e-5) was associated with higher basal ganglia Choline in persons with mild comorbidities. Two other strong associations were observed for variants in SLC40A1 and ACO2 but were not robust due to low minor-allele frequencies in the study sample. Variants in iron metabolism and transport genes are associated with structural and metabolite neuroimaging measures in HIV-seropositive adults, regardless of virus suppression on antiretroviral therapy. These variants may confer susceptibility to HIV-related brain injury and NCI. Further studies are needed to determine the specificity of these findings to HIV infection and explore potential underlying mechanisms.
Collapse
Affiliation(s)
- Christine Fennema-Notestine
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA.
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA.
| | - Tricia A Thornton-Wells
- Department of Molecular Physiology & Biophysics and Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Todd Hulgan
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott Letendre
- Department of Medicine, Division of Infectious Diseases, University of California-San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA, USA
| | - Donald R Franklin
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA
| | - Albert M Anderson
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA
| | - Cinnamon S Bloss
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA
- Department of Family Medicine and Public Health, University of California-San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Dr., #0738, La Jolla, CA, 92093-0738, USA
| | - Asha R Kallianpur
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
13
|
COMT Val158Met Polymorphism, Cardiometabolic Risk, and Nadir CD4 Synergistically Increase Risk of Neurocognitive Impairment in Men Living With HIV. J Acquir Immune Defic Syndr 2020; 81:e148-e157. [PMID: 31107306 DOI: 10.1097/qai.0000000000002083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The Val allele of the Val158Met single-nucleotide polymorphism of the catechol-o-methyltransferase gene (COMT) results in faster metabolism and reduced bioavailability of dopamine (DA). Among persons living with HIV, Val carriers display neurocognitive deficits relative to Met carriers, presumably due to exacerbation of HIV-related depletion of DA. COMT may also impact neurocognition by modulating cardiometabolic function, which is often dysregulated among persons living with HIV. We examined the interaction of COMT, cardiometabolic risk, and nadir CD4 on neurocognitive impairment (NCI) among HIV+ men. METHODS Three hundred twenty-nine HIV+ men underwent COMT genotyping and neurocognitive and neuromedical assessments. Cohort-standardized z scores for body mass index, systolic blood pressure, glucose, triglycerides, and high-density lipoprotein cholesterol were averaged to derive a cardiometabolic risk score (CMRS). NCI was defined as demographically adjusted global deficit score of ≥0.5. Logistic regression modeled NCI as a function of COMT, CMRS, and their interaction, covarying for estimated premorbid function, race/ethnicity, and HIV-specific characteristics. Follow-up analysis included the 3-way interaction of COMT, CMRS, and nadir CD4. RESULTS Genotypes were 81 (24.6%) Met/Met, 147 (44.7%) Val/Met, and 101 (30.7%) Val/Val. COMT interacted with CMRS (P = 0.02) such that higher CMRS increased risk of NCI among Val/Val [odds ratio (OR) = 2.13, P < 0.01], but not Val/Met (OR = 0.93, P > 0.05) or Met/Met (OR = 0.92, P > 0.05) carriers. Among Val/Val, nadir CD4 moderated the effect of CMRS (P < 0.01) such that higher CMRS increased likelihood of NCI only when nadir CD4 <180. DISCUSSION Results suggest a tripartite model by which genetically driven low DA reserve, cardiometabolic dysfunction, and historical immunosuppression synergistically enhance risk of NCI among HIV+ men, possibly due to neuroinflammation and oxidative stress.
Collapse
|
14
|
Use of Neuroimaging to Inform Optimal Neurocognitive Criteria for Detecting HIV-Associated Brain Abnormalities. J Int Neuropsychol Soc 2020; 26:147-162. [PMID: 31576785 PMCID: PMC7015796 DOI: 10.1017/s1355617719000985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Frascati international research criteria for HIV-associated neurocognitive disorders (HAND) are controversial; some investigators have argued that Frascati criteria are too liberal, resulting in a high false positive rate. Meyer et al. recommended more conservative revisions to HAND criteria, including exploring other commonly used methodologies for neurocognitive impairment (NCI) in HIV including the global deficit score (GDS). This study compares NCI classifications by Frascati, Meyer, and GDS methods, in relation to neuroimaging markers of brain integrity in HIV. METHOD Two hundred forty-one people living with HIV (PLWH) without current substance use disorder or severe (confounding) comorbid conditions underwent comprehensive neurocognitive testing and brain structural magnetic resonance imaging and magnetic resonance spectroscopy. Participants were classified using Frascati criteria versus Meyer criteria: concordant unimpaired [Frascati(Un)/Meyer(Un)], concordant impaired [Frascati(Imp)/Meyer(Imp)], or discordant [Frascati(Imp)/Meyer(Un)] which were impaired via Frascati criteria but unimpaired via Meyer criteria. To investigate the GDS versus Meyer criteria, the same groupings were utilized using GDS criteria instead of Frascati criteria. RESULTS When examining Frascati versus Meyer criteria, discordant Frascati(Imp)/Meyer(Un) individuals had less cortical gray matter, greater sulcal cerebrospinal fluid volume, and greater evidence of neuroinflammation (i.e., choline) than concordant Frascati(Un)/Meyer(Un) individuals. GDS versus Meyer comparisons indicated that discordant GDS(Imp)/Meyer(Un) individuals had less cortical gray matter and lower levels of energy metabolism (i.e., creatine) than concordant GDS(Un)/Meyer(Un) individuals. In both sets of analyses, the discordant group did not differ from the concordant impaired group on any neuroimaging measure. CONCLUSIONS The Meyer criteria failed to capture a substantial portion of PLWH with brain abnormalities. These findings support continued use of Frascati or GDS criteria to detect HIV-associated CNS dysfunction.
Collapse
|
15
|
New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment. Curr Top Behav Neurosci 2020; 50:3-39. [PMID: 32040843 DOI: 10.1007/7854_2019_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) affect approximately half of people living with HIV despite viral suppression with antiretroviral therapies and represent a major cause of morbidity. HAND affects activities of daily living including driving, using the Internet and, importantly, maintaining drug adherence. Whilst viral suppression with antiretroviral therapies (ART) has reduced the incidence of severe dementia, mild neurocognitive impairments continue to remain prevalent. The neuropathogenesis of HAND in the context of viral suppression remains ill-defined, but underlying neuroinflammation is likely central and driven by a combination of chronic intermittent low-level replication of whole virus or viral components, latent HIV infection, peripheral inflammation possibly from a disturbed gut microbiome or chronic cellular dysfunction in the central nervous system. HAND is optimally diagnosed by clinical assessment with imaging and neuropsychological testing, which can be difficult to perform in resource-limited settings. Thus, the identification of biomarkers of disease is a key focus of the field. In this chapter, recent advances in the pathogenesis of HAND and biomarkers that may aid its diagnosis and treatment will be discussed.
Collapse
|
16
|
Gendelman HE. Predictive biomarkers for cognitive decline during progressive HIV infection. EBioMedicine 2019; 51:102538. [PMID: 31735551 PMCID: PMC7000313 DOI: 10.1016/j.ebiom.2019.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/05/2022] Open
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States.
| |
Collapse
|
17
|
Abstract
In the era of combination antiretroviral therapy, the diagnosis and management of HIV-associated neurocognitive disorders (HANDs) has arisen. Traditionally, severe HAND was seen in those with untreated HIV infection and had a guarded prognosis. Antiretroviral therapy has provided longevity and viral control to many living with the disease, revealing an increase in prevalence of less severe forms of HAND. Despite peripheral blood and cerebrospinal fluid viral suppression, cognitive impairment occurs and progresses for reasons that are unclear at present. This article provides a review of current theories behind the development of HAND, clinical and pathologic findings, recent developments, and future research opportunities.
Collapse
|
18
|
Abstract
OBJECTIVE The influence of confounding neurocognitive comorbidities in people living with HIV (PLWH) on neuroimaging has not been systematically evaluated. We determined associations between comorbidity burden and brain integrity and examined the moderating effect of age on these relationships. DESIGN Observational, cross-sectional substudy of the CNS HIV Antiretroviral Therapy Effects Research cohort. METHODS A total of 288 PLWH (mean age = 44.2) underwent structural MRI and magnetic resonance spectroscopy as well as neurocognitive and neuromedical assessments. Consistent with Frascati criteria for HIV-associated neurocognitive disorders (HAND), neuromedical and neuropsychiatric comorbidity burden was classified as incidental (mild), contributing (moderate), or confounding (severe-exclusionary) to a diagnosis of HAND. Multiple regression modeling predicted neuroimaging outcomes as a function of comorbidity classification, age, and their interaction. RESULTS Comorbidity classifications were 176 incidental, 77 contributing, and 35 confounded; groups did not differ in HIV disease characteristics. Relative to incidental and contributing participants, confounded participants had less cortical gray matter and more abnormal white matter and ventricular cerebrospinal fluid, alongside more neuroinflammation (choline, myo-inositol) and less neuronal integrity (N-acetylaspartate). Older age exacerbated the impact of comorbidity burden: to a greater extent in the confounded group, older age was associated with more abnormal white matter (P = 0.017), less total white matter (P = 0.015), and less subcortical gray matter (P = 0.014). CONCLUSION Neuroimaging in PLWH reveals signatures associated with confounding neurocognitive conditions, emphasizing the importance of evaluating these among individuals with suspected HAND. Older age amplifies subcortical and white matter tissue injury, especially in PLWH with severe comorbidity burden, warranting increased attention to this population as it ages.
Collapse
|
19
|
Systemic and intrathecal immune activation in association with cerebral and cognitive outcomes in paediatric HIV. Sci Rep 2019; 9:8004. [PMID: 31142789 PMCID: PMC6541601 DOI: 10.1038/s41598-019-44198-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Despite treatment, immune activation is thought to contribute to cerebral injury in children perinatally infected with human immunodeficiency virus (HIV). We aimed to characterize immune activation in relation to neuroimaging and cognitive outcomes. We therefore measured immunological, coagulation, and neuronal biomarkers in plasma and cerebrospinal fluid (CSF) samples of 34 perinatally HIV-infected children aged 8–18 years, and in plasma samples of 37 controls of comparable age, sex, ethnicity, and socio-economic status. We then compared plasma biomarker levels between groups, and explored associations between plasma/CSF biomarkers and neuroimaging and cognitive outcomes using network analysis. HIV-infected children showed higher plasma levels of C-reactive protein, interferon-gamma, interferon-gamma-inducible protein-10, and monocyte chemoattractant protein-1 than controls. In HIV-infected participants, plasma soluble CD14 was positively associated with microstructural white matter (WM) damage, and plasma D-dimer was negatively associated with WM blood flow. In CSF, IL-6 was negatively associated with WM volume, and neurofilament heavy-chain (NFH) was negatively associated with intelligence quotient and working memory. These markers of ongoing inflammation, immune activation, coagulation, and neuronal damage could be used to further evaluate the pathophysiology and clinical course of cerebral and cognitive deficits in perinatally acquired HIV.
Collapse
|
20
|
Alakkas A, Ellis RJ, Watson CWM, Umlauf A, Heaton RK, Letendre S, Collier A, Marra C, Clifford DB, Gelman B, Sacktor N, Morgello S, Simpson D, McCutchan JA, Kallianpur A, Gianella S, Marcotte T, Grant I, Fennema-Notestine C. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol 2019; 25:32-41. [PMID: 30291567 PMCID: PMC6416232 DOI: 10.1007/s13365-018-0682-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
HIV-associated neurocognitive disorders (HANDs) persist even with virologic suppression on combination antiretroviral therapy (cART), and the underlying pathophysiological mechanisms are not well understood. We performed structural magnetic resonance imaging and MR spectroscopy (MRS) in HIV+ individuals without major neurocognitive comorbidities. Study participants were classified as neurocognitively unimpaired (NU), asymptomatic (ANI), mild neurocognitive disorder (MND), or HIV-associated dementia (HAD). Using structural MRI, we measured volumes of cortical and subcortical gray matter and total and abnormal white matter (aWM). Using single-voxel MRS, we estimated metabolites in frontal gray matter (FGM) and frontal white matter (FWM) and basal ganglia (BG) regions. Adjusted odds ratios were used to compare HAND to NU. Among 253 participants, 40% met HAND criteria (21% ANI, 15% MND, and 4% HAD). Higher risk of HAND was associated with more aWM. Both HAD and MND also had smaller gray and white matter volumes than NU. Among individuals with undetectable plasma HIV RNA, structural volumetric findings were similar to the overall sample. MND had lower FWM creatine and higher FGM choline relative to NU, whereas HAD and ANI had lower BG N-acetyl aspartate relative to NU. In the virologically suppressed subgroup, however, ANI and MND had higher FGM choline compared to NU. Overall, HAND showed specific alterations (more aWM and inflammation; less gray matter volume and lower NAA). Some MR measures differentiated less severe subtypes of HAND from HAD. These MR alterations may represent legacy effects or accumulating changes, possibly related to medical comorbidities, antiretroviral therapy, or chronic effects of HIV brain infection.
Collapse
Affiliation(s)
| | - Ronald J Ellis
- University of California at San Diego, La Jolla, CA, USA
| | | | - Anya Umlauf
- University of California at San Diego, La Jolla, CA, USA
| | | | - Scott Letendre
- University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | - Ned Sacktor
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Asha Kallianpur
- Cleveland Clinic and Lerner Research Institute, Cleveland, OH, USA
| | - Sara Gianella
- University of California at San Diego, La Jolla, CA, USA
| | | | - Igor Grant
- University of California at San Diego, La Jolla, CA, USA
| | | |
Collapse
|
21
|
Anderson AM, Nguyen ML, Potter M, Rosario D, Kempinska K, Ellis RJ, Diccianni M, Letendre SL. Comparison of bead array and glass nanoreactor multi-analyte platforms for the evaluation of CNS and peripheral inflammatory markers during HIV infection. J Immunol Methods 2018; 465:7-12. [PMID: 30468733 DOI: 10.1016/j.jim.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Abstract
While human immunodeficiency virus (HIV) infection has become a treatable disease with the development of combination antiretroviral therapy (cART), chronic inflammation that affects the central nervous system and other organs is still common. Reliable methods are needed to study HIV-associated inflammatory biomarkers. In this study involving both plasma and cerebrospinal fluid (CSF), we compared multiplex bead array (MBA) to a relatively new technology based on microfluidics and glass nanoreactor (GNR) technology for the measurement of three commonly studied markers from HIV-infected individuals. We found that results correlated between the two platforms for MCP-1 in both fluids as well as for plasma TNFα (all p < .005). However, results between the two platforms did not correlate for CSF TNFα or fractalkine from plasma or CSF. A statistically significant decrease in CSF TNFα over time (p < .0001) was only detectable with the MBA platform, and TNFα on the MBA was the only CSF biomarker to correlate with CSF HIV RNA (rho = 0.71, p < .0001). Meanwhile, the GNR platform was superior in terms of intra-assay fractalkine (FKN) variability and the detection of a significant FKN decrease over time. Additionally, the only significant correlation between blood biomarkers and plasma HIV RNA was with FKN on the GNR platform (rho = 0.38, p = .015). Given the variability in results between platforms, more research is needed on methods to quantitate HIV-associated inflammation.
Collapse
Affiliation(s)
- Albert M Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States.
| | - Minh Ly Nguyen
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Potter
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego School of Medicine, La Jolla, CA, United States
| | - Debra Rosario
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego School of Medicine, La Jolla, CA, United States
| | - Katarzyna Kempinska
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, United States
| | - Ronald J Ellis
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA, United States
| | - Mitchell Diccianni
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, United States
| | - Scott L Letendre
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego School of Medicine, La Jolla, CA, United States
| |
Collapse
|
22
|
Anderson AM, Croteau D, Ellis RJ, Rosario D, Potter M, Guillemin GJ, Brew BJ, Woods SP, Letendre SL. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J Neuroimmunol 2018; 319:13-18. [PMID: 29685284 PMCID: PMC5918423 DOI: 10.1016/j.jneuroim.2018.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/03/2023]
Abstract
There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau.
Collapse
Affiliation(s)
- Albert M Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States.
| | - David Croteau
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States
| | - Ronald J Ellis
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States
| | - Debra Rosario
- Department of Medicine, University of California at San Diego, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States
| | - Michael Potter
- Department of Medicine, University of California at San Diego, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia; Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Bruce J Brew
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia; Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | - Steven Paul Woods
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Scott L Letendre
- Department of Medicine, University of California at San Diego, La Jolla, CA, United States; Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Interferon-free therapy in hepatitis C virus (HCV) monoinfected and HCV/HIV coinfected patients: effect on cognitive function, fatigue, and mental health. J Neurovirol 2018; 24:557-569. [PMID: 29785584 DOI: 10.1007/s13365-018-0647-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
The efficacy and safety of interferon-free therapies for hepatitis C virus (HCV) infection have been reported. Considering the accumulating evidence for a direct central nervous system infection by HCV, we aim to evaluate the effect of direct acting antivirals (DAA) therapy on cognitive function in HCV patients. We conducted a longitudinal analysis of the cognitive performance of 22 patients (8 HCV+, 14 HCV+/HIV+) who completed neuropsychological testing at baseline and at week 12 after DAA therapy. In 20 patients, we analyzed specific attention parameters derived from an experimental testing based on the Theory of Visual Attention (TVA). Depression, fatigue, and mental health were assessed as patient reported outcomes. At baseline, 54.5% of the patients met the criteria for cognitive impairment and 40% showed impairment in TVA parameters. Follow-up analysis revealed significant improvements in the domains of visual memory/learning, executive functions, verbal fluency, processing speed, and motor skills but not in verbal learning and attention/working memory. We did not observe significant improvement in visual attention measured by TVA. Fatigue and mental health significantly improved at follow-up. Our findings indicate that successful DAA treatment leads to cognitive improvements in several domains measured by standard neuropsychological testing. The absence of improvement in TVA parameters and of significant improvement in the domain of attention/working memory might reflect the persistence of specific cognitive deficits after HCV eradication. In summary, DAA treatment seems to have a positive effect on some cognitive domains and leads to an improvement in mental health and fatigue in HCV-infected patients.
Collapse
|
24
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
25
|
Rubin LH, Benning L, Keating SM, Norris PJ, Burke-Miller J, Savarese A, Kumanan KN, Awadalla S, Springer G, Anastos K, Young M, Milam J, Valcour VG, Weber KM, Maki PM. Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: a longitudinal study. J Neurovirol 2018; 24:41-51. [PMID: 29063513 PMCID: PMC6036635 DOI: 10.1007/s13365-017-0590-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Despite the availability of effective antiretroviral therapies, cognitive impairment (CI) remains prevalent in HIV-infected (HIV+) individuals. Evidence from primarily cross-sectional studies, in predominantly male samples, implicates monocyte- and macrophage-driven inflammatory processes linked to HIV-associated CI. Thus, peripheral systemic inflammatory markers may be clinically useful biomarkers in tracking HIV-associated CI. Given sex differences in immune function, we focused here on whether mean and intra-individual variability in inflammatory marker-predicted CI in HIV+ and HIV- women. Seventy-two HIV+ (36 with CI) and 58 HIV- (29 with CI) propensity-matched women participating in the Women's Interagency HIV Study completed a neuropsychological battery once between 2009 and 2011, and performance was used to determine CI status. Analysis of 13 peripheral immune markers was conducted on stored biospecimens at three time points (7 and 3.5 years before neuropsychological data collection and concurrent with data collection). HIV+ women showed alterations in 8 immune markers compared to HIV- women. The strongest predictors of CI across HIV+ and HIV- women were lower mean soluble tumor necrosis factor receptor I (sTNFRI) levels, higher mean interleukin (IL)-6 levels, and greater variability in C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 (p values < 0.05). Stratified by HIV, the only significant predictor of CI was greater variability in CRP for both HIV+ and HIV- women (p values < 0.05). This variability predicted lower executive function, attention/working memory, and psychomotor speed in HIV+ but only learning in HIV- women (p values < 0.05). Intra-individual variability in CRP levels over time may be a good predictor of CI in predominately minority low-socioeconomic status midlife women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA.
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Jane Burke-Miller
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Antonia Savarese
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Krithika N Kumanan
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Saria Awadalla
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathyrn Anastos
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Mary Young
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Joel Milam
- Institute for Health Promotion and Disease Prevention Research, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kathleen M Weber
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disease is the most active topic for neuroAIDS investigations at present. Although impairment is mild in patients successfully treated with modern antiviral regimens, it remains an ongoing problem for HIV patients. It is important to update the emerging research concerning HIV-associated neurocognitive disease. RECENT FINDINGS The virus enters the brain during acute infection, with evidence for abnormal functioning that may occur early and often persists. Direct relationships with ongoing viral infection continue to be monitored, but chronic inflammation often associated with monocytes and macrophages appears to be the most likely driver of cognitive dysfunction. Appreciation for cerebrovascular disease as a significant comorbidity that is associated with cognitive deficits is increasing. Neuroimaging is actively being developed to address detection and measurement of changes in the brain. Optimal combined antiretroviral treatment therapy has vastly improved neurologic outcomes, but so far has not been demonstrated to reverse the remaining mild impairment. Inflammatory and vascular mechanisms of cerebral dysfunction may need to be addressed to achieve better outcomes. SUMMARY Ongoing research is required to improve neurological outcomes for persons living with HIV. It is likely that interventions beyond antiviral approaches will be required to control or reverse HIV-associated neurocognitive disease.
Collapse
|
27
|
Mechanisms of CNS Viral Seeding by HIV + CD14 + CD16 + Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. mBio 2017; 8:mBio.01280-17. [PMID: 29066542 PMCID: PMC5654927 DOI: 10.1128/mbio.01280-17] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV reservoirs persist despite antiretroviral therapy (ART) and are established within a few days after infection. Infected myeloid cells in the central nervous system (CNS) may contribute to the establishment of a CNS viral reservoir. The mature CD14+ CD16+ monocyte subset enters the CNS in response to chemokines, including CCL2. Entry of infected CD14+ CD16+ monocytes may lead to infection of other CNS cells, including macrophages or microglia and astrocytes, and to release of neurotoxic early viral proteins and additional cytokines. This contributes to neuroinflammation and neuronal damage leading to HIV-associated neurocognitive disorders (HAND) in ~50% of HIV-infected individuals despite ART. We examined the mechanisms of monocyte entry in the context of HIV infection and report for the first time that HIV+ CD14+ CD16+ monocytes preferentially transmigrate across the blood-brain barrier (BBB). The junctional proteins JAM-A and ALCAM and the chemokine receptor CCR2 are essential to their preferential transmigration across the BBB to CCL2. We show here that JAM-A and ALCAM are increased on HIV+ CD14+ CD16+ monocytes compared to their expression on HIVexp CD14+ CD16+ monocytes-cells that are uninfected but exposed to HIV, viral proteins, and inflammatory mediators. Antibodies against JAM-A and ALCAM and the novel CCR2/CCR5 dual inhibitor cenicriviroc prevented or significantly reduced preferential transmigration of HIV+ CD14+ CD16+ monocytes. This indicates that JAM-A, ALCAM, and CCR2 may be potential therapeutic targets to block entry of these infected cells into the brain and prevent or reduce the establishment and replenishment of viral reservoirs within the CNS.IMPORTANCE HIV infects different tissue compartments of the body, including the central nervous system (CNS). This leads to establishment of viral reservoirs within the CNS that mediate neuroinflammation and neuronal damage, contributing to cognitive impairment. Our goal was to examine the mechanisms of transmigration of cells that contribute to HIV infection of the CNS and to continued replenishment of CNS viral reservoirs, to establish potential therapeutic targets. We found that an HIV-infected subset of monocytes, mature HIV+ CD14+ CD16+ monocytes, preferentially transmigrates across the blood-brain barrier. This was mediated, in part, by increased junctional proteins JAM-A and ALCAM and chemokine receptor CCR2. We show that the CCR2/CCR5 dual inhibitor cenicriviroc and blocking antibodies against the junctional proteins significantly reduce, and often completely block, the transmigration of HIV+ CD14+ CD16+ monocytes. This suggests new opportunities to eliminate infection and seeding or reseeding of viral reservoirs within the CNS, thus reducing neuroinflammation, neuronal damage, and cognitive impairment.
Collapse
|
28
|
Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14 +CD16 + monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 2017; 102:1173-1185. [PMID: 28754798 DOI: 10.1189/jlb.3hi0517-167r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.
Collapse
Affiliation(s)
- Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA; .,Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
29
|
Gougeon ML, Poirier-Beaudouin B, Durant J, Lebrun-Frenay C, Saïdi H, Seffer V, Ticchioni M, Chanalet S, Carsenti H, Harvey-Langton A, Laffon M, Cottalorda J, Pradier C, Dellamonica P, Vassallo M. HMGB1/anti-HMGB1 antibodies define a molecular signature of early stages of HIV-Associated Neurocognitive Isorders (HAND). Heliyon 2017; 3:e00245. [PMID: 28224137 PMCID: PMC5310155 DOI: 10.1016/j.heliyon.2017.e00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/04/2017] [Accepted: 02/02/2017] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) persist in the post-HAART era, characterized by asymptomatic neurocognitive impairment (ANI) and mild neurocognitive disorders (MND). High mobility group box 1 (HMGB1) is a non-histone chromosomal protein widely expressed in the nucleus of all eukaryotic cells, including brain cells, which acts as a potent proinflammatory cytokine when actively secreted from immune cells. Recent reports suggested that HMGB1 acts on microglial cells to promote neuroinflammation. In this study, our aim was to determine whether HMGB1 is involved in HAND, but also to identify early new markers of neurological impairment in HIV-infected patients. METHODS CSF and serum were collected from 103 HIV-1-infected patients enrolled in Neuradapt, a prospective study of the prevalence of HAND in HIV-1 infected patients at Nice University Hospital. Stored fluids were assessed for immunological, virological, and brain metabolite parameters. In addition to HIV RNA and DNA measurements, expression of T-cell surface markers of activation (CD38 and HLA-DR) was analyzed on whole blood. Concentration of 27 cytokines and chemokines was measured using multiplex bead assays on serum and CSF. Concentration of HMGB1 and anti-HMGB1 IgG autoantibodies were also measured on the same samples. Changes in cerebral metabolites N-acetyl aspartate (NAA), Choline (Cho) and creatinine (Cr) were assessed by magnetic resonance microscopy (MRS). RESULTS Clinical, virological and immunological characteristics were comparable between HAND (n = 30) and no HAND (n = 73) patients, except the absolute numbers of CD8+ T cells, which were higher in patients with HAND. Among the 29 molecules tested, only 4 of them were significantly upregulated in the CSF from HAND patients as compared to healthy donors i.e. HMGB1, anti-HMGB1 IgG antibodies, IP-10 and MCP1. CSF HMGB1 levels were positively correlated with HIV-1 DNA in aviremic HAND patients, suggesting a positive impact of HMGB1 on HIV reservoirs. Moreover, in contrast to NAA/Cr and Cho/NAA ratios, circulating anti-HMGB1 IgG antibody levels could discriminate patients with no HAND from patients with no HAND and a single deficit (average ROC-AUC = 0.744, p = 0.03 for viremic patients), thus enabling the identification of a very early stage of neurocognitive impairment. CONCLUSION We report that brain injury in chronically HIV-infected patients on stable HAART is strongly associated with persistent CNS inflammation, which is correlated with increased levels of HMGB1 and anti-HMGB1 IgG in the CSF. Moreover, we identified circulating anti-HMGB1 IgG as a very early biomarker of neurological impairment in patients without HAND. These results might have important implication for the identification of patients who are at high risk of developing neurological disorders.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Jacques Durant
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | | | - Héla Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Valérie Seffer
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Michel Ticchioni
- University of Nice, L'Archet Hospital, Immunology Laboratory Unit, Nice, France
| | - Stephane Chanalet
- University of Nice, Pasteur Hospital, Department of Radiology, Nice, France
| | - Helene Carsenti
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | | | - Muriel Laffon
- University of Nice, Pasteur Hospital, Department of Neurology, Nice, France
| | | | - Christian Pradier
- University of Nice, Department of Public Health, L'Archet Hospital, Nice, France
| | - Pierre Dellamonica
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | - Matteo Vassallo
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France; Cannes General Hospital, Department of Internal Medicine, Cannes, France
| |
Collapse
|
30
|
Monnig MA. Immune activation and neuroinflammation in alcohol use and HIV infection: evidence for shared mechanisms. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:7-23. [PMID: 27532935 PMCID: PMC5250549 DOI: 10.1080/00952990.2016.1211667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Emerging research points to innate immune mechanisms in the neuropathological and behavioral consequences of heavy alcohol use. Alcohol use is common among people living with HIV infection (PLWH), a chronic condition that carries its own set of long-term effects on brain and behavior. Notably, neurobiological and cognitive profiles associated with heavy alcohol use and HIV infection share several prominent features. This observation raises questions about interacting biological mechanisms as well as compounded impairment when HIV infection and heavy drinking co-occur. OBJECTIVE AND METHOD This narrative overview discusses peer-reviewed research on specific immune mechanisms of alcohol that exhibit apparent potential to compound the neurobiological and psychiatric sequelae of HIV infection. These include microbial translocation, systemic immune activation, blood-brain barrier compromise, microglial activation, and neuroinflammation. RESULTS Clinical and preclinical evidence supports overlapping mechanistic actions of HIV and alcohol use on peripheral and neural immune systems. In preclinical studies, innate immune signaling mediates many of the detrimental neurocognitive and behavioral effects of alcohol use. Neuropsychopharmacological research suggests potential for a feed-forward cycle in which heavy drinking induces innate immune signaling, which in turn stimulates subsequent alcohol use behavior. CONCLUSION Alcohol-induced immune activation and neuroinflammation are a serious health concern for PLWH. Future research to investigate specific immune effects of alcohol in the context of HIV infection has potential to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| |
Collapse
|
31
|
Cooley SA, Paul RH, Fennema-Notestine C, Morgan EE, Vaida F, Deng Q, Chen JA, Letendre S, Ellis R, Clifford DB, Marra CM, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Simpson DM, Morgello S, Grant I, Ances BM. Apolipoprotein E ε4 genotype status is not associated with neuroimaging outcomes in a large cohort of HIV+ individuals. J Neurovirol 2016; 22:607-614. [PMID: 27021072 PMCID: PMC5040614 DOI: 10.1007/s13365-016-0434-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/27/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Previous neuroimaging studies suggest a negative relationship between the apolipoprotein (ApoE) ε4 allele and brain integrity in human immunodeficiency virus (HIV)-infected (HIV+) individuals, although the presence of this relationship across adulthood remains unclear. The purpose of this study is to clarify the discrepancies using a large, diverse group of HIV+ individuals and multiple imaging modalities sensitive to HIV. The association of ApoE ε4 with structural neuroimaging and magnetic resonance spectroscopy (MRS) was examined in 237 HIV+ individuals in the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Cortical and subcortical gray matter, abnormal and total white matter, ventricles, sulcal cerebrospinal fluid (CSF), and cerebellar gray matter, white matter, and CSF volumes, and MRS concentrations of myo-inositol, creatine, N-acetyl-aspartate, and choline in the frontal white matter (FWM), frontal gray matter (FGM), and basal ganglia were examined. Secondary analyses explored this relationship separately in individuals ≥50 years old (n = 173) and <50 years old (n = 63). No significant differences were observed between ApoE ε4+ (ApoE ε3/ε4 and ApoE ε4/ε4) individuals (n = 69) and ApoE ε4- (ApoE ε2/ε3 and ApoE ε3/ε3) individuals (n = 167). When individuals were further divided by age, no significant genotype group differences were identified in individuals <50 or ≥50 years of age on any neuroimaging outcome. The ApoE ε4 allele did not affect brain integrity in this large, diverse sample of HIV+ individuals. The effects of ApoE ε4 may not be apparent until more advanced ages and may be more prominent when present along with other risk factors for neuronal damage.
Collapse
Affiliation(s)
| | - Robert H Paul
- University of Missouri - St. Louis, St. Louis, MO, USA
- Missouri Institute of Mental Health, St. Louis, MO, USA
| | | | - Erin E Morgan
- University of California, San Diego, San Diego, CA, USA
| | - Florin Vaida
- University of California, San Diego, San Diego, CA, USA
| | - Qianqian Deng
- University of California, San Diego, San Diego, CA, USA
| | | | | | - Ronald Ellis
- University of California, San Diego, San Diego, CA, USA
| | - David B Clifford
- Washington University in St. Louis, Box 8111 660 South Euclid Ave, Saint Louis, MO, 63110, USA
| | | | | | | | | | | | | | - Susan Morgello
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Grant
- University of California, San Diego, San Diego, CA, USA
| | - Beau M Ances
- Washington University in St. Louis, Box 8111 660 South Euclid Ave, Saint Louis, MO, 63110, USA.
| |
Collapse
|
32
|
Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. AIDS 2016; 30:1327-39. [PMID: 26990629 DOI: 10.1097/qad.0000000000001092] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease is a common comorbidity in HIV, with prevalence and severity of disease incompletely explained by risk factors such as smoking and age. Unique HIV-associated factors, including microbial translocation, monocyte activation, and endothelial dysfunction, have been described in other comorbidities, but have not been investigated in relation to pulmonary abnormalities in HIV. This study assessed the relationship of these pathologic processes to pulmonary function in HIV-infected and uninfected individuals and determined if relationships were unique to HIV. DESIGN Longitudinal observational study. METHODS Total 274 participants completed pulmonary function testing. Markers of inflammation (IL-6, IL-8, and TNFα), microbial translocation (lipopolysaccharide, sCD14), monocyte activation (sCD163, sCD14, and IL-2 receptor), and endothelial dysfunction (endothelin-1) were measured at baseline. Cross-sectional and longitudinal analyses were performed, adjusting for pertinent covariates. RESULTS In HIV-infected individuals, higher IL-6 and endothelin-1 associated with worse forced expiratory volume in one second (FEV1) percentage-predicted, and higher sCD163 associated with worse FEV1/forced vital capacity. IL-6, TNFα, lipopolysaccharide, sCD163, IL-2 receptor, and endothelin-1 associated with diffusing impairment. sCD163 and endothelin-1 interacted with HIV status in relationship to pulmonary function. In HIV-infected individuals only, baseline endothelin-1 was associated with lower FEV1, and sCD163 and endothelin-1 were associated with lower diffusing capacity during follow-up. CONCLUSION Circulating markers of HIV-associated humoral abnormalities are associated with airflow obstruction and diffusing impairment and baseline measures of monocyte activation and endothelial dysfunction associate with lower pulmonary function over time in HIV-infected persons. These findings suggest mechanisms of the disproportionate burden of chronic obstructive pulmonary disease in HIV-infected persons.
Collapse
|
33
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
34
|
Lakritz JR, Robinson JA, Polydefkis MJ, Miller AD, Burdo TH. Loss of intraepidermal nerve fiber density during SIV peripheral neuropathy is mediated by monocyte activation and elevated monocyte chemotactic proteins. J Neuroinflammation 2015; 12:237. [PMID: 26683323 PMCID: PMC4683776 DOI: 10.1186/s12974-015-0456-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Background Peripheral neuropathy (PN) continues to be a major complication of human immunodeficiency virus (HIV) infection despite successful anti-retroviral therapy. Human HIV-PN can be recapitulated in a CD8-depleted, simian immunodeficiency virus (SIV)-infected rhesus macaque animal model, characterized by a loss of intraepidermal nerve fiber density (IENFD) and damage to the dorsal root ganglia (DRG). Increased monocyte traffic to the DRG has previously been associated with severe DRG pathology, as well as a loss in IENFD. Here, we sought to characterize the molecular signals associated with monocyte activation and trafficking to the DRGs. Methods Eleven SIV-infected CD8-depleted rhesus macaques were compared to four uninfected control animals. sCD14, sCD163, sCD137, regulated on activation normal T cell expressed and secreted (RANTES), and monocyte chemoattractant protein 1 (MCP-1) were measured in plasma and the latter three proteins were also quantified in DRG tissue lysates. All SIV-infected animals received serial skin biopsies to measure IENFD loss as well as BrdU inoculations to measure monocyte turnover during the course of infection. The number of BrdU+ and CD14+ CD16+ peripheral blood monocytes was determined by flow cytometry. The number of MAC387+, CCR2+, CCR5+, and CD137+ cells in DRG tissue was quantified by immunohistochemistry. Results sCD14, sCD163, MCP-1, and sCD137 increased significantly in plasma from pre-infection to necropsy. Plasma sCD163 and RANTES inversely correlated with IENFD. Additionally, sCD137 in DRG tissue lysate was elevated with severe DRG pathology and associated with the recruitment of MAC387+ cells to DRG. Elevated numbers of CCR5+ and CCR2+ satellite cells in the DRG were found, suggesting a chemotactic role of their ligands, RANTES, and MCP-1 in recruiting monocytes to the tissue. Conclusions We characterized the role of systemic (plasma) and tissue-specific (DRG) monocyte activation and associated cytokines in the pathogenesis of SIV-PN. We identified sCD163 and RANTES as potential biomarkers for HIV-PN, as these were associated with a loss of IENFD. Additionally, we identified CD137 signaling to play a role in MAC387+ cell traffic to DRG and possibly contribute to severe pathology. These studies highlight the role of monocyte activation and traffic in the pathogenesis of SIV-PN, while identifying specific signaling proteins for future pharmacological blockade.
Collapse
Affiliation(s)
- Jessica R Lakritz
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jake A Robinson
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|