1
|
Chen M, Sun Y, Niu J, Zhou H, Zhou Y, Chen X. As(V) adsorption by FeOOH@coal gangue composite from aqueous solution: performance and mechanisms. ENVIRONMENTAL TECHNOLOGY 2024; 45:4376-4387. [PMID: 37609908 DOI: 10.1080/09593330.2023.2251655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/22/2023] [Indexed: 08/24/2023]
Abstract
Arsenic (As) pollution in water poses a significant threat to the ecological environment and human health. Meanwhile, the resource utilisation of coal gangue is of utmost importance in ecologically sustainable development. Thus, the FeOOH@coal gangue composite (FeOOH@CG) was synthesised for As(V) adsorption in this study. The results showed that α-FeOOH, β-FeOOH and Schwertmannite loaded on the surface of FeOOH@CG. Moreover, the adsorption behaviour of As(V) by FeOOH@CG was investigated under different reaction conditions, such as pH, contact time, initial concentration and co-existing anions. The optimum adsorption conditions were as follows: initial As(V) concentration of 60 mg/L, pH of 3.0 and adsorption time of 180-240 h. The adsorption capacity of FeOOH@CG for As(V) was pH-dependent and the maximum adsorption capacity was 185.94 mg/g. The presence of anions (H 2 PO 4 - , HCO 3 - and C l - ) decreased the adsorption efficiency of FeOOH@CG for As(V). The adsorption process of FeOOH@CG for As(V) could be well-described by the pseudo-second-order model and Langmuir model, indicating that the adsorption process mainly depended on chemical adsorption. The thermodynamic analysis suggested that the adsorption was a spontaneous and endothermic process. In addition, according to the analyses of XRD, FTIR and XPS, the dominant mechanisms of As(V) adsorption by FeOOH@CG were electrostatic attraction, complexation and precipitation. In conclusion, FeOOH@CG has great potential as an efficient and environmentally friendly adsorbent for As(V) adsorption from aqueous solution.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou, People's Republic of China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jingwei Niu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Hai Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, People's Republic of China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, People's Republic of China
| |
Collapse
|
2
|
Ma Y, Shang X, Zhang Y, Chen W, Gao Y, Guo J, Zheng H, Xing B. Co-pyrolysis of alkali-fused fly ash and corn stover to synthesize biochar composites for remediating lead-contaminated soil. ENVIRONMENTAL RESEARCH 2024; 252:118938. [PMID: 38649014 DOI: 10.1016/j.envres.2024.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Fly ash (FA) is mainly composed of silica, alumina, and other metal oxide components, and has a positive stabilizing effect on soil heavy metals. Biochar composites produced from FA and corn stover (CS) can improve its remediation performance. Therefore, a batch of biochar composites (alkali-fused FA-CS biochars, ABs), synthesized via co-pyrolysis of CS and alkali-fused FA (AFFA) at different temperatures of 300, 500, and 700 °C (AB300-1, AB500-1, and AB700-1) and CS to AFFA mass ratios of 10:1, 10:2, and 10:5 (AB500-1, AB500-2, and AB500-5), was used to remediate lead (Pb)-contaminated soil. Compared with pristine biochars (BCs), ABs were enriched with oxygen-containing functional groups (Si-O-Si and Si-O) and aromatic structures. The ABs prepared at lower pyrolytic temperature (≤500 °C) and lower ratio of CS to AFFA (10:1) showed higher yield and stability. The contents of Toxicity Characteristic Leaching Procedure (TCLP)-extractable Pb and DTPA-CaCl2-triethanolamine (DTPA)-extractable Pb were generally lower in the soils amended with ABs than BCs. Compared with other ABs such as AB300-1, AB500-2, AB500-5, and AB700-1, the soil amended with AB500-1 had lower contents of TCLP and DTPA-extractable Pb (24% reduction), exhibiting superior performance in stabilizing Pb in the soil. The gradual decrease of DTPA-extractable Pb content in the soil with increasing dosage of AB500-1 amendments suggests that AB500-1 facilitated the conversion of bioavailable Pb to the stable and less toxic residual fractions. Specifically, the highest percentage of residual fraction of Pb in soil amended with AB500-1 was 14%. Correlation analyses showed that the soil DTPA-extractable Pb content decreased with the increase of soil pH and cation-exchange capacity (CEC) value. ABs stabilize Pb in the soils mainly via electrostatic attraction, precipitation, cation-π interaction, cation exchange, and complexation. These findings provide insights for producing functionalized biochar composites from industrial waste like FA and biomass waste for remediating the soils polluted by heavy metals.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs, P. R., Jiangsu, 210014, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiufang Shang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yaru Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Zhejiang Environmental Science Research Institute Co. Ltd, Zhejiang, 310007, China
| | - Wei Chen
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs, P. R., Jiangsu, 210014, China
| | - Yan Gao
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs, P. R., Jiangsu, 210014, China
| | - Jianda Guo
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Beijing Building Materials Academy of Science Research, State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing, 100041, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Yang Y, Wang L, Zhao H, Yan F, Li S, Guo B, Luo C, Huang X, Ji P. Utilization of KOH-modified fly ash for elimination from aqueous solutions of potentially toxic metal ions. ENVIRONMENTAL RESEARCH 2023; 223:115396. [PMID: 36736756 DOI: 10.1016/j.envres.2023.115396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Long-term accumulation of toxic heavy metals in the environment was a potential hidden danger. High energy consumption, complicated operation and low adsorption capacity were the disadvantages of most current adsorbents. This study used one-step modification of fly ash (FA) by low-temperature melting method with KOH as the activator to generate modified fly ash (KFA) with high adsorption capacity to remove heavy metals from aqueous solutions. Various characterization results revealed a destruction that occurred on the surface structure of adsorbent, 12 times increase in specific surface area, and metal ions were successfully adsorbed onto KFA surface. Furthermore, adsorption proceeded most favorably at pH of 5, the presence of ionic strength and co-existing cations significantly influenced the adsorption effects. The description of adsorption data was more suitable by pseudo-second-order kinetics and Langmuir isotherm models. And in single system at 25 °C, for Pb(II), Cu(II), and Cd (II), the qm were 337.41, 310.09 and 125.00 mg·g-1. However, in ternary system, the qm decreased for all three ions in the order Pb(II) > Cu(II) > Cd(II), which was different from the law in single system, and the Pb(II) adsorption was found to have a significant inhibited effect on adsorption of Cd(II) and Cu(II). The adsorption mechanisms including ion exchange, electrostatic attraction and complexation were revealed. And by exploring the bioaccessibility of absorbed heavy metals in four simulated digestive fluids, it was found that KFA could load heavy metal ions and enable their release in organisms and other aquatic environments, which provided the possibility for subsequent related studies. Therefore, KFA with low energy consumption and high adsorption capacity is equipped a prospective development space on removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Shaanxi Ghanshan Cui Environmental Protection Technology Co., Ltd., Room 202-2, Zone A, China-South Korea Industrial Park, Gaoke 3rd Road, Shaanxi Province, 712000, China.
| |
Collapse
|
4
|
Chen M, Liu Y, Zhang D, Zhu J, Chen X, Yuan L. Remediation of arsenic-contaminated paddy soil by iron oxyhydroxide and iron oxyhydroxide sulfate-modified coal gangue under flooded condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150199. [PMID: 34520918 DOI: 10.1016/j.scitotenv.2021.150199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Flooded condition enhances arsenic (As) mobility in paddy soils, posing an imminent threat to food safety and human health. Hence, iron oxyhydroxide and iron oxyhydroxide sulfate-modified coal gangue (CG-FeOH and CG-FeOS) were synthesized for remediation of As-contaminated paddy soils under a flooded condition. Compared to the control, CG-FeOH and CG-FeOS application decreased the soil pH by 0.10-0.80 and 0.13-1.63 units, respectively. CG-FeOH and CG-FeOS application significantly (P < 0.05) decreased available As concentration by 13.46-43.44% and 21.31-54.37%, respectively. CG-FeOH and CG-FeOS significantly (P < 0.05) reduced the non-specifically adsorbed and specifically adsorbed As fractions and increased As(V) proportion by 22.61-26.53% and 29.10-36.51%, respectively. Our results showed that CG-FeOH and CG-FeOS could change As geochemical fraction and valence state, consequently reducing available As concentration in paddy soils. Moreover, the sulfate could enhance the oxidation and co-precipitation of As with CG-FeOH. Compared to CG-FeOH, CG-FeOS was more effective in decreasing available As concentration and oxidizing As(III) to As(V). This study revealed that CG-FeOS is a potential amendment for As immobilization in paddy soils.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
| | - Ying Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Di Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianming Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China.
| | - Liang Yuan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
5
|
Qi L, Liu K, Wang R, Li J, Zhang Y, Chen L. Removal of Chlorine Ions from Desulfurization Wastewater by Modified Fly Ash Hydrotalcite. ACS OMEGA 2020; 5:31665-31672. [PMID: 33344818 PMCID: PMC7745446 DOI: 10.1021/acsomega.0c04074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/28/2020] [Indexed: 05/31/2023]
Abstract
The effective removal of chlorine ion from the desulfurization slurry is of great significance to the stable operation of the desulfurization system. Modified fly ash hydrotalcites were prepared by alkali/acid-combined roasting and microwaving and used as an adsorbent for chlorine ion in desulfurized wastewater. The specific surface area and porosity of different adsorbents were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impacts of pH, temperature, adsorbent dosage, and adsorption shaking time on adsorption performance were investigated. Results showed the alkali-combined roasting-modified fly ash hydrotalcite has the optimum removal effect on Cl-. The optimal adsorption performance was achieved when the pH was 8, the adsorption temperature was 60 °C, the mass concentration of adsorbent was 10 g/L, the adsorption shaking time was 180 min, and the removal percentage of Cl- was 68.1%. The adsorption isotherm was consistent with the Langmuir isotherm model, and the adsorption saturation was 694.4 mg/g, which belonged to monolayer adsorption.
Collapse
Affiliation(s)
- Liqiang Qi
- . Tel: +86 13933270460. Fax: +86-312-7525504
| | | | | | - Jingxin Li
- . Tel: +86 13933270460. Fax: +86-312-7525504
| | | | | |
Collapse
|
6
|
Huang X, Zhao H, Zhang G, Li J, Yang Y, Ji P. Potential of removing Cd(II) and Pb(II) from contaminated water using a newly modified fly ash. CHEMOSPHERE 2020; 242:125148. [PMID: 31669995 DOI: 10.1016/j.chemosphere.2019.125148] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Modified fly ash was prepared through low-temperature roasting method using NaOH as activator. The techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) were introduced to analyze the chemical and physical performance of samples, respectively. It was found that a significant improvements in activity and specific surface area of adsorbent. This work systematically reported the uptake performances of modified materials for single and two mixed toxic cations Pb(II) and Cd(II). The results unveiled that pseudo-second-order model was suitable to analyze the adsorption process. The adsorption process were better fitted by Langmuir model and the maximum uptake capacities were 126.55 and 56.31 mg g-1 for Pb(II) and Cd(II) in single system at 298 K, respectively. Additionally, in mixed solution, the maximum uptake capacity reduced to 120.48 and 36.10 mg g-1 under the same adsorption conditions. Competitive adsorption results demonstrated that adsorption ability was restricted by other metal ions, as while as, the binding affinity of two cations followed the order of Pb(II)>Cd(II). Meanwhile, the co-existed cations as Ca(II), Mg(II) Na(I) and K(I) had antagonistic effects on the uptake of Cd(II) and Pb(II). The results indicate that the modified fly ash was a low-cost and effective adsorbent for the cleaning up metal ions in wastewater, which has a promising application prospect.
Collapse
Affiliation(s)
- Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guibin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingtian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- Beijing Key Laboratory of Power Generation System Functional Material, Guodian New Energy Technology Research Institute, Beijing, 102209, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
7
|
Low-Cost Route for Preparing Carbon–Silica Composite Mesoporous Material from Coal Gasification Slag: Synthesis, Characterization and Application in Purifying Dye Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04383-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
He P, Ding J, Qin Z, Tang L, Haw KG, Zhang Y, Fang Q, Qiu S, Valtchev V. Binder-free preparation of ZSM-5@silica beads and their use for organic pollutant removal. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00259c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic structure directing agent (OSDA)- and binder-free preparation of ZSM-5@silica beads and their use for aniline removal.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhengxing Qin
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Lingxue Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Kok-Giap Haw
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yiying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Valentin Valtchev
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
- Normandie Univ
| |
Collapse
|