1
|
Shaik S, Sirigireddy RMR, Talari ST, Divi H, Mulakayala N, Vemula V, Nallagondu CGR. Optimizing the white light emission in the solid state isatin and thiazole based molecular hybrids by introduction of variety of substituents on isatin and thiazole ring systems. RSC Adv 2025; 15:7973-7986. [PMID: 40092142 PMCID: PMC11908639 DOI: 10.1039/d4ra09010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
An efficient and practical 3-component reaction strategy has been developed for the synthesis of a series of multi-colour emissive isatin-thiazole based fluorophores, thiazolylhydrazonoindolin-2-ones (4) from readily available isatins (1), thiosemicarbazide (2) and α-bromoketones (3) in the presence of biodegradable citric acid (0.1 N) in ethanol at reflux temperature for 40-60 min. The reaction proceeds via condensation (C[double bond, length as m-dash]N) and subsequent heterocyclization (C-S & C-N) in one-pot. Nature-friendly reaction profile, easy to perform, wide substrate scope, use of non-hazardous solvents/catalysts, good functional group tolerance, excellent yields (91-98%) in short reaction times, scalability and products do not require column chromatography purification are the attractive features of the present MCR strategy. The photophysical properties of the titled compounds (4) in both solid and solution states have been evaluated. The study reveals that the prepared isatin-thiazole based molecular hybrids exhibited tunable photophysical properties by varying the substituents on both isatin and thiazole motifs. To our delight, the titled compounds, 4k, 4l, 4m, 4u and 4y displayed white light emission with mega Stokes shifts in the solid state.
Collapse
Affiliation(s)
- Sultana Shaik
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Rama Mohana Reddy Sirigireddy
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Sai Teja Talari
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Haranath Divi
- Department of Physics, National Institute of Technology Warangal-506004 Telangana India
| | - Naveen Mulakayala
- SVAK Lifesciences ALEAP Industrial Area, Pragathi Nagar Hyderabad 500090 India
| | - Venkatramu Vemula
- Department of Physics, Yogi Vemana University Kadapa-516 005 Andhra Pradesh India
| | - Chinna Gangi Reddy Nallagondu
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| |
Collapse
|
2
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
3
|
Shaik S, Reddy Sirigireddy RM, Godugu K, Vemula V, Kakarla RR, Balaraman E, Nallagondu CGR, Aminabhavi TM. SiO 2-supported HClO 4 catalyzed synthesis of (Z)-thiazolylhydrazonoindolin-2-ones and their electrochemical properties. CHEMOSPHERE 2022; 309:136667. [PMID: 36202369 DOI: 10.1016/j.chemosphere.2022.136667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an environmentally benign silica-supported perchloric acid (HClO4-SiO2) catalyzed green FCDR strategy has been developed for the synthesis of (Z)-THIs (6) with high stereospecificity via an intramolecular hydrogen bond (IHB) directed approach, involving the reaction of methyl ketones (1), N-bromosuccinimide (NBS) (2), isatins (4) and thiosemicarbazide (5) in ethanol at reflux temperature for 45-60 min in one-pot. The reaction proceeds through the construction of C-Br (α-bromination), C-S & C-N (heterocyclization), and CN (condensation) bonds in one pot. The absolute structure of the compound (Z)-3-(2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)indolin-2-one (6e) has been confirmed by single-crystal XRD analysis. Further, the role of IHB on Z-configuration of the synthesized (Z)-THIs is proved by single-crystal XRD and 1H NMR studies. Wide substrate scope, good functional group tolerance, scalability, improved safety since the method circumvents the use of highly lachrymatric α-bromoketones as starting materials, high product yields (up to 98%), short reaction times, reusable solid Brønsted acid catalyst (HClO4-SiO2), and products that do not require column chromatography purification are all attractive features of this FCDR strategy. Electrochemical properties of THIs (6) are examined by cyclic voltammetry. The HOMO and LUMO energy level of THIs, 6a, 6c, 6d, 6j, 6o-6v, 6y, and 6aa are comparable with the reported ambipolar materials, and the HOMO levels of other THIs, 6b, 6e-6i, 6n, 6w, 6x, 6z and 6 ab-6ae are similar with the most commonly used hole transporting materials (HTMs).
Collapse
Affiliation(s)
- Sultana Shaik
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Rama Mohana Reddy Sirigireddy
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kumar Godugu
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Venkatramu Vemula
- Department of Physics, Krishna University Dr. M. R. Appa Row College of PG Studies, Nuzvid, 521 201, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Chinna Gangi Reddy Nallagondu
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| |
Collapse
|
4
|
Ölgen S, Demirel UU, Karaman EF, Tanol M, Özden S, Göker H. Synthesis of Novel Urea and Sulfonamide Derivatives of Isatin Schiff Bases
as Potential Anti-cancer Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220224115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Among the many types of chemical scaffolds, isatin derivatives, including their
Schiff bases, have been extensively studied to find novel therapeutic agents against cancer. Amide or urea
groups containing derivatives were also discovered to be tyrosine kinase inhibitors.
Objective:
This study aims to find potent compounds by designing 16 novel urea and sulfonamide derivatives
of isatin Schiff bases.
Method:
Compounds were tested against PC-3, HepG2, SH-SY5Y, A549 cancerous, and NIH/3T3 noncancerous
cell lines using cell culture assay.
Results:
Among the tested compounds 7a, 7b, 7c, 7d, 7h, 8a, and 8f presented potential inhibitions
against cellular proliferation activities of HepG2 cells with average IC50 values of 31.97, 42.13, 31.50,
47.98, 32.59, 43.44, and 37.81 μM, respectively. They showed better inhibition potencies than the reference
compound doxorubicin, and its value was measured as 51.15 μM in the same culture assay. The
cytotoxic activities of the compounds in other cell lines were found to be less potent compared to doxorubicin.
Conclusion:
In vitro experiments demonstrated that designed compounds have the first evidence that they
might be active against hepatocellular carcinoma. According to ADME prediction results, all compounds
presented drug-like and good metabolic properties.
Collapse
Affiliation(s)
- Süreyya Ölgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Ural U. Demirel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Ecem F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology,
Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Mehmet Tanol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Sibel Özden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Hakan Göker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Elrazaz EZ, Serya RAT, Ismail NSM, Albohy A, Abou El Ella DA, Abouzid KAM. Discovery of potent thieno[2,3-d]pyrimidine VEGFR-2 inhibitors: Design, synthesis and enzyme inhibitory evaluation supported by molecular dynamics simulations. Bioorg Chem 2021; 113:105019. [PMID: 34091286 DOI: 10.1016/j.bioorg.2021.105019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR) is one of the well-known targets that control angiogenesis and cancer progression. In this study, we are reporting the design, synthesis and biological evaluation of a series of 4-substituted thieno[2,3-d]pyrimidine derivatives as VEGFR-2 inhibitors. The design of these compounds was based on interactions extracted from crystal structure of potent pyrrolo[3,2-d]pyrimidine inhibitor VIII with VEGFR-2 (PDB: 3VHE). In addition to these interactions, the new compounds were also designed to interact with residues in the solvent accessible region such as Asn923. Accordingly, the thienopyrimidine target compounds were synthesized and subjected to VEGFR-2 enzyme inhibition assay. Several target compounds (7d-f, 8b-c, 8e-g and 15c) exhibited potent inhibitory activities against VEGFR-2 with IC50 values in low nanomolar range. Compounds 8b and 8e revealed exceptionally potent inhibitory activity with IC50 of 5 and 3.9 nM, respectively. The molecular docking analysis and molecular dynamics simulation were also performed to further investigate these findings.
Collapse
Affiliation(s)
- Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo-Suez Desert Road, 11837, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt.
| |
Collapse
|
6
|
Paliogiannis P, Fois SS, Fois AG, Cossu A, Palmieri G, Pintus G. Repurposing Anticancer Drugs for the Treatment of Idiopathic Pulmonary Fibrosis and Antifibrotic Drugs for the Treatment of Cancer: State of the Art. Curr Med Chem 2021; 28:2234-2247. [PMID: 32748739 DOI: 10.2174/0929867327999200730173748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive pulmonary disease which shares several molecular, pathophysiological and clinical aspects with lung cancer, including high mortality rates. The antifibrotic drugs Nintedanib and Pirfenidone have recently been introduced in clinical practice for the treatment of IPF. Nintedanib is also used for the treatment of several malignancies, including non-small cell lung cancer (NSCLC) in combination with Docetaxel, while Pirfenidone showed some anti-neoplastic effects in preclinical studies. On the other hand, novel targeted agents and immunotherapies have been introduced in the last decade for the treatment of NSCLC, and some of them showed anti-fibrotic properties in recent studies. These evidences, based on the common pathophysiological backgrounds of IPF and lung cancer, make possible the mutual or combined use of anti-fibrotic and anti-neoplastic drugs to treat these highly lethal diseases. The aim of the present review is to depict the current scientific landscape regarding the repurposing of anti-neoplastic drugs in IPF and anti-fibrotic drugs in lung cancer, and to identify future research perspectives on the topic.
Collapse
Affiliation(s)
- Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sara Solveig Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Antonio Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute Biomolecular Chemistry, CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box: 27272, United Arab Emirates
| |
Collapse
|
7
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett 2019; 18:2220-2231. [PMID: 31452723 PMCID: PMC6676536 DOI: 10.3892/ol.2019.10541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) remains one of the major causes of suboptimal outcome following therapy in head and neck squamous cell carcinoma (HNSCC). ATP-binding cassette (ABC) transporters are overexpressed in HNSCC, which contributes to the limited effect of chemotherapeutic treatment. In addition to their named function, tyrosine kinase inhibitors (TKIs) have been revealed to impact on ABC transporter activity and expression. Therefore, the present study aimed to investigate the effects of combination therapy using different TKIs combined with cisplatin. Reverse transcription-quantitative PCR was used to characterize ABC transporter and receptor expression in 5 HNSCC cell lines treated with 3 different TKIs (pazopanib, dovitinib, nintedanib) and cisplatin. Treatment efficacy was analyzed using a crystal violet staining assay. Analysis of ABC transporter (ABCB1, ABCC1 and ABCG2) genetic alterations was performed using The Cancer Genome Atlas. Statistical analysis was conducted to evaluate the effects of mono- and combination treatment. With the exception of ABCB1, all of the investigated ABC transporters were expressed in each cell line. The additive effects of TKI + cisplatin combination treatment were observed for pazopanib in three cell lines, nintedanib in four cell lines, and were not observed for dovitinib in any of the cell lines investigated. The combination of multi-kinase inhibitors and conventional chemotherapy in HNSCC may strengthen the use of current therapeutic strategies; nintedanib appears to be the most suitable TKI for combination therapy. Further efforts are required to classify TKI efficacy with regard to cisplatin resistance.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Francesco De Donno
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Marie Luise Knierim
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Valentin Steinacker
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
9
|
Silbermann K, Stefan SM, Elshawadfy R, Namasivayam V, Wiese M. Identification of Thienopyrimidine Scaffold as an Inhibitor of the ABC Transport Protein ABCC1 (MRP1) and Related Transporters Using a Combined Virtual Screening Approach. J Med Chem 2019; 62:4383-4400. [PMID: 30925062 DOI: 10.1021/acs.jmedchem.8b01821] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A virtual screening protocol with combination of similarity search and pharmacophore modeling was applied to virtually screen a large compound library to gain new scaffolds regarding ABCC1 inhibition. Biological investigation of promising candidates revealed four compounds as ABCC1 inhibitors, three of them with scaffolds not associated with ABCC1 inhibition until now. The best hit molecule-a thienopyrimidine-was a moderately potent, competitive inhibitor of the ABCC1-mediated transport of calcein AM which also sensitized ABCC1-overexpressing cells toward daunorubicin. Further evaluation showed that it was a moderately potent, competitive inhibitor of the ABCB1-mediated transport of calcein AM, and noncompetitive inhibitor of the ABCG2-mediated pheophorbide A transport. In addition, the thienopyrimidine could also sensitize ABCB1- as well as ABCG2-overexpressing cells toward daunorubicin and SN-38, respectively, in concentration ranges that qualified it as one of the ten best triple ABCC1/ABCB1/ABCG2 inhibitors in the literature. Besides, three more new multitarget inhibitors were identified by this virtual screening approach.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Randa Elshawadfy
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
10
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
11
|
Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, van Leeuwen RWF. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 2019; 11:1758835918818347. [PMID: 30643582 PMCID: PMC6322107 DOI: 10.1177/1758835918818347] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Multikinase inhibitors (MKIs), including the tyrosine kinase inhibitors (TKIs), have rapidly become an established factor in daily (hemato)-oncology practice. Although the oral route of administration offers improved flexibility and convenience for the patient, challenges arise in the use of MKIs. As MKIs are prescribed extensively, patients are at increased risk for (severe) drug–drug interactions (DDIs). As a result of these DDIs, plasma pharmacokinetics of MKIs may vary significantly, thereby leading to high interpatient variability and subsequent risk for increased toxicity or a diminished therapeutic outcome. Most clinically relevant DDIs with MKIs concern altered absorption and metabolism. The absorption of MKIs may be decreased by concomitant use of gastric acid-suppressive agents (e.g. proton pump inhibitors) as many kinase inhibitors show pH-dependent solubility. In addition, DDIs concerning drug (uptake and efflux) transporters may be of significant clinical relevance during MKI therapy. Furthermore, since many MKIs are substrates for cytochrome P450 isoenzymes (CYPs), induction or inhibition with strong CYP inhibitors or inducers may lead to significant alterations in MKI exposure. In conclusion, DDIs are of major concern during MKI therapy and need to be monitored closely in clinical practice. Based on the current knowledge and available literature, practical recommendations for management of these DDIs in clinical practice are presented in this review.
Collapse
Affiliation(s)
- Koen G A M Hussaarts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Frank G A Jansman
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
12
|
Nintedanib in advanced NSCLC of adenocarcinoma histology: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2018. [DOI: 10.1007/s40267-018-0481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Englinger B, Lötsch D, Pirker C, Mohr T, van Schoonhoven S, Boidol B, Lardeau CH, Spitzwieser M, Szabó P, Heffeter P, Lang I, Cichna-Markl M, Grasl-Kraupp B, Marian B, Grusch M, Kubicek S, Szakács G, Berger W. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression. Oncotarget 2018; 7:50161-50179. [PMID: 27367030 PMCID: PMC5226575 DOI: 10.18632/oncotarget.10324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Genomically amplified fibroblast growth factor receptor 1 (FGFR1) is an oncogenic driver in defined lung cancer subgroups and predicts sensibility against FGFR1 inhibitors in this patient cohort. The FGFR inhibitor nintedanib has recently been approved for treatment of lung adenocarcinoma and is currently evaluated for small cell lung cancer (SCLC). However, tumor recurrence due to development of nintedanib resistance might occur. Hence, we aimed at characterizing the molecular mechanisms underlying acquired nintedanib resistance in FGFR1-driven lung cancer. Chronic nintedanib exposure of the FGFR1-driven SCLC cell line DMS114 (DMS114/NIN) but not of two NSCLC cell lines induced massive overexpression of the multidrug-resistance transporter ABCB1. Indeed, we proved nintedanib to be both substrate and modulator of ABCB1-mediated efflux. Importantly, the oncogenic FGFR1 signaling axis remained active in DMS114/NIN cells while bioinformatic analyses suggested hyperactivation of the endothelin-A receptor (ETAR) signaling axis. Indeed, ETAR inhibition resensitized DMS114/NIN cells against nintedanib by downregulation of ABCB1 expression. PKC and downstream NFκB were identified as major downstream players in ETAR-mediated ABCB1 hyperactivation. Summarizing, ABCB1 needs to be considered as a factor underlying nintedanib resistance. Combination approaches with ETAR antagonists or switching to non-ABCB1 substrate FGFR inhibitors represent innovative strategies to manage nintedanib resistance in lung cancer.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Daniela Lötsch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Bernd Boidol
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | | | - Pál Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| |
Collapse
|
14
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Ebeid K, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, Pham EL, Wongrakpanich A, Chhonker YS, Murry DJ, Leslie KK, Salem AK. Synthetically lethal nanoparticles for treatment of endometrial cancer. NATURE NANOTECHNOLOGY 2018; 13:72-81. [PMID: 29203914 PMCID: PMC5762267 DOI: 10.1038/s41565-017-0009-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/19/2017] [Indexed: 05/29/2023]
Abstract
Uterine serous carcinoma, one of the most aggressive types of endometrial cancer, is characterized by poor outcomes and mutations in the tumour suppressor p53. Our objective was to engender synthetic lethality to paclitaxel (PTX), the frontline treatment for endometrial cancer, in tumours with mutant p53 and enhance the therapeutic efficacy using polymeric nanoparticles (NPs). First, we identified the optimal NP formulation through comprehensive analyses of release profiles and cellular-uptake and cell viability studies. Not only were PTX-loaded NPs superior to PTX in solution, but the combination of PTX-loaded NPs with the antiangiogenic molecular inhibitor BIBF 1120 (BIBF) promoted synthetic lethality specifically in cells with the loss-of-function (LOF) p53 mutation. In a xenograft model of endometrial cancer, this combinatorial therapy resulted in a marked inhibition of tumour progression and extended survival. Together, our data provide compelling evidence for future studies of BIBF- and PTX-loaded NPs as a therapeutic opportunity for LOF p53 cancers.
Collapse
Affiliation(s)
- Kareem Ebeid
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
| | - Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Angie S Morris
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Erica L Pham
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Amaraporn Wongrakpanich
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Yashpal S Chhonker
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Attia MI, Eldehna WM, Afifi SA, Keeton AB, Piazza GA, Abdel-Aziz HA. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One 2017; 12:e0181241. [PMID: 28742842 PMCID: PMC5526551 DOI: 10.1371/journal.pone.0181241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/28/2017] [Indexed: 01/31/2023] Open
Abstract
The synthesis and molecular characterization of new isatin-based hydrazonoindolin-2-ones 4a-o and 7a-e are reported. The in vitro anti-proliferative potential of the synthesized compounds 4a-o and 7a-e was examined against HT-29 (colon), ZR-75 (breast) and A549 (lung) human cancer cell lines. Compounds 7b, 7d and 7e were the most active congeners against the tested human cancer cell lines with average IC50 values of 4.77, 3.39 and 2.37 μM, respectively, as compared with the reference isatin-based drug, sunitinib, which exhibited an average IC50 value of 8.11 μM. Compound 7e was selected for further pharmacological evaluation in order to gain insight into its possible mechanism of action. It increased caspase 3/7 activity by 2.4- and 1.85-fold between 4 and 8 h of treatment, respectively, at 10 μM and it caused a decrease in the percentage of cells in the G1 phase of the cell cycle with a corresponding increase in the S-phase. In addition, compound 7e increased phosphorylated tyrosine (p-Tyr) levels nearly two-fold with an apparent IC50 value of 3.8 μM. The 7e-loaded PLGA microspheres were prepared using a modified emulsion-solvent diffusion method. The average encapsulation efficiency of the 7e-loaded PLGA microspheres was 85% ± 1.3. While, the in vitro release profile of the 7e-loaded microspheres was characterized by slow and continuous release of compound 7e during 21 days and the release curve was fitted to zero order kinetics. Incorporation of 7e into PLGA microspheres improved its in vitro anti-proliferative activity toward the human cancer cell line A549 after 120 h incubation period with an IC50 value less than 0.8 μM.
Collapse
Affiliation(s)
- Mohamed I. Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samar A. Afifi
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, Egypt
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adam B. Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
| | - Gary A. Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Res earch Centre, (ID: 60014618), Dokki, Giza, Egypt
| |
Collapse
|
17
|
Abstract
Germ cell tumors (GCTs) are the most frequent malignancy in male patients between 15 and 45 years of age. Cisplatin-based chemotherapy shows excellent cure rates, but patients with cisplatin-resistant GCTs have a poor prognosis. Nintedanib (BIBF 1120, Vargatef) inhibits the receptor classes vascular endothelial growth factor receptor, platelet derived growth factor receptor, and fibroblast growth factor receptor, and has shown activity against many tumors, as well as in idiopathic lung fibrosis and bleomycin-induced lung injury. Here, we investigated the antineoplastic and antiangiogenic properties of nintedanib in cisplatin-resistant and cisplatin-sensitive GCT cells, both alone and in combination with classical cytotoxic agents such as cisplatin, etoposide, and bleomycin. The half-maximal inhibitory concentration (IC50) of nintedanib was 4.5 ± 0.43 μmol/l, 3.1 ± 0.45 μmol/l, and 3.6 ± 0.33 μmol/l in cisplatin-sensitive NTERA2, 2102Ep, and NCCIT cells, whereas the IC50 doses of the cisplatin-resistant counterparts were 6.6 ± 0.37 μmol/l (NTERA2-R), 4.5 ± 0.83 μmol/l (2102Ep-R), and 6.1 ± 0.41 μmol/l (NCCIT-R), respectively. Single treatment with nintedanib induced apoptosis and resulted in a sustained reduction in the capacity of colony formation in both cisplatin-sensitive and cisplatin-resistant GCT cells. Cell cycle analysis showed that nintedanib induced a strong G0/G1-phase arrest in all investigated cell lines. Combination treatment with cisplatin did not result in additive, synergistic, or antagonistic effects. The in-vivo activity was studied using the chorioallantoic membrane assay and indicated the antiangiogenic potency of nintedanib with markedly reduced microvessel density. Topical treatment of inoculated tumor plaques resulted in a significant reduction of the tumor size. This indicates that nintedanib might be a promising substance in the treatment of GCT.
Collapse
|
18
|
Gozzi GJ, Pires ADRA, Valdameri G, Rocha MEM, Martinez GR, Noleto GR, Acco A, Alves de Souza CE, Echevarria A, Moretto dos Reis C, Di Pietro A, Suter Correia Cadena SM. Selective Cytotoxicity of 1,3,4-Thiadiazolium Mesoionic Derivatives on Hepatocarcinoma Cells (HepG2). PLoS One 2015; 10:e0130046. [PMID: 26083249 PMCID: PMC4470815 DOI: 10.1371/journal.pone.0130046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 μM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 μM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Eliane Merlin Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Alexandra Acco
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Attilio Di Pietro
- Equipe Labellisée Ligue 2014, BMSSI UMR 5086 CNRS/Université Lyon 1, IBCP, Lyon, France
| | | |
Collapse
|
19
|
Nintedanib: A Review of Its Use as Second-Line Treatment in Adults with Advanced Non-Small Cell Lung Cancer of Adenocarcinoma Histology. Target Oncol 2015; 10:303-10. [DOI: 10.1007/s11523-015-0367-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Reck M. Nintedanib: examining the development and mechanism of action of a novel triple angiokinase inhibitor. Expert Rev Anticancer Ther 2015; 15:579-94. [PMID: 25831142 DOI: 10.1586/14737140.2015.1031218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiangiogenic agents are effective standard-of-care options in several malignancies, but are generally associated with only modest improvements in survival, as well as leading to additional toxicities. Furthermore, almost all patients develop acquired resistance to therapy, possibly due to the activation of alternative proangiogenic pathways. Here we discuss: the rationale for developing nintedanib, an agent that simultaneously inhibits signaling pathways activated by platelet-derived growth factor, FGF, as well as VEGF; how its distinctive inhibitory and pharmacokinetic profile could underlie promising efficacy and tolerability observed in Phase II trials in patients with relapsed/refractory non-small cell lung cancer, advanced ovarian cancer and metastatic colorectal cancer; the ongoing Phase III program that is assessing nintedanib in these areas of major unmet medical need; and recent progress in the development of biomarkers that may predict response to nintedanib.
Collapse
Affiliation(s)
- Martin Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
21
|
Xiang QF, Zhang DM, Wang JN, Zhang HW, Zheng ZY, Yu DC, Li YJ, Xu J, Chen YJ, Shang CZ. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int 2015; 35:1010-23. [PMID: 24621440 DOI: 10.1111/liv.12524] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cabozantinib, a small-molecule multitargeted tyrosine kinase inhibitor, has entered into a phase III clinical trial for the treatment of hepatocellular carcinoma (HCC). This study assessed the mechanistic effect of cabozantinib on the reversal of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). METHODS CCK-8 assays and tumour xenografts were used to investigate the reversal of MDR in vitro and in vivo respectively. Substrate retention assays were evaluated by fluorescence microscope and flow cytometry. Western blotting was used to detect protein expression levels. mRNA expression was determined by qPCR. The ATPase activity of P-gp was investigated using Pgp-Glo(™) assay systems. The binding mechanism of cabozantinib to P-gp at the molecular level was evaluated using docking analysis. RESULTS Cabozantinib enhanced the cytotoxicity of P-gp substrate drugs in HepG2/adr and HEK293-MDR1 cells but had no effect on non-P-gp substrates. In addition, cabozantinib increased the accumulation of P-gp substrates in HepG2/adr cells but had no effect in HepG2 cells. Furthermore, cabozantinib did not alter the expression of P-gp mRNA or protein but did stimulate the activity of P-gp ATPase. The docking study indicated that cabozantinib and verapamil may partially share a binding site on P-gp. The reversal concentrations of cabozantinib did not affect the expression of MET, AKT and ERK1/2. Significantly, cabozantinib increased the inhibitory efficacy of doxorubicin in P-gp-overexpressing HepG2/adr cell xenografts in nude mice. CONCLUSION Cabozantinib reverses P-gp-mediated MDR by directly inhibiting the efflux function of P-gp, indicating that cabozantinib may help to reverse P-gp-mediated MDR in HCC and other cancer chemotherapy.
Collapse
Affiliation(s)
- Qing-feng Xiang
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Awasthi N, Hinz S, Brekken RA, Schwarz MA, Schwarz RE. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer. Cancer Lett 2014; 358:59-66. [PMID: 25527450 DOI: 10.1016/j.canlet.2014.12.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Angiogenesis remains a sensible target for pancreatic ductal adenocarcinoma (PDAC) therapy. VEGF, PDGF, FGF and their receptors are expressed at high levels and correlate with poor prognosis in human PDAC. Nintedanib is a triple angiokinase inhibitor that targets VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β signaling. We investigated the antitumor activity of nintedanib alone or in combination with the cytotoxic agent gemcitabine in experimental PDAC. Nintedanib inhibited proliferation of cells from multiple lineages found in PDAC, with gemcitabine enhancing inhibitory effects. Nintedanib blocked PI3K/MAPK activity and induced apoptosis in vitro and in vivo. In a heterotopic model, net local tumor growth compared to controls (100%) was 60.8 ± 10.5% in the gemcitabine group, -2.1 ± 9.9% after nintedanib therapy and -12.4 ± 16% after gemcitabine plus nintedanib therapy. Effects of therapy on intratumoral proliferation, microvessel density and apoptosis corresponded with tumor growth inhibition data. In a PDAC survival model, median animal survival after gemcitabine, nintedanib and gemcitabine plus nintedanib was 25, 31 and 38 days, respectively, compared to 16 days in controls. The strong antitumor activity of nintedanib in experimental PDAC supports the potential of nintedanib-controlled mechanisms as targets for improved clinical PDAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617; Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390.
| | - Stefan Hinz
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN 46617
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617; Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390; Indiana University Health Goshen Center for Cancer Care, Indiana University School of Medicine, South Bend, IN 46617
| |
Collapse
|
23
|
Rothschild SI. Clinical potential of nintedanib for the second-line treatment of advanced non-small-cell lung cancer: current evidence. LUNG CANCER-TARGETS AND THERAPY 2014; 5:51-57. [PMID: 28210142 PMCID: PMC5217508 DOI: 10.2147/lctt.s49490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The therapeutic landscape in non-small-cell lung cancer (NSCLC) is changing. The description of molecular alterations leading to NSCLC carcinogenesis and progression (so-called oncogenic driver mutations) and the development of targeted agents interfering with the tumor-promoting intracellular signaling pathways have improved the outcome for many patients with advanced/metastatic NSCLC. However, many patients with stage IV NSCLC do not have one of the targetable predictive biomarkers, and are therefore in need of classical chemotherapy. This especially applies to squamous cell cancer. A platinum-based doublet chemotherapy is the standard of care for patients with stage IV NSCLC. As second-line therapies, docetaxel, pemetrexed, and the EGFR tyrosine-kinase inhibitor erlotinib have demonstrated benefit in Phase III randomized trials. Recently, the addition of the angiokinase inhibitor nintedanib to docetaxel has proven efficacious, and is a new treatment option in the second-line setting. Preclinical and clinical data of nintedanib for the treatment of lung cancer patients are reviewed here.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department of Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
24
|
Tang SJ, Chen LK, Wang F, Zhang YK, Huang ZC, To KKW, Wang XK, Talele TT, Chen ZS, Chen WQ, Fu LW. CEP-33779 antagonizes ATP-binding cassette subfamily B member 1 mediated multidrug resistance by inhibiting its transport function. Biochem Pharmacol 2014; 91:144-56. [PMID: 25058526 DOI: 10.1016/j.bcp.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters often leads to the development of multidrug resistance (MDR), which is the major factor contributing to the failure of chemotherapy. The objective of this study was to investigate the enhancement of CEP-33779, a small-molecule inhibitor of Janus kinase 2 (JAK2), on the efficacy of conventional chemotherapeutic agents in MDR cells with overexpression of P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Our results showed that CEP-33779, at nontoxic concentrations, significantly sensitized ABCB1 overexpressing MDR cells to its anticancer substrates. CEP-33779 significantly increased intracellular accumulation and decreased the efflux of doxorubicin by inhibiting the ABCB1 transport function. Furthermore, CEP-33779 did not alter the expression of ABCB1 both at protein and mRNA levels but did stimulate the activity of ABCB1 ATPase. CEP-33779 was predicted to bind within the large hydrophobic cavity of homology modeled ABCB1. In addition, the down-regulation of JAK2 by shRNA altered neither the expression of ABCB1 nor the cytotoxic effect of chemotherapeutic agents in ABCB1-overexpressing cells. Significantly, CEP-33779 enhanced the efficacy of vincristine against the ABCB1-overexpressing and drug resistant KBv200 cell xenograft in nude mice. In conclusion, we conclude that CEP-33779 enhances the efficacy of substrate drugs in ABCB1-overexpressing cells by directly inhibiting ABCB1 transport function. The findings encouraged to further study on the combination therapy of CEP-33779 with conventional chemotherapeutic agents in ABCB1 mediated-MDR cancer patients.
Collapse
Affiliation(s)
- Shang-jun Tang
- Department of General Surgery, Chen Xing Hai Hospital, Guangdong Medical College, Zhongshan, China; State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Li-kun Chen
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Yun-kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhen-cong Huang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Kenneth Kin Wah To
- School of Pharmacy, Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Xiao-kun Wang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wei-qiang Chen
- Department of General Surgery, Chen Xing Hai Hospital, Guangdong Medical College, Zhongshan, China.
| | - Li-wu Fu
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
25
|
Girard N. Antiangiogenic agents and chemotherapy in advanced non-small cell lung cancer: a clinical perspective. Expert Rev Anticancer Ther 2013; 13:1193-206. [PMID: 24134421 DOI: 10.1586/14737140.2013.845093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiangiogenic agents represent a major advance in the management of patients with advanced non-small-cell lung cancer receiving chemotherapy. While bevacizumab has been available for first-line treatment, other drugs, such as nintedanib, recently demontrated significant activity in the second-line setting. This review covers most recent results with antiangiogenic treatments, focusing on data relevant for routine clinical practice; recent results potentially leading to new agents approval are discussed. While biomarkers are still awaited to better-select patients for these approaches, the development of antiangiogenic agents represent a model for implementation in thoracic oncology, while highlighting the promise of a better outcome for patients with advanced lung cancer.
Collapse
Affiliation(s)
- Nicolas Girard
- Department of Respiratory medicine, Thoracic Oncology, Louis Pradel Hospital, Hospices Civils de Lyon, Claude Bernard University, Lyon, France +33 47 235 7652 +33 47 235 7653
| |
Collapse
|
26
|
Liang C, Xia J, Lei D, Li X, Yao Q, Gao J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur J Med Chem 2013; 74:742-50. [PMID: 24176732 DOI: 10.1016/j.ejmech.2013.04.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/02/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
Eighteen symmetrical bis-Schiff base derivatives of isatin were synthesized by condensation of the natural or synthetic isatins with hydrazine and were evaluated for their in vitro and in vivo antitumor activities. More than half of the obtained compounds showed potent cytotoxicity according to the MTT assay on five different human cancer cell lines (i.e. HeLa, SGC-7901, HepG2, U251, and A549), with compound 3b 3,3'-(hydrazine-1,2-diylidene)bis (5-methylindolin-2-one) being the most potent compound on HepG2 (IC₅₀ ∼ 4.23 μM). 3b was also found to be able to inhibit substantially the tumor growth on the HepS-bearing mice at a dose of 40 mg/kg. The real-time live cell imaging and tracking in the H2B-labeled HeLa cells revealed that 3b could induce mitosis interference and apoptosis-associated cell death. In mechanism study, 3b arrested the cell cycle at the G2/M phase in HepG2 cells by down-regulating the expression of cyclin B1 and cdc 2.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Xia
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Dong Lei
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiang Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
27
|
Yang C, Yang J, Sun M, Yan J, Meng X, Ma T. Alantolactone inhibits growth of K562/adriamycin cells by downregulating Bcr/Abl and P-glycoprotein expression. IUBMB Life 2013; 65:435-44. [DOI: 10.1002/iub.1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/04/2013] [Indexed: 11/09/2022]
|
28
|
To KK, Poon DC, Chen X, Fu L. Volasertib (BI 6727), a novel polo-like kinase inhibitor, reverses ABCB1 and ABCG2-mediated multidrug resistance in cancer cells. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2049-7962-2-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol 2012; 82:1008-21. [PMID: 22826468 DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Multidrug resistance (MDR), which is mediated by multiple drug efflux ATP-binding cassette (ABC) transporters, is a critical issue in the treatment of acute leukemia, with permeability glycoprotein (P-gp), multidrug resistance-associated protein 1, and breast cancer resistance protein (i.e., ABCG2) consistently being shown to be key effectors of MDR in cell line studies. Studies have demonstrated that intrinsic MDR can arise as a result of specific gene expression profiles and that drug-induced overexpression of P-gp and other MDR proteins can result in acquired resistance, with multiple ABC transporters having been shown to be overexpressed in cell lines selected for resistance to multiple drugs used to treat acute leukemia. Furthermore, numerous anticancer drugs, including agents commonly used for the treatment of acute leukemia (e.g., doxorubicin, vincristine, mitoxantrone, and methotrexate), have been shown to be P-gp substrates or to be susceptible to efflux mediated by other MDR proteins, and multiple clinical studies have demonstrated associations between P-gp or other MDR protein expression and responses to therapy or survival rates in acute leukemia. Here we review the importance of MDR in cancer, with a focus on acute leukemia, and we highlight the need for rapid accurate assessment of MDR status for optimal treatment selection. We also address the latest research on overcoming MDR, from inhibition of P-gp and other MDR proteins through various approaches (including direct antagonism and gene silencing) to the design of novel agents or novel delivery systems for existing therapeutic agents, to evade cellular efflux.
Collapse
Affiliation(s)
- Cindy Q Xia
- Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | |
Collapse
|
30
|
Liu KJ, He JH, Su XD, Sim HM, Xie JD, Chen XG, Wang F, Liang YJ, Singh S, Sodani K, Talele TT, Ambudkar SV, Chen ZS, Wu HY, Fu LW. Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo. Int J Cancer 2012; 132:224-35. [PMID: 22623106 DOI: 10.1002/ijc.27649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Saracatinib, a highly selective, dual Src/Abl kinase inhibitor, is currently in a Phase II clinical trial for the treatment of ovarian cancer. In our study, we investigated the effect of saracatinib on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters in vitro and in vivo. Our results showed that saracatinib significantly enhanced the cytotoxicity of ABCB1 substrate drugs in ABCB1 overexpressing HeLa/v200, MCF-7/adr and HEK293/ABCB1 cells, an effect that was stronger than that of gefitinib, whereas it had no effect on the cytotoxicity of the substrates in ABCC1 overexpressing HL-60/adr cells and its parental sensitive cells. Additionally, saracatinib significantly increased the doxorubicin (Dox) and Rho 123 accumulation in HeLa/v200 and MCF-7/adr cells, whereas it had no effect on HeLa and MCF-7 cells. Furthermore, saracatinib stimulated the ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin in a concentration-dependent manner. In addition, the homology modeling predicted the binding conformation of saracatinib within the large hydrophobic drug-binding cavity of human ABCB1. However, neither the expression level of ABCB1 nor the phosphorylation level of Akt was altered at the reversal concentrations of saracatinib. Importantly, saracatinib significantly enhanced the effect of paclitaxel against ABCB1-overexpressing HeLa/v200 cancer cell xenografts in nude mice. In conclusion, saracatinib reverses ABCB1-mediated MDR in vitro and in vivo by directly inhibiting ABCB1 transport function, without altering ABCB1 expression or AKT phosphorylation. These findings may be helpful to attenuate the effect of MDR by combining saracatinib with other chemotherapeutic drugs in the clinic.
Collapse
Affiliation(s)
- Ke-Jun Liu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheng C, Liu ZG, Zhang H, Xie JD, Chen XG, Zhao XQ, Wang F, Liang YJ, Chen LK, Singh S, Chen JJ, Talele TT, Chen ZS, Zhong FT, Fu LW. Enhancing chemosensitivity in ABCB1- and ABCG2-overexpressing cells and cancer stem-like cells by an Aurora kinase inhibitor CCT129202. Mol Pharm 2012; 9:1971-82. [PMID: 22632055 DOI: 10.1021/mp2006714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imidazopyridine CCT129202 is an inhibitor of Aurora kinase activity and displays a favorable antineoplastic effect in preclinical studies. Here, we investigated the enhanced effect of CCT129202 on the cytotoxicity of chemotherapeutic drugs in multidrug resistant (MDR) cells with overexpression of ATP-binding cassette (ABC) transporters and cancer stem-like cells. CCT129202 of more than 90% cell survival concentration significantly enhanced the cytotoxicity of substrate drugs and increased the intracellular accumulations of doxorubicin and rhodamine 123 in ABCB1 and ABCG2 overexpressing cells, while no effect was found on parental sensitive cells. Interestingly, CCT129202 also potentiated the sensitivity of cancer stem-like cells to doxorubicin. Importantly, CCT129202 increased the inhibitory effect of vincristine and paclitaxel on ABCB1 overexpressing KBv200 cell xenografts in nude mice and human esophageal cancer tissue overexpressing ABCB1 ex vivo, respectively. Furthermore, the ATPase activity of ABCB1 was inhibited by CCT129202. Homology modeling predicted the binding conformation of CCT129202 within the large hydrophobic cavity of ABCB1. On the other hand, CCT129202 neither apparently altered the expression levels of ABCB1 and ABCG2 nor inhibited the activity of Aurora kinases in MDR cells under the concentration of reversal MDR. In conclusion, CCT129202 significantly reversed ABCB1- and ABCG2-mediated MDR in vitro, in vivo and ex vivo by inhibiting the function of their transporters and enhanced the eradication of cancer stem-like cells by chemotherapeutic agents. CCT129202 may be a candidate as MDR reversal agent for antineoplastic combination therapy and merits further clinical investigation.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
He M, Wei MJ. Reversing multidrug resistance by tyrosine kinase inhibitors. CHINESE JOURNAL OF CANCER 2012; 31:126-33. [PMID: 22237041 PMCID: PMC3777484 DOI: 10.5732/cjc.011.10315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, a large number of tyrosine kinase inhibitors (TKIs) have been developed as anticancer agents. These TKIs can specifically and selectively inhibit tumor cell growth and metastasis by targeting various tyrosine kinases and thereby interfering with cellular signaling pathways. The therapeutic potential of TKIs has been hindered by multidrug resistance (MDR), which is commonly caused by overexpression of ATP-binding cassette (ABC) membrane transporters. Interestingly, some TKIs have also been found to reverse MDR by directly inhibiting the function of ABC transporters and enhancing the efficacy of conventional chemotherapeutic drugs. In this review, we discuss ABC transporter-mediated MDR to TKIs and MDR reversal by TKIs.
Collapse
Affiliation(s)
- Miao He
- Department of Pharmacology, Pharmaceutical College of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | | |
Collapse
|
33
|
Bousquet G, Alexandre J, Le Tourneau C, Goldwasser F, Faivre S, de Mont-Serrat H, Kaiser R, Misset JL, Raymond E. Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo-naive hormone-refractory prostate cancer patients. Br J Cancer 2011; 105:1640-5. [PMID: 22027711 PMCID: PMC3242598 DOI: 10.1038/bjc.2011.440] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: BIBF 1120 is an oral, potent, tyrosine kinase inhibitor that simultaneously targets vascular endothelial growth factor receptors 1–3, platelet-derived growth factor receptors α and β, and fibroblast growth factor receptors 1–3, as well as FLT3 and Src. Currently, the molecule is in phase III development for second-line non-small cell lung cancer and first-line ovarian cancer patients. Methods: This phase I dose-escalation study assessed the safety and maximum tolerated dose of continuous daily treatment with BIBF 1120 plus standard-dose docetaxel (75 mg m−2, every 3 weeks) and prednisone (5 mg BID) in patients with metastatic, chemo-naive, hormone-refractory prostate cancer (HRPC). Secondary objectives were characterisation of BIBF 1120 and docetaxel pharmacokinetics (PK), and preliminary antitumour activity. Results: Patients received BIBF 1120 100 mg BID (n=3), 150 mg BID (n=3), 200 mg BID (n=3), and 250 mg BID (n=12). The most frequent drug-related adverse events were diarrhoea (71.4%), asthenia (61.9%), nausea (28.6%), vomiting (28.6%), and alopecia (23.8%). The maximum tolerated dose was 250 mg BID of BIBF 1120. Overall, reversible grade 3/4 liver enzyme elevations occurred in six of twelve patients at this dose level. Among 19 assessable patients, 13 (68.4%) showed a ⩾50% reduction in prostate serum antigen levels from baseline and among 6 evaluable patients with measurable lesions 1 patient experienced a partial response by Response Evaluation Criteria In Solid Tumours criteria. Pharmacokinetic analysis showed no interactions between BIBF 1120 and docetaxel/prednisone. Conclusion: Based on the overall safety profile, 200 mg BID was the recommended dose for the combination of BIBF 1120 with the standard dose of 75 mg m−2 of docetaxel and prednisone that might be further investigated in HRPC patients. This combination was well tolerated, with preliminary signs of efficacy and no indication of PK interaction between BIBF 1120 and docetaxel.
Collapse
Affiliation(s)
- G Bousquet
- Department of Oncology, APHP - Saint-Louis Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|