1
|
Ma X, Zhang B, Yin X, Yang S, Lin Z, Yang Y, Zhou X. CPT1A/HIF-1α positive feedback loop induced fatty acid oxidation metabolic pathway contributes to the L-ascorbic acid-driven angiogenesis in breast cancer. Breast Cancer Res 2025; 27:74. [PMID: 40355947 PMCID: PMC12067761 DOI: 10.1186/s13058-025-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND In tumors rich in adipose tissue, angiogenesis is a critical factor in promoting cancer cell metastasis. However, the connection between angiogenesis and the mechanisms driving adipose metabolic remodeling in breast cancer (BC) remains insufficiently understood. This research seeks to explore whether and how CPT1A, a crucial rate-limiting enzyme in fatty acid oxidation (FAO), supports angiogenesis through metabolic pathways in BC. METHODS First, cell functional assays and animal models were employed to elucidate the pro-carcinogenic effects of CPT1A on BC and its role in metabolic alterations. Following this, the reciprocal regulatory relationship between CPT1A and HIF-1α was elucidated using transcriptomic studies, ubiquitination analysis, and dual-luciferase assays. Matrigel tube formation assays, vasculogenic mimicry assays, and chick chorioallantoic membrane (CAM) assays were utilized to evaluate the effect of CPT1A on the pro-angiogenic properties of BC. Subsequently, untargeted metabolomics was employed to identify specific metabolic changes in supernatants with and without CPT1A expression and verified by functional recovery experiments. Finally, the prognostic significance of CPT1A and the vascular marker VEGF in BC tissues was evaluated using tissue microarrays and public databases. RESULTS CPT1A overexpression significantly enhanced cell proliferation, motility, and angiogenesis via activating the FAO metabolic pathway, as demonstrated by both in vivo and in vitro experiments. Mechanistically, CPT1A regulates the ubiquitination level of hypoxia-inducible factor-1α (HIF-1α), which directly binds to the CPT1A promoter. Mutations at the 63-74 and 434-445 regions significantly reduced CPT1A promoter activity, indicating that these sites are critical for its transcriptional regulation. Ultimately, this interaction creates a reinforcing feedback loop between CPT1A and HIF-1α. Subsequently, this feedback loop alters changes in extracellular L-ascorbic acid (LAA) levels. Interestingly, LAA affects ROS homeostasis through the Nrf2/NQO1 pathway, specifically influencing angiogenesis in BC and HUVECs, while having no significant effect on their proliferation or EMT process. Moreover, increased expression levels of CPT1A and vascular endothelial growth factor (VEGF) were significantly associated with lymph node metastasis and adverse outcomes in BC patients. CONCLUSION The CPT1A/HIF-1α positive feedback loop critically regulates angiogenesis through activation of the Nrf2/NQO1 pathway, modulated by LAA. These findings highlight CPT1A and VEGF as promising therapeutic targets and prognostic biomarkers for angiogenesis in BC.
Collapse
Affiliation(s)
- Xiao Ma
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China
| | - Baojian Zhang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - Xuezhe Yin
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - ShiPeng Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - Zhenhua Lin
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China
| | - Yang Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China.
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China.
| | - Xianchun Zhou
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China.
| |
Collapse
|
2
|
Zhang Y, Li J, Zhang L, Zhang Y. Vascular endothelial growth factors in airway allergic diseases: pathophysiological functions and therapeutic prospects. Expert Rev Clin Immunol 2025; 21:577-586. [PMID: 40286021 DOI: 10.1080/1744666x.2025.2499597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Vascular endothelial growth factors (VEGFs) play a crucial role in regulating physiological angiogenesis and homeostasis during growth and development. Recent advancements in our knowledge of VEGFs have revealed their complex role in coordinating vascular homeostasis and pathological role in various airway allergic reactions and structural remodeling, especially in allergic asthma and allergic rhinitis (AR), which has become more apparent. AREAS COVERED After an extensive search of PubMed and Web of Science databases, our review covered articles published from 1989 to 2024. The purpose of this review was to review previous studies on VEGFs involved in inflammatory progression and tissue remodeling in airway allergic diseases, to summarize the relevant pathways. This article further reviews that VEGFs and their receptors can also be potential targets for treating airway allergic diseases. EXPERT OPINION The prevalence of airway allergic diseases is increasing, which has caused a serious economic burden. VEGFs and their receptors have been recognized as potential targets for therapeutic interventions, which have been effectively applied in the treatment of tumors and other diseases. Fully elucidating the involvement of VEGFs in the disease process will help us understand their mechanisms of action and develop targeted therapies for allergic diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Mahaki H, Nobari S, Tanzadehpanah H, Babaeizad A, Kazemzadeh G, Mehrabzadeh M, Valipour A, Yazdinezhad N, Manoochehri H, Yang P, Sheykhhasan M. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed Pharmacother 2025; 186:118023. [PMID: 40164047 DOI: 10.1016/j.biopha.2025.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression and metastasis, with vascular endothelial growth factor (VEGF) signaling serving as a key regulator of tumor angiogenesis and immune evasion. VEGF induces abnormal blood vessel formation, promoting tumor growth, immune suppression, and metastasis through epithelialmesenchymal transition (EMT). As a result, VEGF signaling has become a critical therapeutic target in cancer treatment. This review examines the molecular mechanisms driving VEGF-mediated tumor growth and angiogenesis, with a focus on the interaction between tumor and endothelial cells and the dual role of VEGF in fostering vascularization and immune suppression. Current anti-VEGF therapies, including monoclonal antibodies (e.g., bevacizumab) and tyrosine kinase inhibitors (TKIs), have demonstrated efficacy and have received FDA approval for various cancers; however, therapeutic resistance remains a significant challenge. Strategies to overcome resistance, such as novel VEGF inhibitors, vascular normalization approaches, and combination therapies with immune checkpoint inhibitors, have been explored. Additionally, future directions emphasize the need for personalized approaches to improve treatment efficacy and reduce metastasis. A comprehensive understanding of VEGF signaling in the TME may pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamhosein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Valipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Yazdinezhad
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Jiang S, Li C, Liu D, Zeng F, Wei W, He T, Yang W. Role, mechanisms and effects of Radix Bupleuri in anti‑breast cancer (Review). Oncol Lett 2025; 29:166. [PMID: 39963320 PMCID: PMC11831725 DOI: 10.3892/ol.2025.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, Radix Bupleuri and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance. The present review aimed to delve into the anti-breast cancer properties of Radix Bupleuri and its active ingredients, highlighting their mechanisms, such as inhibition of cell proliferation, promotion of apoptosis, metastasis prevention, microenvironment improvement and synergy with certain chemotherapeutic agents. These findings may provide a scientific rationale for combining Radix Bupleuri and its active components with traditional chemotherapy agents for the management of breast cancer.
Collapse
Affiliation(s)
- Shiting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Wei
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
5
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2025; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
6
|
Hirakawa T, Yamaguchi K, Funaishi K, Shimoji K, Sakamoto S, Horimasu Y, Masuda T, Nakashima T, Iwamoto H, Hamada H, Yamada S, Hattori N. Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2025; 17:572. [PMID: 40002167 PMCID: PMC11853576 DOI: 10.3390/cancers17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vascular endothelial growth factor (VEGF)-A promotes an immunosuppressive tumor microenvironment, potentially affecting the efficacy of anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody therapy. VEGF121 and VEGF165, VEGF-A isoforms, promote and inhibit tumor growth, respectively. Additionally, VEGF-A levels differ depending on whether they are measured in serum or plasma. However, whether the serum or plasma levels of total VEGF-A (tVEGF-A) or its isoforms are the most suitable for predicting anti-PD-1/PD-L1 antibody therapy efficacy remains unclear. METHODS Eighty-six patients with non-small-cell lung cancer (NSCLC) who were treated with anti-PD-1/PD-L1 antibody monotherapy between December 2015 and December 2023 were retrospectively enrolled. The association between the serum and plasma levels of tVEGF-A and its isoforms (VEGF121 and VEGF165) and treatment outcomes was analyzed. RESULTS The median progression-free survival (PFS) was 2.9 months, and the objective response rate (ORR) was 23.3%. PFS was significantly shorter in patients with higher tVEGF-A serum levels (≥484.2 pg/mL) than in those without (median PFS 2.1 vs. 3.7 months, p = 0.004). In contrast, plasma tVEGF-A levels could not be used to stratify PFS. Therefore, the serum levels of VEGF-A isoforms were measured. Patients with higher VEGF121 serum levels (≥523.5 pg/mL) showed both significantly shorter PFS (median PFS 2.3 vs. 3.3 months, p = 0.022) and a lower ORR (9.7% vs. 30.9%, p = 0.033) than those without. Multivariate Cox and logistic regression analyses showed that higher levels of serum VEGF121 were significantly associated with shorter PFS and a lower ORR. CONCLUSIONS Serum VEGF121 levels may be useful in predicting anti-PD-1/PD-L1 antibody monotherapy efficacy.
Collapse
Affiliation(s)
- Tetsu Hirakawa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Kunihiko Funaishi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Kiyofumi Shimoji
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (T.H.); (T.M.); (T.N.); (N.H.)
| |
Collapse
|
7
|
Wang K, Lin X, Lv X, Xie M, Wu J, Wu JJ, Luo Y. Nanozyme-based aptasensors for the detection of tumor biomarkers. J Biol Eng 2025; 19:13. [PMID: 39920818 PMCID: PMC11806818 DOI: 10.1186/s13036-025-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
A nanozyme-based aptasensor combines the unique properties of nanozymes with the specificity of aptamers for the detection of various biomolecules. Nanozymes are nanomaterials that possess enzyme-like properties, demonstrating substantial potential for enhancing the sensing capabilities of biosensors. In recent years, the incorporation of nanozymes into biosensors has opened new avenues for the detection of tumor biomarkers. The unique attributes of nanozymes and aptamers lead to biosensors characterized by high sensitivity, specificity, reproducibility and accuracy in analytical performance. This article reviews the research progress of nanozyme-based aptasensors in tumor biomarker detection over the past decade. We categorize these sensors based on their sensing modes and target types, and examine the properties and applications of the nanozymes employed in these devices, providing a thorough discussion of the strengths and weaknesses associated with each sensor type. Finally, the review highlights the strengths and challenges associated with nanozyme-based biosensors and envisions future developments and applications in this field. The objective is to provide insights for improving biosensor performance in tumor biomarker detection, thereby contributing to advancements in precision cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China.
| | - Xiao Lv
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jinyu Wu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Yang Luo
- Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
8
|
Yu W, Chen D, Ma L, Lin Y, Zheng J, Li X. EIF4A3-Induced Circ_0059914 Promoted Angiogenesis and EMT of Glioma via the miR-1249/VEGFA Pathway. Mol Neurobiol 2025; 62:973-987. [PMID: 38951469 DOI: 10.1007/s12035-024-04319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Gliomas are common brain tumors. Despite extensive research, the 5-year survival rate of glioma remains low. Many studies have reported that circular RNAs (circRNAs) play a role in promoting the malignant progression of glioma; however, the role of circ_0059914 in this process remains unclear. In this study, we aimed to investigate the function and underlying mechanism of circ_0059914 in glioma. Western blotting and qRT-PCR were used to determine the levels of circ_0059914, miR-1249, VEGFA, N-cadherin, vimentin, Snail, and EIF4A3. EDU and colony formation assays were conducted to evaluate cell proliferation. Transwell assays were used to explore cell migration and invasion and tube formation assays were used to analyze angiogenesis. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to explore the relationship between EIF4A3, circ_0059914, miR-1249, and VEGFA. A xenograft tumor assay was performed to determine the role of circ_0059914 in vivo. Circ_0059914 expression was upregulated in gliomas. Knockdown of gliomal circ_0059914 expression reduced the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and growth of glioma cells in vivo. Circ_0059914 sponged miR-1249, and miR-1249 inhibition reversed the circ_0059914 knockdown-mediated effects in glioma cells. VEGFA was found to be a target gene of miR1249; overexpression of VEGFA reversed the effect of miR-1249 up-regulation in glioma. Finally, EIF4A3 increased the expression of circ_0059914. EIF4A3-induced circ_0059914 expression plays a role in promoting glioma via the miR-1249/VEGFA axis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Duo Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Jihui Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Huanggu District, No.4, Chongshan East Road, Shenyang, 110032, China.
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China.
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
9
|
Zhou XJ, Liu XF, Wang X, Cao XC. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer. Methods 2025; 233:1-10. [PMID: 39550019 DOI: 10.1016/j.ymeth.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Single cell sequencing and related databases have been widely used in the exploration of cancer occurrence and development, but there is still no in-depth explanation of specific and complicated cellular protein modification processes. Ubiquitin-Proteasome System (UPS), as a specific and precise protein modification and degradation process, plays an important role in the biological functions of cancer cell proliferation and apoptosis. Proteasomes, vital multi-catalytic proteinases in eukaryotic cells, play a crucial role in protein degradation and contribute to tumor regulation. The 26S proteasome, part of the ubiquitin-proteasome system. In this study, we have enrolled a common SITP process including analysis of single cell sequencing to elucidate a flow that can capture typical proteasome markers in the oncogenesis and progression of breast cancer. PSMD11, a key component of the 26S proteasome regulatory particle, has been identified as a critical survival factor in cancer cells. Results suggest that PSMD11's rapid degradation is linked to acute apoptosis in cancer cells, making it a potential target for cancer treatment. Our study explored the potential mechanisms of PSMD11 in breast cancer development. The findings revealed the feasibility of disclosing ubiquitinating biomarkers from public database, as well as presented new evidence supporting PSMD11 as a potential therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Xue-Jie Zhou
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Liu
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xin Wang
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| | - Xu-Chen Cao
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
10
|
Yu S, Si Y, Yu J, Jiang C, Cheng F, Xu M, Fan Z, Liu F, Liu C, Wang Y, Wang N, Liu C, Bi C, Sun H. SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA. Cancer Sci 2024; 115:3915-3927. [PMID: 39329452 PMCID: PMC11611762 DOI: 10.1111/cas.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Yue Si
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Jianzhong Yu
- Department of Internal MedicineHaian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Chengyang Jiang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fei Cheng
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Miao Xu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Zhehao Fan
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fangchen Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chang Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Ying Wang
- Department of Thyroid and Breast SurgeryThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Ning Wang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chenxu Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Caili Bi
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Haibo Sun
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| |
Collapse
|
11
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
12
|
Long Y, Dan Y, Jiang Y, Ma J, Zhou T, Fang L, Wang Z. Colorectal Cancer Cell-Derived Extracellular Vesicles Promote Angiogenesis Through JAK/STAT3/VEGFA Signaling. BIOLOGY 2024; 13:873. [PMID: 39596828 PMCID: PMC11591796 DOI: 10.3390/biology13110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Angiogenesis plays a crucial role in the growth of colorectal cancer (CRC). Recent studies have identified extracellular vesicles (EVs) in the tumor microenvironment as important mediators of cell-to-cell communication. However, the specific role and mechanisms of CRC-derived EVs in regulating tumor angiogenesis remain to be further investigated. METHODS EVs were isolated from the conditioned medium of the CRC cells using ultracentrifugation. We investigated the effects of HT-29-derived EVs on tumor growth and angiogenesis in a subcutaneous HT-29 CRC tumor model in mice. Additionally, we evaluated the impact of HT-29-derived EVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, bioinformatics analysis was performed to identify relevant signaling pathways, and pathway inhibitors were used to block the activation of these pathways, aiming to elucidate their roles in angiogenesis. RESULTS We found that HT-29-derived EVs can promote tumor growth and angiogenesis in vivo, as well as significantly enhance the proliferation, migration, and tube formation of HUVECs. Bioinformatics analysis revealed that HT-29-derived EVs may regulate angiogenesis through the JAK/STAT3 signaling pathway. Specifically, we observed that CRC-derived EVs promoted the phosphorylation of STAT3 (p-STAT3) and the expression of VEGFA in the nucleus of HUVECs. Treatment with the STAT3 inhibitor Stattic reduced the nuclear expression of p-STAT3, which impaired its function as a transcription factor, thereby inhibiting VEGFA expression and the pro-angiogenic effects of CRC-derived EVs. CONCLUSIONS EVs derived from CRC cells promote CRC tumor angiogenesis by regulating VEGFA through the JAK/STAT3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuqing Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Dan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yao Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tao Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| |
Collapse
|
13
|
Addisu S, Bekele A, Seifu D, Assefa M, Gemechu T, Hoenerhoff MJ, Merajver SD. Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor A (VEGF-A) expressions in Ethiopian female breast cancer and their association with histopathologic features. PLoS One 2024; 19:e0308411. [PMID: 39405290 PMCID: PMC11478813 DOI: 10.1371/journal.pone.0308411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGF) play important role in breast tumor growth, invasion, metastasis, patient survival and drug resistance. The aim of this study was to evaluate the protein expression status of EGFR and VEGF-A, as well as their association with hormone receptor status and histopathological characteristics in the invasive type of female breast cancer among Ethiopians. METHOD The primary breast tumor tissues were obtained from 85 Ethiopian invasive breast cancer cases that underwent modified radical mastectomy (MRM) from June 2014 to June 2015. Their FFPE blocks were analyzed for EGFR and VEGF protein expressions using immunohistochemical techniques. The expressions were also correlated with histopathologic features. RESULT Epidermal growth factor receptor over-expression was observed in 22% of the tumor samples. VEGF-A expression was negative in 13.41%, low in 63.41%, moderate in 20.73%, and high in 2.44%. EGFR expression, but not VEGF-A, showed a significant inverse correlation with both estrogen receptor (ER) (P = 0.01) and progesterone receptor (PR) statuses (P = 0.04). EGFR and VEGF expressions did not show significant association with tumor size, grade, lymph node status or age at diagnosis. CONCLUSION Epidermal growth factor receptor expression was most likely associated with ER and PR negative tumors. Assessments of multiple molecular markers aid to understand the biological behavior of the disease in Ethiopian population. It might also help to predict which group of patients might get more benefit from the selected treatment strategies and which are not.
Collapse
Affiliation(s)
- Sisay Addisu
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Bekele
- Department of Surgery, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tufa Gemechu
- Department of Pathology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sofia D. Merajver
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Awadelkareem AM, Patel M, Banu H, Adnan M. Integrating computational methods and i n vitro experimental validation reveals the pharmacological mechanism of Selaginella bryopteris (L.) Baker targeting major proteins in breast cancer. Heliyon 2024; 10:e38801. [PMID: 39430520 PMCID: PMC11489316 DOI: 10.1016/j.heliyon.2024.e38801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer remains a significant global health challenge, necessitating the exploration of novel therapeutic options. The present study employs an integrated approach encompassing network pharmacology, molecular docking, molecular dynamics simulations, and in-vitro validation to investigate the potential of Selaginella bryopteris in breast cancer treatment. Initial network pharmacology analysis revealed different potential targets and pathways associated with breast cancer that could be modulated by S. bryopteris phytochemical constituents. Molecular docking and dynamics simulations further elucidated the stability and dynamics of protein-ligand complexes (lanaroflavone-EGFR and sequoiaflavone-CTNNB1). The in-vitro assays demonstrated the ability of S. bryopteris crude extract to inhibit cancer cell growth (IC50 - 78.34 μg/mL) migration and invasion, supporting the computational predictions. The integrated approach employed in the present study offers a robust framework for the systematic exploration of S. bryopteris in drug discovery as a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
15
|
Zhao Z, Liang J, Zhang X, Li W, Wang Y. A new model for the inference of biological entities states: Ternary Entity State Inference System. Heliyon 2024; 10:e37578. [PMID: 39309861 PMCID: PMC11415649 DOI: 10.1016/j.heliyon.2024.e37578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding the state transitions in biological systems and identifying critical steady states are crucial for investigating disease development and discovering key therapeutic targets. To advance the study of state transitions in specific biological entities, we proposed the Ternary Entity State Inference System (T-ESIS). T-ESIS builds upon the Entity State Inference System by providing richer information on entity states, where states can take values of 0, 1, or 1/2, representing activation, inhibition, and normal states, respectively. This method infers state transition pathways based on interaction relationships and visualizes them through the Entity State Network. Furthermore, the cyclic structures within the Entity State Network capture positive and negative feedback loops, providing a topological foundation for the formation of steady states. To demonstrate the applicability of T-ESIS, entity states were modeled, and attractor analysis was conducted in non-small cell lung cancer (NSCLC) networks. Our analysis provided valuable insights into targeted therapy for NSCLC, highlighting the potential of T-ESIS in uncovering therapeutic targets and understanding disease mechanisms. Moreover, the proposed T-ESIS framework facilitated the inference of entity state transitions and the analysis of steady states in biological systems, offering a novel approach for studying the dynamic principles of these systems. This ternary dynamic modeling approach not only deepened our understanding of biological networks but also provided a methodological reference for future research in the field.
Collapse
Affiliation(s)
- Ziwei Zhao
- Information Engineering Research Center for Traditional Chinese Medicines, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingxuan Liang
- Information Engineering Research Center for Traditional Chinese Medicines, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianbao Zhang
- Information Engineering Research Center for Traditional Chinese Medicines, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenyan Li
- Information Engineering Research Center for Traditional Chinese Medicines, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Wang
- Information Engineering Research Center for Traditional Chinese Medicines, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
16
|
Gutiérrez-Zepeda BM, Gómez-Del Toro MM, Ortiz-Soto DJ, Becerra-Loaiza DS, Quiroz-Bolaños AF, Topete A, Franco-Topete RA, Daneri-Navarro A, Del Toro-Arreola A, Quintero-Ramos A. The VEGFA rs3025039 Variant Is a Risk Factor for Breast Cancer in Mexican Women. Int J Mol Sci 2024; 25:10172. [PMID: 39337657 PMCID: PMC11432390 DOI: 10.3390/ijms251810172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death from tumors in women worldwide, influenced by various factors, including genetics. The T allele of the single nucleotide variant (SNV) rs3025039 at position +936 of the VEGFA gene has been reported to affect the mRNA regulatory mechanisms, potentially altering VEGFA expression and increasing BC risk. This study aimed to investigate the association between rs3025039 and BC in Mexican women residing in Jalisco, Mexico. The study included 231 women with a confirmed diagnosis of BC and 201 healthy subjects as a reference group (RG). PCR-RFLP was employed for the genotyping of rs3025039, with the visualization of amplified products using polyacrylamide gel electrophoresis. Significant differences were observed in rs3025039 alleles and genotypes between BC cases and the RG (p = 0.0038). The frequency of the T allele and the CT genotype was higher in the BC group compared to the RG, with a significant difference (p = 0.0006). In conclusion, this research suggests that the SNV rs3025039 is associated with a higher risk of BC in Mexican women. These findings enhance our understanding of the genetic underpinnings of BC in this population, offering potential insights for future studies and interventions.
Collapse
Affiliation(s)
- Bricia M Gutiérrez-Zepeda
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mariana M Gómez-Del Toro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Diego J Ortiz-Soto
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Licenciatura en Médico Cirujano y Partero, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Denisse S Becerra-Loaiza
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento de Aparatos y Sistemas II, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Angel F Quiroz-Bolaños
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Ramón A Franco-Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Antonio Quintero-Ramos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Hospital de Especialidades, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
17
|
Yu S, Wu R, Si Y, Fan Z, Wang Y, Yao C, Sun R, Xue Y, Chen Y, Wang Z, Dong S, Wang N, Ling X, Liang Z, Bi C, Yang Y, Dong W, Sun H. Alternative splicing of ALDOA confers tamoxifen resistance in breast cancer. Oncogene 2024; 43:2901-2913. [PMID: 39164523 DOI: 10.1038/s41388-024-03134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
The cancer-associated alternative splicing (AS) events generate cancer-related transcripts which are involved in uncontrolled cell proliferation and drug resistance. However, the key AS variants implicated in tamoxifen (TAM) resistance in breast cancer remain elusive. In the current study, we investigated the landscape of AS events in nine pairs of primary and relapse breast tumors from patients receiving TAM-based therapy. We unrevealed a notable association between the inclusion of exon 7.2 in the 5'untranslated region (5'UTR) of ALDOA mRNA and TAM resistance. Mechanistically, the inclusion of ALDOA exon 7.2 enhances the translation efficiency of the transcript, resulting in increased ALDOA protein expression, mTOR pathway activity, and the promotion of TAM resistance in breast cancer cells. Moreover, the inclusion of exon 7.2 in ALDOA mRNA is mediated by MSI1 via direct interaction. In addition, elevated inclusion of ALDOA exon 7.2 or expression of MSI1 is associated with an unfavorable prognosis in patients undergoing endocrine therapy. Notably, treatment with Aldometanib, an ALDOA inhibitor, effectively restrains the growth of TAM-resistant breast cancer cells in vitro and in vivo. The present study unveils the pivotal role of an AS event in ALDOA, under the regulation of MSI1, in driving TAM resistance in breast cancer. Therefore, this study provides a promising therapeutic avenue targeting ALDOA to combat TAM resistance.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Rui Wu
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Ying Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chang Yao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongmao Sun
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaji Xue
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yongli Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zheng Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shuangshuang Dong
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xinyue Ling
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhengyan Liang
- School of Basic Medical Science, Guangdong Medical University, Dongguan, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China.
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian, China.
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China.
- Haian Hospital of Traditional Chinese Medicine, Haian, China.
| |
Collapse
|
18
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Gallegos-Martínez S, Choy-Buentello D, Pérez-Álvarez KA, Lara-Mayorga IM, Aceves-Colin AE, Zhang YS, Trujillo-de Santiago G, Álvarez MM. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Biofabrication 2024; 16:045010. [PMID: 38866003 DOI: 10.1088/1758-5090/ad5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.
Collapse
Affiliation(s)
- Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - David Choy-Buentello
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | - Kristen Aideé Pérez-Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| |
Collapse
|
20
|
Sutherland L, Lang J, Gonzalez-Juarbe N, Pickett BE. Secondary Analysis of Human Bulk RNA-Seq Dataset Suggests Potential Mechanisms for Letrozole Resistance in Estrogen-Positive (ER+) Breast Cancer. Curr Issues Mol Biol 2024; 46:7114-7133. [PMID: 39057065 PMCID: PMC11275280 DOI: 10.3390/cimb46070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is common among postmenopausal women and is frequently treated with Letrozole, which inhibits aromatase from synthesizing estrogen from androgens. Decreased estrogen slows the growth of tumors and can be an effective treatment. The increase in Letrozole resistance poses a unique problem for patients. To better understand the underlying molecular mechanism(s) of Letrozole resistance, we reanalyzed transcriptomic data by comparing individuals who responded to Letrozole therapy (responders) to those who were resistant to treatment (non-responders). We identified SOX11 and S100A9 as two significant differentially expressed genes (DEGs) between these patient cohorts, with "PLK1 signaling events" being the most significant signaling pathway. We also identified PRDX4 and E2F8 gene products as being the top mechanistic transcriptional markers for ER+ treatment resistance. Many of the significant DEGs that we identified play a known role in ER+ breast cancer or other types of cancer, which partially validate our results. Several of the gene products we identified are novel in the context of ER+ breast cancer. Many of the genes that we identified warrant further research to elucidate the more specific molecular mechanisms of Letrozole resistance in this patient population and could potentially be used as prognostic markers with further wet lab validation. We anticipate that these findings could contribute to improved detection and therapeutic outcomes in aromatase-resistant ER+ breast cancer patients.
Collapse
Affiliation(s)
- Lincoln Sutherland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Jacob Lang
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Norberto Gonzalez-Juarbe
- J. Craig Venter Institute, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| |
Collapse
|
21
|
Yoshida S, Kawai H, Soe Y, Eain HS, Sanou S, Takabatake K, Takeshita Y, Hisatomi M, Nagatsuka H, Asaumi J, Yanagi Y. Efficacy of Cisplatin-CXCR4 Antagonist Combination Therapy in Oral Cancer. Cancers (Basel) 2024; 16:2326. [PMID: 39001388 PMCID: PMC11240506 DOI: 10.3390/cancers16132326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cisplatin is a platinum-based compound that is widely used for treating inoperable oral squamous cell carcinoma (OSCC) in Japan; however, resistance to cisplatin presents a challenge and innovative approaches are required. We aimed to investigate the therapeutic potential of targeting the chemokine receptor CXCR4, which is involved in angiogenesis and tumor progression, using the CXCR4 inhibitor AMD3100, in combination with cisplatin. AMD3100 induced necrosis and bleeding in OSCC xenografts by inhibiting angiogenesis. We investigated the combined ability of AMD3100 plus cisplatin to enhance the antitumor effect in cisplatin-resistant OSCC. An MTS assay identified HSC-2 cells as cisplatin-resistant cells in vitro. Mice treated with the cisplatin-AMD combination exhibited the most significant reduction in tumor volume, accompanied by extensive hemorrhage and necrosis. Histological examination indicated thin and short tumor vessels in the AMD and cisplatin-AMD groups. These results indicated that cisplatin and AMD3100 had synergistic antitumor effects, highlighting their potential for vascular therapy of refractory OSCC. Antitumor vascular therapy using cisplatin combined with a CXCR4 inhibitor provides a novel strategy for addressing cisplatin-resistant OSCC.
Collapse
Affiliation(s)
- Saori Yoshida
- Preliminary Examination Room, Okayama University Hospital, Okayama 700-8558, Japan; (S.Y.); (Y.Y.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.S.); (H.S.E.); (H.N.)
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.S.); (H.S.E.); (H.N.)
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.S.); (H.S.E.); (H.N.)
| | - Sho Sanou
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.S.); (H.S.E.); (H.N.)
| | - Yohei Takeshita
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.T.); (J.A.)
| | - Miki Hisatomi
- Department of Oral and Maxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.S.); (H.S.E.); (H.N.)
| | - Junichi Asaumi
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.T.); (J.A.)
| | - Yoshinobu Yanagi
- Preliminary Examination Room, Okayama University Hospital, Okayama 700-8558, Japan; (S.Y.); (Y.Y.)
- Department of Dental Informatics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
22
|
Song J, Shao L, Yu H, Meng C, Li G. Self-Assembly of Sulfate-Containing Peptides Sequesters VEGF for Inhibiting Cancer Cell Invasion. Biomacromolecules 2024; 25:3087-3097. [PMID: 38584438 DOI: 10.1021/acs.biomac.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hongwen Yu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Caiting Meng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| |
Collapse
|
23
|
Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol 2024; 150:221. [PMID: 38687357 PMCID: PMC11061008 DOI: 10.1007/s00432-024-05714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.
Collapse
Affiliation(s)
- Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Zhou X, Zhao J, Yan T, Ye D, Wang Y, Zhou B, Liu D, Wang X, Zheng W, Zheng B, Qian F, Li Y, Li D, Fang L. ANXA9 facilitates S100A4 and promotes breast cancer progression through modulating STAT3 pathway. Cell Death Dis 2024; 15:260. [PMID: 38609357 PMCID: PMC11014919 DOI: 10.1038/s41419-024-06643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.
Collapse
Affiliation(s)
- Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyong Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Yan
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bai'an Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yating Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Breast Disease, School of Medicine, Tongji University, Shanghai, China.
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Breast Disease, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
25
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
26
|
Benedetti A, Turco C, Gallo E, Daralioti T, Sacconi A, Pulito C, Donzelli S, Tito C, Dragonetti M, Perracchio L, Blandino G, Fazi F, Fontemaggi G. ID4-dependent secretion of VEGFA enhances the invasion capability of breast cancer cells and activates YAP/TAZ via integrin β3-VEGFR2 interaction. Cell Death Dis 2024; 15:113. [PMID: 38321003 PMCID: PMC10847507 DOI: 10.1038/s41419-024-06491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin β3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin β3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin β3 axis as a potential target for BC treatment.
Collapse
Affiliation(s)
- Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Turco
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martina Dragonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
27
|
Dong B, Li C, Xu X, Wang Y, Li Y, Li X. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA. Genes Genomics 2024; 46:231-239. [PMID: 37728844 DOI: 10.1007/s13258-023-01440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a critical role in the development of ovarian cancer (OC). OBJECTIVE The study aimed to determine the role of LncRNA LINC01123 in OC bio-progression, which is upregulated in OC tissues during OC progression. METHODS Bioinformatics methods, GEPIA, and qRT-PCR were used to reveal the level and correlation of LINC01123, hsa-miR-516b-5p, and VEGFA, in OC cell lines. MTT, EdU, TUNEL, and Transwell assays were performed to assess the bioactivity of OC cell. Target sites of LINC01123 and hsa-miR-516b-5p were predicted using Starbase, and the potential linkage points of VEGFA and hsa-miR-516b-5p were predicted using TargetScan. These sites and linkage points were confirmed by double luciferase reporter assay. RESULTS LINC01123 was upregulated in OC cell lines and LINC01123 silencing suppressed the proliferation and metastasis of OC cells, but promoted cell apoptosis. hsa-miR-516b-5p was linked to LINC01123 and. VEGFA was downstream of hsa-miR-516b-5p. Importantly, silencing of hsa-miR-516b-5p reversed the inhibitory impact of si-LINC01123. The result of hsa-miR-516b-5p inhibitor + si-LINC01123 co-transfection were rescued by si-VEGFA. CONCLUSION LINC01123 promotes OC development by dampening miR-516b-5p function, and may be a novel target for treating OC.
Collapse
Affiliation(s)
- Bing Dong
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China.
| | - Cuiping Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xiaomeng Xu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yan Wang
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yuewen Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xingmei Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| |
Collapse
|
28
|
Lujan DA, Ochoa JL, Beswick EJ, Howard TA, Hathaway HJ, Perrone-Bizzozero NI, Hartley RS. Cold-Inducible RNA Binding Protein Impedes Breast Tumor Growth in the PyMT Murine Model for Breast Cancer. Biomedicines 2024; 12:340. [PMID: 38397942 PMCID: PMC10886683 DOI: 10.3390/biomedicines12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.
Collapse
Affiliation(s)
- Daniel A. Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Joey L. Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Ellen J. Beswick
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA;
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Helen J. Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Rebecca S. Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| |
Collapse
|
29
|
Milovanović J, Vujasinović T, Todorović-Raković N, Greenman J, Hranisavljević J, Radulovic M. Vascular endothelial growth factor (VEGF) -A, -C and VE-cadherin as potential biomarkers in early breast cancer patients. Pathol Res Pract 2023; 252:154923. [PMID: 37948997 DOI: 10.1016/j.prp.2023.154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) -A and -C act as multifunctional molecules and growth factors, while VE-cadherin (cadherin 5, CDH5) is the endothelial junction protein. AIM To assess the relationship between intratumoral VEGF -A, -C and CDH5 levels and clinical outcome, in primary, early-stage, breast cancer patients. PATIENTS AND METHODS The study included 69 node-negative (N0) breast cancer patients, all of whom had not received any prior hormonal or chemotherapeutic systemic therapy that would affect the course of disease. The median follow-up period was 144 months. Intratumoral mRNA levels of VEGF -A, -C and CDH5 were determined by RT-qPCR. Prognostic performance was evaluated by Cox proportional hazards regression, Kaplan-Meier analysis, as well as by the multivariable approach based on the least absolute shrinkage and selection operator (LASSO) logit regression. Classification of patients into the low and high subgroups was performed using the outcome-oriented cut-off point categorization approach. RESULTS Of the measured mRNAs, only CDH5 mRNA (t = -2.17; p = 0.04) and VEGF-C mRNA (t = -2.41; p = 0.03) showed significant differences between values in patient subgroups with distant metastasis and those without recurrences, respectively. These t-test results were in agreement with the Cox regression by which CDH5 mRNA reached the most pronounced hazard ratio (HR=2.07; p = 0.05), followed by VEGF-C mRNA (HR=1.59; p = 0.005). HR values above 1.0 indicate that high levels of either CDH5 or VEGF-C mRNAs associated with a higher risk of poor clinical outcome. Distant recurrence incidence was 26% for the CDH5high and 3% for the CDH5low subgroup (Kaplan-Meier analysis). Distant recurrence incidence was 23% for the VEGF-Chigh and 0% for VEGF-Clow subgroup. The independent prognostic value of VEGF-C mRNA was confirmed by LASSO regression. CONCLUSION Intratumoral VEGF-A levels did not associate with disease outcome in primary, early-stage, breast cancer patients, whilst raised levels of either CDH5 or VEGF-C prognosticated a high risk of distant metastasis.
Collapse
Affiliation(s)
- Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Tijana Vujasinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - John Greenman
- Centre for Biomedicine, University of Hull, Hull, UK
| | - Jelena Hranisavljević
- Department for Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
30
|
Bejari M, Sasani ST, Asghari SM, Kolshan MN. Vascular endothelial growth factor antagonist peptides inhibit tumor growth and metastasis in breast cancer through repression of c-src and STAT3 genes. Mol Biol Rep 2023; 50:9213-9219. [PMID: 37789224 DOI: 10.1007/s11033-023-08822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Breast cancer is one of the most decisive causes of cancer death in women worldwide. Cancer progression and tumor metastasis depend on angiogenesis. Vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2) are critically required for tumor angiogenesis. Src is involved in many of the VEGF-mediated pathways. The VEGFRs activate Src via different mechanisms. Given that Src activates STAT3 (signal transducers and activators of transcription) repressing apoptosis and promoting the cell cycle, it may be an important object for cancer treatment. METHODS AND RESULTS A series of VEGF antagonistic peptides, referred to as VGB 1,3 and 4, were designed to bind and block both VEGFR1 and VEGFR2 inhibiting the proliferation of different tumoral cells. We investigated c-Src and STAT3 gene expression changes in murine 4T1 tumors treated by the VGBs. The treated group received 1 and 10 mg kg-1 of the peptides, while the control mice received PBS, intraperitoneally for two weeks. Both of the groups underwent a resection of breast tissue 14 days after treatment. The results of qRT-PCR showed that the expression levels of c-Src and STAT3 genes were significantly decreased, in a dose-dependent manner, after treatment with the different types of VEGF antagonist peptides, compared to the control groups (P < 0.05). The groups treated with 1 mg kg-1 of all three types of VGB showed decreased expression of c-Src and STAT3 less than the groups receiving 10 mg kg-1 of the anti-angiogenic peptides. CONCLUSIONS In conclusion, peptides VGB1, 3, and 4, could be effective therapeutic molecules in breast cancer by inhibiting angiogenesis and progression of the disease.
Collapse
Affiliation(s)
- Maedeh Bejari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | |
Collapse
|
31
|
Manzi J, Hoff CO, Ferreira R, Pimentel A, Datta J, Livingstone AS, Vianna R, Abreu P. Targeted Therapies in Colorectal Cancer: Recent Advances in Biomarkers, Landmark Trials, and Future Perspectives. Cancers (Basel) 2023; 15:cancers15113023. [PMID: 37296986 DOI: 10.3390/cancers15113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to the tremendous therapeutic improvements, especially after the 2000s, in addition to increased social awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002. Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic choice. Thus, this review will summarize the current literature on targeted therapies, highlighting the molecular biomarkers involved and their pathways.
Collapse
Affiliation(s)
- Joao Manzi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Agustin Pimentel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alan S Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
32
|
Meza-Alvarado JC, Page RA, Mallard B, Bromhead C, Palmer BR. VEGF-A related SNPs: a cardiovascular context. Front Cardiovasc Med 2023; 10:1190513. [PMID: 37288254 PMCID: PMC10242119 DOI: 10.3389/fcvm.2023.1190513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Currently, cardiovascular disease risk algorithms play a role in primary prevention. However, this is complicated by a lack of powerfully predictive biomarkers that could be observed in individuals before the onset of overt symptoms. A key potential biomarker for heart disease is the vascular endothelial growth factor (VEGF-A), a molecule that plays a pivotal role in blood vessel formation. This molecule has a complex biological role in the cardiovascular system due to the processes it influences, and its production is impacted by various CVD risk factors. Research in different populations has shown single nucleotide polymorphisms (SNPs) may affect circulating VEGF-A plasma levels, with some variants associated with the development of CVDs, as well as CVD risk factors. This minireview aims to give an overview of the VEGF family, and of the SNPs reported to influence VEGF-A levels, cardiovascular disease, and other risk factors used in CVD risk assessments.
Collapse
Affiliation(s)
| | | | | | | | - B. R. Palmer
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
33
|
Brogowska KK, Zajkowska M, Mroczko B. Vascular Endothelial Growth Factor Ligands and Receptors in Breast Cancer. J Clin Med 2023; 12:jcm12062412. [PMID: 36983412 PMCID: PMC10056253 DOI: 10.3390/jcm12062412] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy responsible for the largest number of deaths in women worldwide. The risk of developing BC is predisposed by many factors such as age, presence of genetic mutations or body weight. The diagnosis is mostly made relatively late, which is why patients are exposed to radical surgical treatments, long-term chemotherapy and lower survival rates. There are no sufficiently sensitive and specific screening tests; therefore, researchers are still looking for new diagnostic biomarkers that would indicate the appearance of neoplastic changes in the initial stage of neoplasm. The VEGF family of proteins (VEGF-A, VEGF-B, VEGF-C, VEGF-D, EG-VEGF, PlGF) and their receptors are significant factors in the pathogenesis of BC. They play a significant role in the process of angiogenesis and lymphangiogenesis in both physiological and pathological conditions. The usefulness of these proteins as potential diagnostic biomarkers has been initially proven. Moreover, the blockage of VEGF-related pathways seems to be a valid therapeutic target. Recent studies have tried to describe novel strategies, including targeting pericytes, use of miRNAs and extracellular tumor-associated vesicles, immunotherapeutic drugs and nanotechnology. This indicates their possible contribution to the formation of breast cancer and their usefulness as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
34
|
Zhang L, Wang Z, Li S, Liu X, Xu C, Li L. The Potential Roles of CHI3L1 in Failed Autologous Arteriovenous Fistula in End-Stage Renal Disease. TOHOKU J EXP MED 2023; 259:253-261. [PMID: 36642504 DOI: 10.1620/tjem.2022.j120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autologous arteriovenous fistula (AVF) is commonly placed for hemodialysis treatment. Recent studies show that increased baseline serum level of Chitinase-3-like protein 1 (CHI3L1) is independently associated with a higher risk of the early failure of forearm AVFs. However, the changes and mechanisms of CHI3LI in local vascular tissues of failed AVF have not be revealed. This study aims to conduct the expression and mechanism of CHI3L1 in vascular tissues from patients. Immunoreactivity of CHI3L1, matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor-A (VEGF-A) were detected in vascular tissues collected from nine patients with AVF surgery. Due to the significant stenosis clinically, six of the nine patients received arteriovenous fistula reconstruction. The expression differences of CHI3L1 between the initial vascular tissues and failed AVF are significant (P < 0.05). Failed AVF due to stenosis shows intraluminal thrombus, collagen fiber rupture, fibrous connective tissue hyperplasia, tube wall thickening, neovascularization, scattered inflammatory cell infiltration in the tunica media as well as high CHI3L1 expression level, and the expression of MMP-2 (r = 0.9022, P = 0.0139) and VEGF-A (r = 0.8355, P = 0.0393) was positively correlated with CHI3L1. CHI3L1 expression in vascular tissues possibly plays an important role in AVF failure. MMP-2 and VEGF-A may participate in venous stenosis with CHI3L1.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Zhanghua Wang
- Department of Nephrology, the 986 Hospital, Air Force Medical University
| | - Shasha Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Xiaoxi Liu
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University.,Department of Cardiothoracic Surgery, 79th Group Army Hospital of PLA Army
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| |
Collapse
|
35
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
36
|
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-oka M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering (Basel) 2023; 10:211. [PMID: 36829705 PMCID: PMC9952256 DOI: 10.3390/bioengineering10020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rikiya Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Megumi Fukuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
38
|
The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415585. [PMID: 36555234 PMCID: PMC9779738 DOI: 10.3390/ijms232415585] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) axis is indispensable in the process of angiogenesis and has been implicated as a key driver of tumor vascularization. Consequently, several strategies that target VEGF and its cognate receptors, VEGFR-1 and VEGFR-2, have been designed to treat cancer. While therapies targeting full-length VEGF have resulted in an improvement in both overall survival and progression-free survival in various cancers, these benefits have been modest. In addition, the inhibition of VEGFRs is associated with undesirable off-target effects. Moreover, VEGF splice variants that modulate sprouting and non-sprouting angiogenesis have been identified in recent years. Cues within the tumor microenvironment determine the expression patterns of these variants. Noteworthy is that the mechanisms of action of these variants challenge the established norm of VEGF signaling. Furthermore, the aberrant expression of some of these variants has been observed in several cancers. Herein, developments in the understanding of the VEGF/VEGFR axis and the splice products of these molecules, as well as the environmental cues that regulate these variants are reviewed. Furthermore, strategies that incorporate the targeting of VEGF variants to enhance the effectiveness of antiangiogenic therapies in the clinical setting are discussed.
Collapse
|
39
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|