1
|
Wang Y, Feng X, Chen X. Autonomous Bioelectronic Devices Based on Silk Fibroin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500073. [PMID: 40123251 DOI: 10.1002/adma.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure-property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Collapse
Affiliation(s)
- Yanling Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Yi J, Zou G, Huang J, Ren X, Tian Q, Yu Q, Wang P, Yuan Y, Tang W, Wang C, Liang L, Cao Z, Li Y, Yu M, Jiang Y, Zhang F, Yang X, Li W, Wang X, Luo Y, Loh XJ, Li G, Hu B, Liu Z, Gao H, Chen X. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023; 624:295-302. [PMID: 38092907 DOI: 10.1038/s41586-023-06732-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/10/2023] [Indexed: 12/18/2023]
Abstract
Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.
Collapse
Affiliation(s)
- Junqi Yi
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore
| | - Guijin Zou
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Qianhengyuan Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ping Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhengshuai Cao
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuanheng Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xue Yang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoshi Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China.
| | - Huajian Gao
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Hu J, Hossain RF, Navabi ZS, Tillery A, Laroque M, Donaldson PD, Swisher SL, Kodandaramaiah SB. Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays. J Neural Eng 2023; 20:10.1088/1741-2552/acae08. [PMID: 36548995 PMCID: PMC10027363 DOI: 10.1088/1741-2552/acae08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective:Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment.Results:Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 103S cm-1, flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with averagein vivoimpedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses.Significance:The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.
Collapse
Affiliation(s)
- Jia Hu
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | | | - Zahra S. Navabi
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | | | - Michael Laroque
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | - Preston D. Donaldson
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| | - Sarah L. Swisher
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| | - Suhasa B. Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota Twin Cities
- Department of Biomedical Engineering, University of Minnesota Twin Cities
- Department of Neuroscience, University of Minnesota Twin Cities
| |
Collapse
|
4
|
Zhang F, Zhang L, Xia J, Zhao W, Dong S, Ye Z, Pan G, Luo J, Zhang S. Multimodal Electrocorticogram Active Electrode Array Based on Zinc Oxide-Thin Film Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204467. [PMID: 36403238 PMCID: PMC9839861 DOI: 10.1002/advs.202204467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Active electrocorticogram (ECoG) electrodes can amplify weak electrophysiological signals and improve anti-interference ability; however, traditional active electrodes are opaque and cannot realize photoelectric collaborative observation. In this study, an active and fully transparent ECoG array based on zinc oxide thin-film transistors (ZnO TFTs) is developed as a local neural signal amplifier for electrophysiological monitoring. The transparency of the proposed ECoG array is up to 85%, which is superior to that of the previously reported active electrode arrays. Various electrical characterizations have demonstrated its ability to record electrophysiological signals with a higher signal-to-noise ratio of 19.9 dB compared to the Au grid (13.2 dB). The high transparency of the ZnO-TFT electrode array allows the concurrent collection of high-quality electrophysiological signals (32.2 dB) under direct optical stimulation of the optogenetic mice brain. The ECoG array can also work under 7-Tesla magnetic resonance imaging to record local brain signals without affecting brain tissue imaging. As the most transparent active ECoG array to date, it provides a powerful multimodal tool for brain observation, including recording brain activity under synchronized optical modulation and 7-Tesla magnetic resonance imaging.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesZhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University38 Zheda RoadHangzhou310027China
| | - Luxi Zhang
- College of Information Science and Electronic EngineeringFrontier Center of Brain Science and Brain‐machine IntegrationCancer CenterZhejiang University38 Zheda RoadHangzhou310027China
| | - Jie Xia
- College of Information Science and Electronic EngineeringZhejiang University38 Zheda RoadHangzhou310027China
| | - Wanpeng Zhao
- College of Information Science and Electronic EngineeringZhejiang University38 Zheda RoadHangzhou310027China
| | - Shurong Dong
- College of Information Science and Electronic EngineeringFrontier Center of Brain Science and Brain‐machine IntegrationCancer CenterZhejiang University38 Zheda RoadHangzhou310027China
| | - Zhi Ye
- College of Information Science and Electronic EngineeringZhejiang University38 Zheda RoadHangzhou310027China
| | - Gang Pan
- College of Computer Science and TechnologyZhejiang University38 Zheda RoadHangzhou310027China
| | - Jikui Luo
- College of Information Science and Electronic EngineeringZhejiang University38 Zheda RoadHangzhou310027China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesZhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University38 Zheda RoadHangzhou310027China
| |
Collapse
|
5
|
Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-Based Approaches for the Fabrication of Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902743. [PMID: 31408223 DOI: 10.1002/adma.201902743] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Indexed: 05/23/2023]
Abstract
Stretchable electronics are mechanically compatible with a variety of objects, especially with the soft curvilinear contours of the human body, enabling human-friendly electronics applications that could not be achieved with conventional rigid electronics. Therefore, extensive research effort has been devoted to the development of stretchable electronics, from research on materials and unit device, to fully integrated systems. In particular, material-processing technologies that encompass the synthesis, assembly, and patterning of intrinsically stretchable electronic materials have been actively investigated and have provided many notable breakthroughs for the advancement of stretchable electronics. Here, the latest studies of such material-based approaches are reviewed, mainly focusing on intrinsically stretchable electronic nanocomposites that generally consist of conducting/semiconducting filler materials inside or on elastomer backbone matrices. Various approaches for fabricating these intrinsically stretchable electronic materials are presented, including the blending of electronic fillers into elastomer matrices, the formation of bi-layered heterogeneous electronic-layer and elastomer support-layer structures, and modifications to polymeric molecular structures in order to impart stretchability. Detailed descriptions of the various conducting/semiconducting composites prepared by each method are provided, along with their electrical/mechanical properties and examples of device applications. To conclude, a brief future outlook is presented.
Collapse
Affiliation(s)
- Dong Chan Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Joon Shim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woongchan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
8
|
Dong W, Wang Y, Zhou Y, Bai Y, Ju Z, Guo J, Gu G, Bai K, Ouyang G, Chen S, Zhang Q, Huang Y. Soft human–machine interfaces: design, sensing and stimulation. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0060-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Xie K, Zhang S, Dong S, Li S, Yu C, Xu K, Chen W, Guo W, Luo J, Wu Z. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Sci Rep 2017; 7:7808. [PMID: 28798359 PMCID: PMC5552815 DOI: 10.1038/s41598-017-07823-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/03/2017] [Indexed: 11/20/2022] Open
Abstract
In this paper, we present a portable wireless electrocorticography (ECoG) system. It uses a high resolution 32-channel flexible ECoG electrodes array to collect electrical signals of brain activities and to stimulate the lesions. Electronic circuits are designed for signal acquisition, processing and transmission using Bluetooth Low Energy 4 (LTE4) for wireless communication with cell phone. In-vivo experiments on a rat show that the flexible ECoG system can accurately record electrical signals of brain activities and transmit them to cell phone with a maximal sampling rate of 30 ksampling/s per channel. It demonstrates that the epilepsy lesions can be detected, located and treated through the ECoG system. The wireless ECoG system has low energy consumption and high brain spatial resolution, thus has great prospects for future application.
Collapse
Affiliation(s)
- Kejun Xie
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310027, China
| | - Shurong Dong
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijian Li
- College of Computer Science, Zhejiang University, Hangzhou, 310027, China.
| | - Chaonan Yu
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310027, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310027, China
| | - Wanke Chen
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Guo
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jikui Luo
- College of Electron Infor., Hangzhou Dianzhi University, 2nd Street, Hangzhou, 310018, China.,Institute of Renewable Energy & Environmental Technology, University of Bolton, Deane Road, Bolton, BL3 5AB, United Kingdom
| | - Zhaohui Wu
- College of Computer Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Fu TM, Hong G, Zhou T, Schuhmann TG, Viveros RD, Lieber CM. Stable long-term chronic brain mapping at the single-neuron level. Nat Methods 2016; 13:875-82. [PMID: 27571550 DOI: 10.1038/nmeth.3969] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian-Ming Fu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Tao Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas G Schuhmann
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Robert D Viveros
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Lee JH, Kim H, Kim JH, Lee SH. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. LAB ON A CHIP 2016; 16:959-76. [PMID: 26891410 DOI: 10.1039/c5lc00842e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Implantable devices have provided various potential diagnostic options and therapeutic methods in diverse medical fields. A variety of hard-material-based implantable electrodes have been developed. However, several limitations for their chronic implantation remain, including mechanical mismatches at the interface between the electrode and the soft tissue, and biocompatibility. Soft-material-based implantable devices are suitable candidates for complementing the limitations of hard electrodes. Advances in microtechnology and materials science have largely solved many challenges, such as optimization of shape, minimization of infection, enhancement of biocompatibility and integration with components for diverse functions. Significant strides have also been made in mechanical matching of electrodes to soft tissue. In this review, we provide an overview of recent advances in soft-material-based implantable electrodes for medical applications, categorized according to their implantation site and material composition. We then review specific applications in three categories: neuroprosthetics, neural signal recording, and neuromodulation. Finally, we describe various strategies for the future development and application of implantable, soft-material-based devices.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Kim J, Lee J, Son D, Choi MK, Kim DH. Deformable devices with integrated functional nanomaterials for wearable electronics. NANO CONVERGENCE 2016; 3:4. [PMID: 28191414 PMCID: PMC5271140 DOI: 10.1186/s40580-016-0062-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/04/2015] [Indexed: 05/07/2023]
Abstract
As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.
Collapse
Affiliation(s)
- Jaemin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Jongsu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Donghee Son
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Moon Kee Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742 Republic of Korea
| |
Collapse
|
13
|
Choi DK. Numerical simulation of capillary deformation of a body implantable device. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-015-0185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Kim B, Jang J, You I, Park J, Shin S, Jeon G, Kim JK, Jeong U. Interfacing liquid metals with stretchable metal conductors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7920-7926. [PMID: 25835190 DOI: 10.1021/am508899z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Highly stretchable conductors are essential components in deformable electronics. Owing to their high stretchability and conductivity, liquid metals have attracted significant attention for use as circuits and interconnections. However, their poor wettability to stretchable metal electrodes prevents the formation of stable electrical connections. This study examined two approaches for creating a stable interface between a liquid metal (EGaIn) and stretchable metal electrodes via: (i) the use of honeycomb-structured stretchable metal electrodes and (ii) the addition of a conducting polymer interlayer. The line width of the honeycomb had a significant influence on the formation of a stable interface. The liquid metal formed a stable film layer on honeycomb metal electrodes, which have line widths of less than 50 μm. Coating PEDOT PSS with a nonionic surfactant lowered the interfacial energy of EGaIn with flat stretchable metal surfaces; hence EGaIn was coated uniformly on the stretchable metal surfaces. Strain sensors were fabricated as a demonstrative example of an application that utilizes the stable interface.
Collapse
Affiliation(s)
- Bongsoo Kim
- †Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea 120-749
| | - Jaehyeok Jang
- †Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea 120-749
| | - Insang You
- ‡Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk Korea 790-784
| | - Jaeyoon Park
- †Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea 120-749
| | - SangBaie Shin
- ‡Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk Korea 790-784
| | - Gumhye Jeon
- §National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk Korea 790-784
| | - Jin Kon Kim
- §National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk Korea 790-784
| | - Unyong Jeong
- ‡Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk Korea 790-784
| |
Collapse
|
15
|
Nam Y, Kim SJ. Special issue on neural engineering. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|